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by Sz. Szakál and J. Szilasi

Abstract. A large class of special Finsler manifolds can be endowed with Finsler
connections whose “h-part” does not depend on the directions. We call these Finsler
connections h-basic and present a systematic treatment of them, using (in a simplified
form) the Frölicher-Nijenhuis calculus. We provide an axiomatic description of a
distinguished class of h-basic Finsler connections, the class of Ichijyō connections.
With the help of an Ichijyō connection we present new characterizations of generalized
Berwald manifolds, as well as – in particular – of Berwald manifolds and locally
Minkowski manifolds.

Introduction

“Through the author’s several experiences the author became convinced that
there should exist the best Finsler connection for every theory of Finsler spaces” –
wrote Makoto Matsumoto in 1987 ([9]). We believe that the present work will
also be a manifestation of this remarkable and stimulating principle.

There is a large and very important class of Finsler manifolds whose Finsler
structure, the energy – or the fundamental – function, is linked to a linear connec-
tion of the carrying manifold in a natural manner: the parallel translations with
respect to the linear connection preserve the Finslerian length of the tangent vec-
tors. This is the class of generalized Berwald manifolds (for an equivalent definition
see 4.1). Berwald manifolds and Wagner manifolds belong to this class, whose im-
portance lies (among others) in the fact that generalized Berwald manifolds may
have a rich isometry group (see [10]). We found that to any generalized Berwald
manifold a whole class of “best” Finsler connections can be attached in general.
We call the members of this class Ichijyō connections . One of our results is a purely
intrinsic characterization of the Ichijyō connections by means of simple axioms.

Any Ichijyō connection is determined by a linear connection on the carrying
manifold. Finsler connections arising from a “base linear connection” were baptized
“linear Finsler connections” in [5]. This terminology would be ambiguous in our
theoretical framework, so we tentatively introduce the term “h-basic connection” (h
as “horizontally”) instead. Other choices for an expressive (or a more expressive)
term are also possible, of course. Finsler manifolds whose structure is connected
with a base linear connection were called “point Finsler spaces” by L. Tamássy.
As for his instructive geometric approach, we refer to [13].

The paper is organised as follows. In Section 1 mainly background material is
presented about the basic tools, concentrating on horizontal endomorphisms and
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general Finsler connections. The simple observation on the coincidence of two
horizontal endomorphisms in 1.5 will be repeatedly applied in our investigations.
Section 2 is devoted to a concise but systematic study of the h-basic Finsler con-
nections. The main result of this part characterizes the h-metrical h-basic Finsler
connections on a non-Riemannian Finsler manifold. In Section 3 we establish the
existence and unicity of the Ichijyō connection on a Finsler manifold endowed with
a “basic” linear connection. A list of essential curvature and torsion identities con-
cerning the Ichijyō connection is also presented here. The concluding Section 4
provides applications to generalized Berwald manifolds. Using an Ichijyō connec-
tion, we obtain a simple characterization of them, as well as of Berwald and locally
Minkowski manifolds.

1. A review on horizontal endomorphisms and Finsler connections

1.1. The foundations of our present study were laid down by J. Grifone in his
pioneering works [3] and [4]. A systematic approach in this spirit to Finsler mani-
folds, Finsler connections, and so on, was elaborated in detail in the recent surveys
[11], [12]. In our subsequent considerations we almost completely adopt the con-
ceptual and notational conventions of these papers. With occasional but charac-
teristic exceptions, we will stay entirely within the category of C∞ manifolds and
mappings. So M always stands for a smooth manifold which is supposed to be
paracompact and of finite dimension n ≥ 1. π : TM → M is the tangent bundle of
M , π0 : T M → M is the subbundle of the nonzero tangent vectors to M . X(M)
denotes the module of vector fields on M . The canonical objects of the tangent
bundle TM → TTM , namely the vertical subbundle, the Liouville vector field and
the vertical endomorphism (or canonical almost tangent structure) are denoted by
τv
TM , C and J , respectively. X

v(TM) denotes the module of sections of τv
TM ; its el-

ements are called vertical vector fields . We are going to use freely (and frequently)
the notion and the basic properties of the vertical lift Xv and the complete lift
Xc of a vector field X ∈ X(M). The most important relations concerning these
liftings are concisely summarized in [11] and [12]; see also the monograph [14] (of
course), and [1]. A large part of our calculations is based on the following simple
observation:

if (Xi)
n
i=1 is a local basis for the module X(M), then (Xv

i , Xc
i ) is a local base for

the module X(TM).

We are also going to use systematically the basic tools of the Frölicher-Nijenhuis
calculus (operators iK and dK attached to a vector-valued form K, the Frölicher-
Nijenhuis bracket [ , ] of vector forms and so on). The best source for mastering this
wonderful theory still remains the original paper [2]; see also [1] and [8]. Recall that
the above operators reduce to the usual insertion operator iX , the Lie derivative
LX and the Lie bracket of vector fields, in particular. The operator of the exterior
derivative will be denoted by d.

1.2. Semisprays and sprays. A vector field S : TM → TTM is said to be
a semispray on the manifold M if it is of class C1 on TM , smooth on T M , and
satisfies the relation JS = C. A semispray is called a spray if the homogeneity
condition [C, S] = S holds
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The following formula, due to J. Grifone ([3], Prop. I.7) will be useful. – Let
S be a semispray on M . Then for any vertical vector field X on TM we have

(1.2) J [X, S] = X.

