
A NEW APPROACH TO GENERALIZED BERWALD MANIFOLDS II

by Sz. Szakál and J. Szilasi

Abstract. Generalized Berwald manifolds were introduced by V. V. Wagner and
systematically investigated by M. Hashiguchi and Y. Ichijyō. They are reconsid-
ered here in the context and with the tools of the general theory developed in the
first part of our work. (However, this second part is self-contained to a reasonable ex-
tent.) Under some natural conditions we establish key relations between a horizontal
endomorphism and the distinguished Barthel endomorphism on a Finsler manifold.
We construct intrinsically a vector field which plays a dominant role in these and
further, geometrically relevant relations. In the case of a generalized Berwald man-
ifold (M, E,∇) the linear connection ∇ is far from unique. Our results enable us

to link different generalized Berwald manifolds with common Finsler structure. Ap-
plications to Wagner manifolds and a family of examples (parallelizable manifolds
endowed with one-form Finsler structure) illustrate how the general theory works in
practice.

0. Introduction

0.1. In the first part ([12]) of our paper we have already introduced the generalized
Berwald manifolds, providing also a preliminary characterization of this concept in
terms of Ichijyō connections. – Let us mention that we called a triplet (M, E,∇) a
generalized Berwald manifold if (M, E) is a Finsler manifold, ∇ is a linear connec-
tion on M , and the horizontal endomorphism h∇ generated by ∇ is conservative,
i.e., dh∇

E = 0. Thus a Finsler structure is nicely related to a linear connection.

0.2. A quite immediate but important consequence of the definition is that gen-
eralized Berwald manifolds are Finsler manifolds modeled on a Finsler-Minkowski
vector space in the sense of Y. Ichijyō [9]. This means that any two tangent spaces
of the Finsler manifold (M, E) in question are isomorphic as Finsler-Minkowski
vector spaces (see 5.1 below); the Finsler-Minkowski functional on a tangent space

TpM is given by the rule v ∈ TpM 7→
√

2E(v) ∈ R.

0.3. It will be worth-while to present here a brief conceptual justification of our
above assertion. – Let (M, E,∇) be a generalized Berwald manifold. Choose two
(different) points p, q of M and connect them with a smooth curve c : [0, 1] → M .
Fix an arbitrary vector v ∈ TpM and consider the unique parallel vector field
X : [0, 1] → TM along c satisfying the initial condition X(0) = v. Let w := X(1).
It is enough to check that E(v) = E(w). – Let ∇c be the covariant differentiation
induced by ∇ along c. Consider the connector

K∇ := ι ◦ (1TTM − h∇) (ι : V TM → TM is the canonical map)

1991 Mathematics Subject Classification. 53C60.
Key words and phrases. Horizontal endomorphisms, generalized Berwald manifolds, Wagner

manifolds, one-form metrics.
Project supported by OTKA T-032058 (Hungary).

Typeset by AMS-TEX

1



2

belonging to ∇. Then

0 = ∇cX = K∇ ◦ TX ◦
d

du
=: K∇ ◦ Ẋ (u := 1R).

Since KerK∇ = Im h∇, this means that the vector field Ẋ := TX ◦ d
du

: TR ∼= R →

TTM is horizontal: h∇ ◦ Ẋ = Ẋ. Using this trivial observation and (1.3c) below,
for any τ ∈ [0, 1] we obtain:

(E ◦ X)′(τ) = T (E ◦ X)

(
d

du

)

τ

= TE ◦ TX ◦
d

du
(τ) = TE ◦ Ẋ(τ)

= dE(Ẋ(τ)) = dE
[
h∇(Ẋ(τ))

]
= dh∇

E(Ẋ(τ)) = 0.

Thus E ◦ X is constant along c, which implies our claim E(v) = E(w).

0.4. The notion of generalized Berwald manifold was originally introduced by
V. V. Wagner in 1943 [19]. A modern approach to these manifolds within the
framework of Matsumoto’s theory, via the so-called generalized Cartan connec-
tions, was elaborated by M. Hashiguchi [8]. Our definition provides another,
geometrically natural approach which is also in harmony with Matsumoto’s prin-
ciple of the “best” Finsler connections cited in part 1.