1.3. Horizontal endomorphisms. The role of nonlinear connections is played
by the horizontal endomorphisms in our approach. Let us consider a vector 1-form
on TM , i.e., a type (1, 1) tensor field h : X(TM) → X(TM), whose smoothness
is required only on T M . h is said to be a horizontal endomorphism on M , if it
is a projector (i.e., h2 = h) and Kerh = X

v(TM). v := 1X(TM) − h is called the

vertical projector belonging to h. If X
h(TM) := Imh, then we have the direct

decomposition
X(TM) = X

v(TM) ⊕ X
h(TM);

the elements of X
h(TM) are called horizontal vector fields . The mapping

X ∈ X(M) 7→ Xh := hXc ∈ X
h(TM)

is the horizontal lifting with respect to h. The following “second local basis princi-
ple” (c.f. 1.1.) will also be used systematically:

if (Xi)
n
i=1 is a local basis for the module X(M) and h is a horizontal

endomorphism on M , then (Xv
i , Xh

i )n
i=1 is a local basis for X(TM).

It follows easily from the definitions that

(1.3a) h ◦ J = 0, J ◦ h = J ;

and for any vector fields X , Y on M ,

(1.3b) JXh = Xv, J [Xh, Y h] = [X, Y ]v.

1.4. Let a horizontal endomorphism h be given on the manifold M . If S′ is an
arbitrary semispray on M , then S := hS′ is also a semispray on M which does not
depend on the choice of S′. S is called the semispray associated to h. In the spirit
of Grifone’s theory, we attach to h the following data:

H := [h, C] − the tension vector 1-form;(1.4a)

t := [J, h] − the torsion vector 2-form or weak torsion;(1.4b)

T := iSt + H − the torsion vector 1-form or strong torsion(1.4c)

(S is an arbitrary semispray);

Ω := −
1

2
[h, h] − the curvature vector 2-form;(1.4d)

F : = h[S, h] − J − the almost complex structure induced by h(1.4.e)

(S is the semispray associated to h).

A horizontal endomorphism is said to be homogeneous , if its tension vanishes. We
recall that any linear connection ∇ on the manifold M gives rise to a homogeneous,
everywhere smooth horizontal endomorphism h∇. In this case the data (1.4a)–
(1.4e) are denoted by H∇, . . . , F∇.
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1.5. Lemma. Suppose that h and h̃ are homogeneous horizontal endomorphisms
on M . If for any vector fields X, Y on M ,

(1.5a)
[
Xh, Y v

]
=

[
X
eh, Y v

]
,

then h = h̃.

Proof. We shall use the following simple observation:

(1.5b)
a vector field Z ∈ X(TM) is a vertical lift

if and only if JZ = 0 and [J, Z] = 0.

Since

J
(
Xh − X

eh)
= JXh − JX

eh (1.3b)
= Xv − Xv = 0,

Xh −X
eh is a vertical vector field. By the condition (1.5a) this vertical vector field

commutes with any vertically lifted vector field. Using (1.5b) this implies easily

that Xh − X
eh is also a vertical lift. Thus (again by (1.5b))

[
J, Xh − X

eh]
= 0.

Now take an arbitrary semispray S. Then

0 =
[
J, Xh − X

eh]
S =

[
JS, Xh − X

eh]
− J

[
S, Xh − X

eh]

=
[
C, Xh − X

eh]
− J

[
S, Xh − X

eh]
.

The first term on the right hand side vanishes by the homogeneity of h and h̃, while

J
[
S, Xh − X

eh]
= X

eh − Xh in view of (1.2a). Thus for each vector field X on M ,

we have Xh = X
eh. This means that the horizontal endomorphisms h and h̃ are

identical. �

1.6. Finsler connections. A pair (D, h) is said to be Finsler connection on the
manifold M , if D is a linear connection on the tangent manifold TM (or on the slit
manifold T M), h is a horizontal endomorphism on M , and the following conditions
are satisfied:

D is reducible (i.e., Dh = 0);(1.6a)

D is almost complex (i.e., DF = 0)(1.6b)

(F is the almost complex structure associated to h by (1.4e)). The covariant differ-
ential DC of the Liouville vector field is said to be the deflection of (D, h); h∗(DC)
and v∗(DC) are called the h-deflection and the v-deflection, respectively.

Condition (1.6b) guarantees that

Y ∈ X
v(TM) =⇒ ∀X ∈ X(TM) : DXY ∈ X

v(TM),

Y ∈ X
h(TM) =⇒ ∀X ∈ X(TM) : DXY ∈ X

h(TM).
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To any Finsler connection (D, h) two “partial covariant differential operators” Dh

and Dv can naturally be associated as follows.
If A is a type (r, s) 6= (0, 0) tensor field on T M , then we define the (r, s + 1)

tensor fields DhA and DvA by the rules

iXDhA := DhXA and iXDvA := DvXA (X ∈ X(T M)).

In particular, for any vector field Y on T M ,

(DhY )(X) = DhXY, (DvY )(X) = DvXY.

1.7. Curvatures and torsions of a Finsler connection. Suppose that (D, h) is
a Finsler connection on the manifold M , and let us denote by K and T the classical
curvature and torsion tensor of D, respectively. K and T can be determined by
three “partial curvatures” and five “partial torsions”, which also have importance
(but not the same importance) on their own right. These data are summarized in
the following table:

Curvature

horizontal (h) R(X, Y )Z := K(hX, hY )JZ

mixed (hv) P(X, Y )Z := K(hX, JY )JZ

vertical (v) Q(X, Y )Z := K(JX, JY )JZ

Torsion

h − horizontal ((h)h) A(X, Y ) := hT(hX, hY )
h − mixed ((h)hv) B(X, Y ) := hT(hX, JY )
v − horizontal ((v)h) R1(X, Y ) := vT(hX, hY )
v − mixed ((v)hv) P1(X, Y ) := vT(hX, JY )
v − vertical ((v)v) S1(X, Y ) := vT(JX, JY )

1.8. The operator Di
J . Let Ψ1(TM) be the C∞(TM)-module of the vector 1-

forms, i.e., of the type (1, 1) tensor fields on TM . First we consider the canonical
mapping

Di
J : X

v(TM) → Ψ1(TM), JY 7→ Di
JJY := [J, JY ].