0.5. The first question that offers itself in connecetion with a generalized Berwald
manifold is without any doubt the following: to what extent is the linear connec-
tion ∇ determined by the structure? Concerning this problem, we are going to show
that two generalized Berwald manifolds (M, E,∇1) and (M, E,∇2) are equal if ∇1

and ∇2 have the same torsion tensor field. More or less, this result is analogous
to the well-known theorem: two linear connections on a manifold are equal if they
have common geodesics and their torsion tensor fields are also the same. To derive
our theorem (and for other purposes), in Section 2 we present under some – as
far as possible “natural” – conditions a careful analysis of the relations between
two horizontal endomorphisms given on the same manifold. “Natural conditions”
in the Finslerian case certainly do exist. For example: let both horizontal endo-
morphisms be conservative, or let one of them be conservative and the other be
the distinguished Barthel endomorphism. Nevertheless, useful relations can also be
discovered in a much more general situation (see 2.1).

0.6. Let (M, E) be a Finsler manifold. Suppose that h is a horizontal endomor-
phism on M with weak torsion t, and let t◦ := iSt (S is an arbitrary semispray on
M) be the potential of t. We can consider the one-form dt◦E, and we can construct
the vector field (dt◦E)# which corresponds canonically to dt◦E via the fundamen-
tal two-form of (M, E). In our opinion this – unfortunately, a bit complicated –
vector field is at the heart of the problems (and difficulties) concerning generalized
Berwald manifolds. As a justification, we refer to Propositions 2.5, 2.7; the proof
of 3.8, and the key relations (4.5a) and (4.6a) below. In particular, it will easily
be concluded that a generalized Berwald manifold (M, E,∇) becomes a Berwald
manifold (M, E), if and only if, the vector field (dt◦

∇
E)# is quadratic.
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0.7. In Section 4 we deduce some useful equivalents of the property characterizing
Wagner manifolds. This result has essential applications in the theory of conformal
changes of a Finsler structure, see [18].

0.8. Non-Berwald generalized Berwald manifolds do exist . In Section 5 we offer a
typical family of such manifolds together with their basic data. First, we build a
special Finsler structure, the so-called one-form metric, on a parallelizable manifold.
Next, we present an elegant proof of the fact, discovered originally by Y. Ichijyō,
that our construction actually results in generalized Berwald manifolds. – Let us
note that a systematic study of one-form metrics can be found in [11]. These metrics
also occur in an interesting context in [16].

1. Basic setup

1.1. Since this paper is an immediate continuation of our previous work [12], we
adopt its conceptual and notational conventions without any changes, and – in most
cases – without any comment. Double numbers in italics (i.e., of form 9.99 ) will
refer to the first part.

Our “philosophical” attitude remains unaltered: we try to elaborate a transpar-
ent intrinsic formulation on a reasonable level of generality for the problems studied.
The calculative background of our considerations is the Frölicher-Nijenhuis calcu-
lus on the velocity space, i.e., on the tangent manifold TM of the given manifold
M (1.1). In the present second part this, a bit complicated, apparatus will be
applied more explicitly and intensively than in the first part. So, for the readers’
convenience, we collect here some basic facts and frequently used formulas. A more
complete overview of these technical tools is available in Youssef’s paper [22]; we
also refer to J. Klein’s stimulating survey article [10], the monograph [5], and last
but not least, the original source [6].

1.2. Let Ω(M) be the graded algebra of the differential forms of our base mani-
fold M . If D1 and D2 are (graded) derivations of degree r and s (r, s ∈ Z) of Ω(M),
then their bracket is

(1.2a) [D1, D2] := D1 ◦ D2 − (−1)rsD2 ◦ D1;

this is a graded derivation of degree r + s.