Using the property [J, J ] = 0 it can be easily seen that for any vector field X on
TM we have

(1.8a) Di
JXJY :=

(
Di

JJY
)
(X) = J [JX, Y ].

Now we suppose that h is a horizontal endomorphism on M , v is the complementary
projection to h, and F is the almost complex structure belonging to h. Since
v = J ◦ F , we can also consider the vector field

(1.8b) Di
vXJY = Di

JFXJY = J [vX, Y ].

With the help of h and keeping in mind the “Finslerian property” (1.6b), we prolong
the operator Di

J to X
h(TM) so that for any vector field Y on TM ,

Di
JhY = Di

JFJY := FDi
JJY.

Then

Di
JXhY :=

(
Di

JhY
)
(X) = FDi

JXJY = F ◦ J [JX, Y ] = h[JX, Y ].

In the presence of a horizontal endomorphism, Di
J will always denote this extended

operator.
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1.9. Definition and lemma. Let (D, h) be a Finsler connection on the manifold
M , and let us consider the (extended) operator Di

J . If

D̃ : (X, Y ) ∈ X(T M) × X(T M) 7→ D̃XY := DhXY + Di
vXY,

then (D̃, h) is also a Finsler connection, called the associated Finsler connection to

(D, h). For the mixed curvature P̃ of (D̃, h) we have the expression

(1.9) P̃(Xc, Y c)Zc = −[J, DXhZv]Y c (X, Y, Z ∈ X(M)).

Proof. It may be seen immediately that (D̃, h) is indeed a linear connection. If K̃

is the curvature tensor of D̃, then for any vector fields X , Y , Z on M we have

P̃(Xc, Y c)Zc = K̃(Xh, Y v)Zv = D̃XhD̃Y vZv − D̃Y vD̃XhZv − D̃[Xh,Y v]Z
v.

Here

D̃Y vZv = Di
JY cJZc (1.8a)

= J [Y v, Zc] = J [Y, Z]v = 0;

D̃[Xh,Y v]Z
v = D̃v[Xh,Y v]Z

v = Di
v[Xh,Y v]JZc

(1.8b)
= J

[
[Xh, Y v], Zc

]
= [J [Xh, Y v], Zc] − [J, Zc][Xh, Y v] = 0,

since [Xh, Y v] is vertical, while [J, Zc] = 0 by (1.3c) of [12]. The remaining second
term can be formed as follows:

− D̃Y vD̃XhZv = −D̃Y v(DXhZv) = −Di
Y v(DXhZv) = −Di

JY c(JFDXhZv)

= −
[
Di

J(JFDXhZv)
]
Y c = −[J, JFDXhZv]Y c = −[J, DXhZv]Y c. �

1.10. Finsler manifolds. Vertical and prolonged metric. Let a function
E : TM → R be given. The pair (M, E) is said to be a Finsler manifold with
energy function E if the following conditions are satisfied:

∀ a ∈ T M : E(a) > 0, E(0) = 0;(1.10a)

E is of class C1 on TM and smooth on T M ;(1.10b)

CE = 2E, i.e., E is homogeneous of degree 2;(1.10c)

the fundamental form ω := ddJE is symplectic.(1.10d)

Then there is a spray S0 : TM → TTM , uniquely determined on T M by the
relation

(1.10e) iS0
ω = −dE

and prolonged to a C1-mapping of TM such that S0(0) = 0. This spray is called
the canonical spray of the Finsler manifold. The mapping

(1.10f) g : Xv(T M)×X
v(T M)→C∞(T M), (JX, JY ) 7→ g(JX, JY ) := ω(JX, Y )

is a well-defined, nondegenerate symmetric bilinear form, which is said to be the
vertical metric of (M, E). Taking an arbitrary horizontal endomorphism h on M ,
g can be prolonged to X(T M) as follows: for any vector fields X, Y ∈ X(T M),

(1.10g) g(X, Y ) := g(JX, JY ) + g(vX, vY ), v := 1X(TM) − h.

Then g is a pseudo-Riemannian metric on T M , called the prolongation of g along h.
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1.11. The Cartan tensors. The first Cartan tensor

C : X(T M) × X(T M) → X(T M), (X, Y ) 7→ C(X, Y )

of the Finsler manifold (M, E) is defined by the rules

J ◦ C := 0,(1.11a)

g(C(X, Y ), JZ) :=
1

2
(LJXJ∗g) (Y, Z) (Z ∈ X(T M)).(1.11b)

The lowered tensor C♭ of C is given by the formula

(1.11c) C♭(X, Y, Z) := g(C(X, Y ), JZ); X, Y, Z ∈ X(T M).

Let us note that

(1.11d) (M, E) is a Riemannian manifold if and only if C = 0.

Now we consider a horizontal endomorphism h on M , and the prolongation g of
the vertical metric g along h. The second Cartan tensor C′ of (M, E) (belonging
to h) is given by the condition

(1.11c) J ◦ C′ := 0

and the formula

(1.11f) g(C′(X, Y ), JZ) :=
1

2
(LhXg) (JY, JZ).

For the basic properties of C′ we refer to [12].

1.12. The Barthel endomorphism. If (M, E) is a Finsler manifold then there
exists a unique horizontal endomorphism h0 on M such that

h0 is conservative, i.e., dh0
E = 0;(1.12a)

h0 is homogeneous;(1.12b)

the weak torsion of h0 vanishes.(1.12c)

This fundamental discovery is due to J. Grifone [3]. The horizontal endomor-
phism characterized by (1.12a)–(1.12c) will be called the Barthel endomorphism of
the Finsler manifold. It can be explicitly given by the formula

(1.12d) h0 =
1

2

(
1X(TM) + [J, S0]

)
,

where S0 is the canonical spray of (M, E). Note that conditions (1.12b)–(1.12c)
can be replaced by the single condition of the vanishing of the strong torsion.
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1.13. The Hashiguchi connection. We have an abundance of nice Finsler con-
nections on any Finsler manifold (but see Matsumoto’s principle from the Intro-
duction!); for recent surveys we again refer to [11] and [12]. In our forthcoming

considerations we need only one of them, the Hashiguchi connection
(H

D, h
)

char-

acterized by the following axioms:

the v-mixed torsion of
H

D vanishes;(1.13a)

H

D is v-metrical, i.e.,
H

Dvg = 0;(1.13b)

the v-vertical torsion of
H

D vanishes(1.13c)

(g is the prolongation of the vertical metric along h).

The covariant derivatives with respect to
H

D can be calculated by the following
formulas:

H

DJXJY = J [JX, Y ] + C(X, Y );
H

DhXJY = v[hX, JY ];(1.13d,e)

H

DJXhY = h[JX, Y ] + FC(X, Y );
H

DhXhY = hF [hX, JY ](1.13f,g)

(X, Y ∈ X(T M), F is the almost complex structure induced by h). If, in addition,

h is conservative;(1.13h)

the h-horizontal torsion of
H

D vanishes;(1.13i)

the h-deflection of
H

D vanishes,(1.13j)

then h becomes the Barthel endomorphism. In this case
(H

D, h
)

is said to be the

standard Hashiguchi connection of (M, E).

The method of an intrinsic proof can be found in [11].

2. h-basic Finsler connections

2.1. Definition. A Finsler connection (D, h) is said to be an h-basic Finsler
connection if there exists a linear connection ∇ on the manifold M such that for
any vector fields X , Y on M , we have

DXhY v = (∇XY )v .

Then ∇ is called the base connection belonging to (D, h).

2.2. Remark. The base connection of an h-basic connection is clearly unique.
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2.3. Lemma (c.f. [5], Proposition 1.1). A Finsler connection (D, h) is h-basic if

and only if the mixed curvature of the associated Finsler connection (D̃, h) vanishes.

Proof. – Suppose that the mixed curvature P̃ of the associated Finsler connection
vanishes. Then, taking into account (1.9), for any vector fields X , Y , Z on M we
have

0 = [J, DXhZv] Y c = [Y v, DXhZv] − J [Y c, DXhZv] = [Y v, DXhZv] .

This means that the vertical vector field DXhY v commutes with any vertically lifted
vector field. Hence, by the same argument as in 1.5, DXhY v is also a vertical lift.
Using this fact we can see easily that the mapping

∇ : X(M) × X(M) → X(M); ∀ (X, Y ) ∈ X(M) × X(M) : (∇XY )v := DXhY v

is a well-defined linear connection on M , and so (D, h) is an h-basic Finsler con-
nection.

Conversely, if (D, h) is an h-basic Finsler connection with the base connection
∇, then for any vector fields X , Y , Z on M we have

P̃(Xc, Y c)Zc = K̃(Xh, Y v)Zv = DXhDi
Y vZv − Di

Y vDXhZv − Di
[Xh,Y v]Z

v

= −Di
Y vDXhZv = −Di

Y v (∇XZ)
v

= 0,

hence the mixed curvature of the associated Finsler connection vanishes. �

2.4. Lemma. Suppose that (D, h) is an h-basic Finsler connection with the base
connection ∇, and let h∇ be the horizontal endomorphism induced by h. Then

(2.4a) DXhC = Xh − Xh∇ (X ∈ X(M)),

therefore h∇ coincides with h if and only if the h-deflection of (D, h) vanishes.

Proof. Let (U, (ui)n
i=1) be a chart on M . Then over π−1(U) the Liouville vector

field can be represented in the form

C ↾ π−1(U) = (ui)c

(
∂

∂ui

)v

.

So in the neighborhood π−1(U) we have:

DXhC = DXh(ui)c

(
∂

∂ui

)v

=
(
Xh(ui)c

) (
∂

∂ui

)v

+ (ui)cDXh

(
∂

∂ui

)v

=
(
Xh(ui)c

) (
∂

∂ui

)v

+ (ui)c

(
∇X

∂

∂ui

)v
(1)
=

(
Xh(ui)c

) (
∂

∂ui

)v

+ (ui)c

[
Xh∇ ,

(
∂

∂ui

)v]
=

(
Xh(ui)c

)(
∂

∂ui

)v

+

[
Xh∇ , (ui)c

(
∂

∂ui

)v]

−
(
Xh∇(ui)c

)(
∂

∂ui

)v

=
(
Xh − Xh∇)(ui)c

(
∂

∂ui

)v

+ [Xh∇ , C]

(2)
= Xh − Xh∇ ,

at the steps (1) and (2) using the fact that h∇ arises from a linear connection
on M . �
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2.5 Remark. Consider a Finsler connection (D, h) with vanishing h-deflection.
By the lemma just proved, in order that (D, h) be h-basic it is necessary that h be
smooth on the whole tangent manifold and should satisfy the homogeneity condition
H := [h, C] = 0.

2.6. Corollary. If (D, h) is an h-basic Finsler connection with vanishing h-
deflection, then for any vector fields X, Y on T M we have the rules for calculation

DhXJY = v[hX, JY ],(2.6a)

DhXhY = hF [hX, JY ]. �(2.6b)

2.7. Proposition. Let (D, h) be an h-basic Finsler connection and suppose that
the horizontal endomorphism h is homogeneous. Then the h-deflection of (D, h)
vanishes if and only if the v-mixed torsion of D vanishes, i.e.,

(2.7a) under the homogeneity condition, h∗DC ⇔ P1 = 0.

Proof. For any vector fields X , Y on M we have

P1(Xh, Y h) = vT(Xh, Y v) = v
(
DXhY v − DY vXh − [Xh, Y v]

)

= DXhY v − [Xh, Y v].