1.3. Let us denote by Ψk(M) (k ∈ N, Ψ◦(M) := X(M)) the C∞(M)-module of
the vector k-forms on M . We recall that any vector k-form K ∈ Ψk(M) can be
interpreted as a skew-symmetric C∞(M)-multilinear map [X(M)]k → X(M) (if
k ∈ N \ {0}); in particular, a vector 1-form is just a type (1, 1) tensor field on M .
In the Frölicher-Nijenhuis theory to any vector k-form K ∈ Ψk(M) two derivations
of Ω(M) are associated:

the derivation iK of degree k − 1 defined by the rule(1.3a)

iK ↾ C∞(M) = 0; iKω := ω ◦ K, if ω ∈ Ω1(M);

the derivation dK of degree k given by the formula(1.3b)

dK := [iK , d]
1.2a
= iK ◦ d − (−1)k−1d ◦ iK
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(d is the operator of the “ordinary” exterior derivative).

As an immediate consequence, we obtain

(1.3c) if f ∈ C∞(M) and K ∈ Ψk(M), then dKf = iKdf = df ◦ K.

A characteristic property of dK is expressed by

(1.3d) [d, dK ] = 0.

1.4. For any vector k-form K ∈ Ψk(M) and vector ℓ-form L ∈ Ψℓ(M) there exists
a unique vector (k + ℓ)-form [K, L] ∈ Ψk+ℓ(M) such that

d[K,L] = [dK , dL];

[K, L] is said to be the Frölicher-Nijenhuis bracket of K and L. This bracket is
graded anticommutative and satisfies the graded Jacobi identity, i.e., for any vector
forms Ki ∈ Ψki(M) (1 ≤ i ≤ 3) we have

[K1, K2] = −(−1)k1k2 [K2, K1];(1.4a)

(−1)k1k3
[
K1, [K2, K3]

]
+ (−1)k2k1

[
K2, [K3, K1]

]
(1.4b)

+(−1)k3k2
[
K3, [K1, K2]

]
= 0.

In particular, let us suppose that K and L are vector one-forms . Then the
following important formulas can be deduced:

[K, Y ]X = [KX, Y ] − K[X, Y ];(1.4c)

[fX, K] = f [X, K] + df ∧ iXK − dKf ⊗ X ;(1.4d)

[K, fL] = f [K, L] + dKf ∧ L − df ∧ (K ◦ L);(1.4e)

[K, ω ⊗ X ] = dKω ⊗ X − dω ⊗ KX + (−1)rω ∧ [K, X ];(1.4f)

iX ◦ iK = iK ◦ iX + iKX ;(1.4g)

iK ◦ iL = iL ◦ iK + iL◦K − iK◦L;(1.4h)

iX ◦ dK = −dK ◦ iX + LKX + i[K,X];(1.4i)

iK ◦ dX = dX ◦ iK + i[K,X];(1.4j)

iK ◦ dL = dL ◦ iK + dL◦K − i[K,L](1.4k)

(X, Y ∈ X(M), f ∈ C∞(M), ω ∈ Ωr(M); note that dX is just the Lie-derivative
LX). – Observing that d[K,Y ] := [dK , dY ] = [dK ,LY ], (1.4c) can be deduced
immediately. (1.4d)–(1.4f) are stated in [22]. Finally, formulas (1.4g)–(1.4k) can
be obtained as special cases of (5.6)a) and (5.9) of [6].
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1.5. In our calculations some special derivations of the algebra Ω(TM) of the
differential forms on the tangent manifold TM will play a distinguished role. The
most frequently used operators are

iC , iJ , dC = LC , dJ , iS , dS = LS ,

where C ∈ X
v(TM) is the Liouville vector field , J ∈ Ψ1(TM) is the vertical

endomorphism and S is an arbitrary semispray on M . Taking into account that

Im J = KerJ = X
v(TM), J2 = 0;(1.5a)

[J, C] = J, [J, J ] = 0;(1.5b)

JS = C,(1.5c)

(1.4g), (1.4i) and (1.4j) yield the following relations:

iC ◦ iJ = iJ ◦ iC ;(1.5d)

[iC , dJ ] = iJ ;(1.5e)

[iJ ,LC ] = iJ .(1.5f)

1.6. A vector k-form K ∈ Ψk(TM) (k ∈ N \ {0}) is said to be semibasic, if
J ◦ K = 0 and, for any vector field X ∈ X(TM), iJXK = 0. The potential of a
semibasic vector k-form K ∈ Ψk(TM) is the vector (k − 1)-form

K◦ := iSK,

where S in an arbitrary semispray. – For more details, see [7] or [5].

1.7. We recall that the complete lift αc of a function α ∈ C∞(M) can be introduced
by

(1.7a) αc := S(α ◦ π) =: Sαv,

where S is again an arbitrary semispray on M . Then the complete lift of a vector
field X ∈ X(M) is the unique vector field X ∈ X(TM) satisfying

(1.7b) ∀α ∈ C∞(M) : Xcαc = (Xα)c.

The following useful relations can be deduced easily:

Xcαv = Xvαc = (Xα)v;(1.7c)

[X, Y ]c = [Xc, Y c], [X, Y ]v = [Xv, Y c];(1.7d)

[C, Xc] = 0; i.e., Xc is homogeneous of degree 1;(1.7e)

JXc = Xv, [J, Xc] = 0(1.7f)

(X, Y ∈ X(M); Xv ∈ X
v(TM) is the vertical lift of X ; α ∈ C∞(M)).
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1.8. Sharp operator and gradient on a Finsler manifold.

Suppose that (M, E) is a Finsler manifold with the fundamental form ω := ddJE.
If β is a 1-form on T M , we denote by β# (read: “β sharp”) the vector field
corresponding to β via ω; i.e.,

(1.8a) iβ#ω = β.

In particular, the gradient of a function f ∈ C∞(TM) is the vector field

grad f := (df)#.

The gradient of a vertical lift , i.e., of a function of form αv = α ◦ π, α ∈ C∞(M)
has the following nice properties:

gradαv ∈ X
v(T M);(1.8a)

[C, gradαv] = − gradαv; i.e., gradαv is homogeneous of degree 0;(1.8b)

(gradαv)E = αc(1.8c)

(see [14], Proposition 1).

1.9. Theorems of M. Crampin and J. Grifone. The following substantial
results, due to M. Crampin [3], [4] and J. Grifone [7] are among the most
important theorems of the theory of connections and lie at the foundations of Finsler
geometry. They will be repeatedly referred to also in our subsequent considerations.

(A) If S is a semispray on a manifold M , then

h :=
1

2

(
1X(TM) + [J, S]

)

is a horizontal endomorphism on M with vanishing weak torsion. If, in par-
ticular, S is a spray, then the horizontal endomorphism h is homogeneous,
i.e., H := [h, C] = 0.

(B) A horizontal endomorphism arises from a semispray in the above manner if
and only if its weak torsion vanishes.

(C) On any Finsler manifold (M, E) there exists a unique conservative horizontal
endomorphism with vanishing strong torsion; it is given by the formula

h0 =
1

2

(
1X(TM) + [J, S0]

)
,

where S0 is the canonical spray of the Finsler manifold. – h0 is said to be the
Barthel endomorphism of (M, E).

1.10. We conclude this overview with a practical convention. – The basic geomet-
ric data – such as associated semispray, tension, weak and strong torsion, almost
complex structure, horizontal lifting – arising from a horizontal endomorphism h

or h̃ will be denoted by

S, H, t, T, F, Xh and S̃, H̃, t̃, T̃ , F̃ , X
eh (X ∈ X(M)),
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respectively. The corresponding data determined by the Barthel endomorphism h0

are
S0, H0, t0, T0, F0, Xh0 .

In particular, any linear connection ∇ on M gives rise to a horizontal endomorphism
h∇. Then the above data are denoted by

S∇, H∇, t∇, T∇, F∇, Xh∇

(here, in fact, H∇ = 0).

2. Horizontal endomorphisms on a Finsler manifold

2.1. Lemma. Suppose that h is a homogeneous horizontal endomorphism on the

manifold M and let S be the semispray associated with h ([7], Prop. I.38). If h̃ is

the horizontal endomorphism determined by S according to 1.9. (A), then h and h̃

are related by

h̃ = h −
1

2
t◦,

where t is the weak torsion of h, and t◦ is its potential.