If ∇ is the base connection of (D, h), then

DXhY v = (∇XY )v =
[
Xh∇ , Y v

]

by the conditions. So it follows that

P1(Xh, Y h) = 0 ⇔
[
Xh∇ , Y v

]
= [Xh, Y v].

In view of Lemma 1.5 the last relation holds if and only if h = h∇, which (by
Lemma 2.4) is equivalent to the vanishing of the h-deflection of (D, h). �

2.8. Proposition. Let us consider an h-basic Finsler connection (D, h) with the
base connection ∇. Suppose that the horizontal endomorphism h is smooth on the
whole tangent manifold. Then the h-deflection of (D, h) coincides with the tension
of h if and only if the v-mixed torsion of D vanishes, i.e.,

(2.8a) h∗(DC) = H ⇔ P1 = 0, if h is smooth everywhere.

Proof of P1 = 0 =⇒ h∗DC = H. – We have just seen that under the condition
P1 = 0, for any vector fields X , Y on M we can write

DXhY v = [Xh, Y v].

From this the general rule for calculation

(2.8b) DhXJY = v[hX, JY ]; X, Y ∈ X(TM)
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can be deduced easily. Taking an arbitrary semispray S on M , for each vector field
X on M we obtain

DXhC = DXhJS
(2.8b)
= v[Xh, JS] = v[Xh, C] = H(Xc).

This means that h∗DC = H .

Proof of h∗(DC) = H =⇒ P1 = 0. – Let X ∈ X(M) be arbitrary. On the one
hand, DXhC = [Xh, C]. On the other hand, in view of 2.4, DXhC = Xh − Xh∇ .
Thus, taking into account the homogeneity of h∇, it follows that

[
C, Xh − Xh∇

]
= [C, Xh] = −

(
Xh − Xh∇

)
.

This relation implies in a well-known manner that the vertical vector field Xh−Xh∇

is homogeneous of degree 0. Since h is smooth on the whole tangent manifold, we
can conclude that Xh − Xh∇ is a vertical lift. Hence for any vector field Y on M

we have
0 =

[
Xh − Xh∇ , Y v

]
= [Xh, Y v] −

[
Xh∇ , Y v

]
;

therefore

P1(Xh, Y h) = (∇XY )
v
− [Xh, Y v] =

[
Xh∇ , Y v

]
− [Xh, Y v] = 0,

and the implication is verified. �

2.9. Theorem. Let (D, h) be an h-basic Finsler connection on the non-Riemannian
Finsler manifold (M, E). (D, h) is h-metrical if and only if h is conservative and
the h-deflection of (D, h) vanishes. That is,

(2.9a) Dhg = 0 ⇔ dhE = 0 ∧ h∗DC = 0

(g is the prolongation of the vertical metric along h).

Proof of Dhg = 0 =⇒ dhE = 0 ∧ h∗DC = 0. – We do this in several steps.

First step. Let ∇ be the base connection of (D, h). We show that the horizontal
endomorphism h∇ is conservative, i.e., dh∇

E = 0. – Taking an arbitrary semispray
S and a vector field X on M , we have

2XhE = Xh(2E) = Xh[g(C, C)] = 2g(C, DXhC)= 2g(C, JDXhS)=2ω(C, DXhS)

= 2iCω(DXhS) = 2(dJE)(DXhS) = 2(dE)(DXhC) = 2(DXhC)E,

by the condition Dhg = 0 and using some well-known relations concerning the
fundamental form ω. So we conclude that

(DXhC)E = XhE.

On the other hand,

(DXhC)E
(2.4a)
=

(
Xh − Xh∇

)
E = XhE − Xh∇E,
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and the last two relations imply that for any vector field X on M , Xh∇E = 0. This
means that dh∇

E = 0, as we claimed.

Second step. Let X , Y , Z be arbitrary vector fields on M . Using (3.4b) of [12], we
obtain

Xh∇g(Y v, Zv) − g
(
(∇XY )v, Zv

)
− g

(
Y v, (∇XZ)v

)
= Xh∇ [Y v(ZvE)]

− (∇XY )v(ZvE) − Y v
(
(∇XZ)vE

)
= Xh∇ [Y v(ZvE)] −

[
Xh∇ , Y v

]
(ZvE)

− Y v
([

Xh∇ , Zv
]
E

)
= Y v

[
Zv

(
Xh∇E

)]
= 0,

since h∇ is conservative, as we have just seen. Thus we obtain the relation

(2.9b) Xh∇g(Y v, Zv) = g
(
(∇XY )v, Zv

)
+ g

(
Y v, (∇XZ)v

)
; X, Y, Z ∈ X(M).

Third step. Let X, Y, Z ∈ X(M) be arbitrary again. By the condition Dhg = 0 we
get

0 = (DXhg) (Y v, Zv) = Xh
[
g(Y v, Zv)

]
− g (DXhY v, Zv) − g(Y v, DXhZv)

= Xh
[
g(Y v, Zv)

]
− g

(
(∇XY )v, Zv

)
− g

(
Y v, (∇XZ)v

)

(2.9b)
= Xh

[
g(Y v, Zv)

]
− Xh∇

[
g(Y v, Zv)

]
=

(
Xh − Xh∇

)
g(Y v, Zv).

On the other hand, using the well-known symmetries of the first Cartan tensor, we
can write

2g
(
C(Y c, Zc), Xh − Xh∇

)
= 2g

(
C
(
F

(
Xh − Xh∇

)
, Y c

)
, Zv

)

(1.11b)
=

(
L(Xh−Xh∇ )J

∗g
)

(Y c, Zc) =
(
Xh − Xh∇

)
g(Y v, Zv)

− g
(
J [Xh − Xh∇ , Y c], Zv

)
− g

(
Y v, J [Xh − Xh∇ , Zc]

)

= (Xh − Xh∇)g(Y v, Zv).

Comparing the last two results it follows that for any vector fields X , Y , Z on M

g
(
C(Y c, Zc), Xh − Xh∇

)
= 0.

This implies that Xh−Xh∇ = 0 and hence h = h∇, since g is nondegenerate and C

does not vanish identically by the condition and (1.11d). Thus h is also conservative
and, in view of 2.4, h∗DC = 0.

Proof of (dhE = 0∧h∗DC = 0) =⇒ Dhg = 0. – The condition h∗DC = 0 implies
by 2.4 the coincidence of h and h∇. Then h∇ is automatically conservative. Using
this fact we obtain by the calculation of the previous third step that

(DXhg) (Y v, Zv) = (Xh − Xh∇)g(Y v, Zv) = 0 (X, Y, Z ∈ X(M));

thus the desired relation Dhg = 0 is true. �

3. The Ichijyō connection
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3.1. Theorem. Suppose that (M, E) is a Finsler manifold and ∇ is a linear
connection on M . Let h∇ be the horizontal endomorphism induced by ∇, and let us
consider the prolongation g of the vertical metric along h∇. There exists a unique

Finsler connection
(∇

D, h∇

)
on M such that

∇

D is v-metrical, i.e.,
∇

Dvg = 0;(3.1a)

the v-vertical torsion
∇

S1 of
∇

D vanishes;(3.1b)

the mixed curvature of the associated(3.1c)

Finsler connection
(
D̃∇, h∇

)
vanishes;

the h-deflection of
(∇

D, h∇

)
vanishes.(3.1d)

The covariant derivatives with respect to
∇

D can be calculated explicitly by the
following formulas:

∇

DJXJY = J [JX, Y ] + C(X, Y );(3.1e)

∇

Dh∇XJY = v∇[h∇X, JY ];(3.1f)

∇

DJXh∇Y = h∇[JX, Y ] + F∇C(X, Y );(3.1g)

∇

Dh∇Xh∇Y = h∇F∇[h∇X, JY ](3.1h)

(X, Y ∈ X(T M)).

Proof of the unicity. – We show that axioms (3.1a)–(3.1d) force the rules for calcu-
lation (3.1e) and (3.1f), from these (3.1g) and (3.1h) immediately follow by (1.6b).
We do this in two steps.

First step. Since
∇

D is v-metrical, the relations

Xvg(Y v, Zv) = g

(
∇

DXvY v, Zv

)
+ g

(
Y v,

∇

DXvZv

)
,

Y vg(Zv, Xv) = g

(
∇

DY vZv, Xv

)
+ g

(
Zv,

∇

DY vXv

)
,

−Zvg(Xv, Y v) = −g

(
∇

DZvXv, Y v

)
− g

(
Xv,

∇

DZvY v

)

hold for any vector fields X , Y , Z on M . Adding the corresponding sides of these

three equations and using the vanishing of
∇

S1,we obtain

g
(
2
∇

DXvY v, Zv
)

= Xvg(Y v, Zv) + Y vg(Zv, Xv) − Zvg(Xv, Y v).
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Taking into account (3.7a) of [12], here the right hand side is just

2C♭(X
c, Y c, Zc) = 2g(C(Xc, Y c), Zv).

Consequently
∇

DXvY v = C(Xc, Y c) = C
(
Xh∇ , Y h∇

)
,

so rule (3.1e) is verified for vertically lifted vector fields. Having obtained this
result, we can immediately deduce the general form (3.1e).

Second step. Now we conclude (3.1f) from (3.1c) and (3.1d). In view of Lemma 2.3,

the latter condition implies that
(∇

D, h∇

)
is an h-basic Finsler connection. So there

exists a unique linear connection ∇̃ on M such that for any vector fields X , Y on M ,

(
∇̃XY

)v

=
∇

DXh∇ Y h∇ .

Using condition (3.1d) and Lemma 2.4, we infer immediately that ∇̃ coincides with
the given linear connection ∇. Thus

∇

DXh∇ Y v = (∇XY )v = [Xh∇ , Y v],

from which the formula (3.1f) can be derived easily.

Proof of the existence. – Define the mapping

∇

D : X(T M) × X(T M) → X(T M)

by the rule

(X, Y ) 7→
∇

DXY :=
∇

Dv∇X(v∇Y ) +
∇

Dv∇X(h∇Y ) +
∇

Dh∇X(v∇Y ) +
∇

Dh∇X(h∇Y ),

where the terms of the right hand side are determined by (3.1e)–(3.1h). Then it

can be checked by a straightforward calculation that
∇

D is a linear connection on

T M ,
(∇

D, h∇

)
is a Finsler connection on M , and axioms (3.1a)–(3.1d) are satisfied.

�

3.2. Remarks.

(i) We propose to call the Finsler connection described in 3.1 the Ichijyō connection
induced by ∇ in honour of Y. Ichijyō, who used its coordinate version effectively
in his excellent papers [6], [7].

(ii) Rules (3.1e)–(3.1h) take the following more convenient form for the vertically
and horizontally lifted vector fields:

∇

DXvY v = C(Xh∇ , Y h∇);
∇

DXh∇ Y v = (∇XY )v;(3.2a,b)

∇

DXvY h∇ = F∇C(Xh∇ , Y h∇);
∇

DXh∇
Y h∇ = (∇XY )h∇(3.2c,d)

(X, Y ∈ X(M)).
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3.3. Proposition. Let (M, E) be a Finsler manifold, ∇ a linear connection on

M , and consider the Ichijyō connection
(∇

D, h∇

)
induced by ∇. Then

(3.3a)
(∇

DJXC
)
(Y, Z) =

(∇

DJY C
)
(X, Z),

where X, Y , Z are any vector fields in T M .

The proof parallels that of (A.16) in [4] and is omitted.

3.4. Lemma. Let
(∇

D, h∇

)
be an Ichijyō connection with the base connection ∇.

The torsion
∇

T of
∇

D satisfies the identities

∇

T(Xh∇ , Y h∇) =
(
T∇(X, Y )

)h∇

+ Ω∇(Xh∇ , Y h∇);(3.4a)

∇

T(Xh∇ , Y v) = −F∇C(Xh∇ , Y h∇);
∇

T(Xv, Y v) = 0,(3.4b,c)

where T∇ denotes the torsion tensor of ∇; Ω∇ and F∇ are the curvature and the
associated almost complex structure of h∇, respectively; while X and Y are arbitrary
vector fields on M .

The proof is very straightforward so we omit it.

3.5. Corollary. For the partial curvatures and torsions of an Ichijyō connection(∇

D, h∇

)
we have the following representation:

Curvature (X, Y, Z ∈ X(T M))

horizontal
∇

R(X, Y )Z = [J, Ω∇(X, Y )]h∇Z + C
(
FΩ∇(X, Y ), Z

)

mixed
∇

P(X, Y )Z =
(∇

Dh∇XC
)
(h∇Y, h∇Z)

vertical
∇

Q(X, Y )Z = C(FC(X, Z), Y ) − C
(
X, FC(Y, Z)

)

Torsion (X, Y ∈ X(M))

h − horizontal
∇

A(Xh∇ , Y h∇) = (T∇(X, Y ))h∇

h − mixed
∇

B(Xh∇ , Y v) = −F∇C(Xh∇ , Y h∇)

v − horizontal
∇

R1(Xh∇ , Y h∇) = Ω∇(Xh∇ , Y h∇)

v − mixed
∇

P1 = 0

v − vertical
∇

S1 = 0

(F is an arbitrary almost complex structure on TM).

Applying our previous results including (3.3a), these formulas can be obtained
by a routine but lengthy calculation that we will not present here.
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3.6. Corollary. The horizontal curvature of an Ichijyō connection vanishes if and
only if the curvature of the base connection ∇, or – what is essentially the same –
the curvature of h∇ – vanishes.

Proof. It is clearly enough to show that the vanishing of
∇

R is equivalent to the

vanishing of Ω∇. The implication Ω∇ = 0 =⇒
∇

R = 0 is evident from 3.5.

Conversely, suppose that
∇

R = 0, and let S∇ be the semispray associated to h∇. For
any vector fields X , Y , on M , we have

0 =
∇

R(Xh∇ , Y h∇)S∇

3.5
=

[
J, Ω∇(Xh∇ , Y h∇)

]
S∇ + C

(
FΩ∇(Xh∇ , Y h∇), S∇

)

=
[
J, Ω∇(Xh∇ , Y h∇)

]
S∇ =

[
C, Ω∇(Xh∇ , Y h∇)

]
− J

[
S∇, Ω∇(Xh∇ , Y h∇)

]
.

Using the graded Jacobi identity and taking into consideration the homogeneity of
h∇, we readily obtain that the first term of the right hand side vanishes, while the
second term is just −Ω∇(Xh∇ , Y h∇) by (1.2a).

Thus Ω∇ vanishes, which ends the proof. �

3.7. Corollary. The mixed curvature of an Ichijyō connection
(∇

D, h∇

)
vanishes

if and only if the h-covariant derivative of the first Cartan tensor with respect to
∇

D

vanishes, i.e.,
∇

P = 0 ⇐⇒
∇

Dh∇
C = 0. �

3.8. Corollary. The h-horizontal torsion of an Ichijyō connection
(∇

D, h∇

)
and

the torsion tensor of ∇ (or the weak torsion of h∇) vanish at the same time.

Proof. The assertion is clear from the relations

∇

A(Xh∇ , Y h∇) = (T∇(X, Y ))h∇ = (F∇ ◦ t∇)(Xh∇ , Y h∇) (X, Y ∈ X(M)),

where the latter equality can be obtained in the same way as Corollary 2/(ii)
in [11]. �

4. Generalized Berwald manifolds

4.1. Definition. Suppose that (M, E) is a Finsler manifold and let ∇ be a linear
connection on M . The triplet (M, E,∇) is said to be a generalized Berwald manifold
if the horizontal endomorphism h∇ is conservative, i.e., dh∇

E = 0. A generalized
Berwald manifold (M, E,∇) is called a Berwald manifold if ∇ is a torsion-free linear
connection. If, in addition, ∇ is flat, then we speak of a locally Minkowski Finsler
manifold.
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4.2. Remark. Generalized Berwald manifolds were introduced by V. V. Wagner

in 1943. Their systematic investigation, within the framework of Matsumoto’s
theory, was initiated by M. Hashiguchi and Y. Ichijyō in the middle of the
seventies. Our definition was inspired by Szabó’s paper [10]. – It can easily be
seen that in the particular case of Berwald manifolds the horizontal endomorphism
h∇ coincides with the Barthel endomorphism, hence the linear connection ∇ is
unique. Then we speak of the linear connection of the Berwald manifold and write
(M, E) rather than (M, E,∇).

4.3. Proposition. Let (M, E) be a Finsler manifold and suppose that ∇ is a
linear connection on M . The following conditions are equivalent:

(a) (M, E,∇) is a generalized Berwald manifold;

(b) the second Cartan tensor C′

∇
belonging to h∇ vanishes;

(c) the Ichijyō connection
(∇

D, h∇

)
is h∇-metrical, i.e.,

∇

Dh∇
g = 0.

Proof of (a) =⇒ (b). – Starting from the definition of C′

∇
and using (3.4b) of [12],

we obtain for any vector fields X , Y , Z on M that

2(C′

∇)♭(X
c, Y c, Zc) := 2g(C′

∇(Xc, Y c)JZc) =
(
Lh∇Xcg

)
(JY c, JZc)

= Xh∇g(Y v, Zv) − g
(
[Xh∇ , Y v], Zv

)
− g(Y v, [Xh∇ , Zv])

= Xh∇ [Y v(ZvE)] − [Xh∇ , Y v](ZvE) − Y v([Xh∇ , Zv]E)

= Y v[Zv(Xh∇E)] = 0,

since h∇ is conservative. Thus C′

∇
= 0.

Proof of (b) ⇐⇒ (c). – For any vector fields X , Y , Z on M , we have

(∇

DXh∇ g
)
(Y v, Zv) = Xh∇g(Y v, Zv) − g

(∇

DXh∇ Y v, Zv
)
− g

(
Y v,

∇

DXh∇ Zv
)

= Xh∇g(Y v, Zv) − g([Xh∇ , Y v], Zv) − g(Y v[Xh∇ , Zv]) = 2g
(
C′

∇
(Xc, Y c), Zv

)
,

so it is obvious that assertions (b) and (c) are equivalent.

Proof of (c) =⇒ (a). – Since the h-deflection of
(∇

D, h∇

)
vanishes by axiom

(3.1d), we obtain that

0
(c)
=

(∇

DXh∇
g
)
(C, C) = Xh∇g(C, C) − 2g

(∇

DXh∇
C, C

)

= 2Xh∇E = 2dh∇
E(Xc),

for any vector field X on M . This means that dh∇
E = 0. �

4.4. Proposition. If (M, E,∇) is a generalized Berwald manifold, then the mixed

curvature of the Ichijyō connection
(∇

D, h∇

)
vanishes.

Proof. Taking into account 3.5, it is enough to check the vanishing of
∇

Dh∇
C. This

requires only a quite immediate (but lengthy) calculation which we omit. �
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4.5. A counterexample. Suppose that (M, E,∇) is a generalized Berwald man-
ifold, and let σ be a non-constant smooth function on M . Then

h∇ := h∇ − dσv ⊗ C (σv := σ ◦ π)

is an everywhere smooth, homogeneous horizontal endomorphism, so h∇ generates
a linear connection ∇ on M . It can be checked by a direct calculation that the mixed
curvature of the corresponding Ichijyō connection vanishes. However, (M, E,∇) is
not a generalized Berwald manifold, since h

∇
is obviously non-conservative. Thus

the converse of 4.4 is not true in general.

4.6. Lemma. (c.f. [12], 6.5.) Let (M, E) be a Finsler manifold and let its Barthel
endomorphism be denoted by h0. (M, E) is a Berwald manifold if and only if there
is a linear connection ∇ on M such that for any vector fields X, Y , on M ,

(4.6 a) (∇XY )v = [Xh0 , Y v].

Then ∇ is just the linear connection of the Berwald manifold.

Proof. In view of 4.2, the necessity of the condition is obvious. Conversely, if a
linear connection ∇ satisfies (4.6a) then we obtain that

[Xh0 , Y v] = [Xh∇ , Y v]

for any vector fields X , Y on M . This implies by Lemma 1.5 the coincidence of h0

and h∇. Then it follows at once that (M, E) is a Berwald manifold. �

4.7. Theorem. A Finsler manifold is a Berwald manifold if and only if its
Hashiguchi connection is an Ichijyō connection.

Proof. Consider a Finsler manifold (M, E). Let the Barthel endomorphism be

denoted by h0, and let
(H

D, h0

)
be the Hashiguchi connection (1.13) on M .

Neccessity. Suppose that (M, E) is a Berwald manifold with the linear connec-

tion ∇. Then h∇ = h0. We show that the Hashiguchi connection
(H

D, h0

)
is just

the Ichijyō connection
(∇

D, h∇

)
=

(∇

D, h0

)
. We have only to check that

(H

D, h0

)

satisfies the axioms formulated in 3.1. – (3.1a) and (3.1b) are just the axioms
(1.13b) and (1.13c) of the Hashiguchi connection. The vanishing of the mixed cur-

vature of the associated Finsler connection to
(H

D, h0

)
follows at once from 4.6 and

2.3, hence (3.1c) is satisfied. Finally, the h-deflection of
(H

D, h0

)
also vanishes, as

the following simple calculation shows: for any semispray S on M and any vector
field X on T M ,

h∗

0

(H

DC
)
(X) =

H

DC(h0X) =
H

Dh0XC =
H

Dh0XJS
(1.13e)

= v0[h0X, C] = 0,

since h0 is homogeneous.

Sufficiency. Suppose that there is a linear connection ∇ on M such that

the Ichijyō connection
(∇

D, h∇

)
coincides with the Hashiguchi connection

(H

D, h0

)
.

Then h0 = h∇, therefore (4.6a) is satisfied and consequently (M, E) is a Berwald
manifold. �
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4.8. Theorem. A Finsler manifold (M, E) is a locally Minkowski manifold if
and only if there exists a torsion-free, flat linear connection ∇ on M such that the

Ichijyō connection
(∇

D, h∇

)
is “h∇-metrical”, i.e.,

∇

Dh∇
g = 0.

Proof of the necessity. – If (M, E) is a locally Minkowski manifold, then – of course
– it is a Berwald manifold at the same time. By the assumption the linear connec-
tion ∇ of this Berwald manifold is torsion-free and flat. But (M, E,∇) is a gen-

eralized Berwald manifold as well, so the Ichijyō connection
(∇

D, h∇

)
is h-metrical

by Proposition 4.3.

Proof of the sufficiency. – If ∇ is a torsion-free, flat linear connection on M and

the Ichijyō connection
(∇

D, h∇

)
is h∇-metrical then Proposition 4.3 assures that

(M, E,∇) is a generalized Berwald manifold, hence h∇ is conservative. Since h∇

arises from a symmetric linear connection, its tension and its weak torsion vanish.
Thus, by the unicity statement of 1.12, h∇ is just the Barthel endomorphism and
consequently (M, E) is a locally Minkowski manifold. �
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