Proof. Since h is homogeneous, its associated semispray S is actually a spray. In

view of 1.9. (A), the weak torsion of h̃ vanishes. h̃ is also homogeneous, because
it is generated by the spray S ([7], Proposition I.41). Thus

h̃S = S, hS = S;

and the vector 1-form
K := h̃ − h

is obviously semibasic, therefore

J ◦ K = K ◦ J = 0.

Since
0 = t̃ := [J, h̃] = [J, h + K] = [J, h] + [J, K] = t + [J, K],

it follows that t = −[J, K], hence

t◦ = −[J, K]◦.

The vector 1-form [J, K]0 is clearly semibasic, so it is determined by its action
on the complete lift vector fields. Taking into account our previous observations,
for any vector field X on M ,

[J, K]◦(Xc) = [J, K](S, Xc)
(6.4) of [6]

= [JS, KXc] + [KS, JXc]

+ J ◦ K[S, Xc] + K ◦ J [S, Xc] − J [S, KXc] − J [KS, Xc]

− K[S, JXc] − K[JS, Xc] = [C, KXc] − J [S, KXc] − K[S, Xv].
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On the right hand side the first term vanishes by the homogeneity of h and h̃:

[C, KXc] = [C, h̃Xc] − [C, hXc] = [C, X
eh] − [C, Xh] = 0.

As for the second term, we get

J [S, KXc]
1.2
= −KXc = (h − h̃)Xc.

The third term can be formed as follows:

K[S, Xv] = h̃[S, Xv] − h[S, Xv] = F̃ ◦ J [S, Xv] − F ◦ J [S, Xv]

= −F̃Xv + FXv = −F̃ ◦ JXc + F ◦ JXc = (h − h̃)Xc.

To sum up, it can be stated that

∀X ∈ X(M) : [J, K]◦(Xc) = 2(h̃ − h)Xc, i.e., [J, K]◦ = 2(h̃ − h).

Hence t◦ = 2(h − h̃), which proves our assertion. �

2.2. Lemma. If ω is the fundamental two-form of the Finsler manifold (M, E)
and h is a conservative horizontal endomorphism on M , then

ihω = ω + itdE,

where t is the weak torsion of h.

Proof. In view of (1.4k)

ih ◦ dJ = dJ ◦ ih + dJ◦h − i[h,J]
(1.3a), (1.4b)

= dJ ◦ ih + dJ − it,

therefore

ihω = ihddJE
(1.3d)
= −ihdJdE = −dJ ihdE

− dJdE + itdE = ddJE + itdE = ω + itdE

(using that ihdE = 0 by the conservativity of h). �

2.3. Corollary. If ω is the fundamental two-form of the Finsler manifold (M, E)
and h is a conservative horizontal endomorphism on M with vanishing weak torsion
then ihω = ω.

2.4. Lemma. Let h be a conservative horizontal endomorphism on the Finsler
manifold (M, E). Then

dHE = 0,

where H is the tension of h.

Proof. Take an arbitrary vector field X on M . An easy calculation shows that
H(Xc) = [Xh, C], so

dHE(Xc)
(1.3c)
= dE(HXc) = dE

(
[Xh, C]

)
= [Xh, C]E

= Xh(CE) − C(XhE) = Xh(2E) = 0,

since h is conservative. �
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2.5. Proposition. Suppose that h is a conservative horizontal endomorphism
on the Finsler manifold (M, E) with the associated semispray S. Then S can be
represented in the form

S = S0 + (dt◦E)
#

,

where S0 is the canonical spray of (M, E) and t◦ is the potential of the weak torsion
of h.

Proof. Let us note first that the general formula (5.6)a) of [6] yields the relation

iS0
◦ it = it ◦ iS0

+ it◦ ,

while using (1.4g) we obtain

ih ◦ iS0
= iS0

◦ ih − ihS0
= iS0

◦ ih − iS .

Thus, since h is conservative,

0 = dhE
(1.3c)
= ihdE = −ihiS0

ω = iSω − iS0
ihω.

Hence

iSω = iS0
ihω

2.2
= iS0

(ω + itdE) = iS0
ω + iS0

itdE

= iS0
ω + itiS0

dE + it◦dE = iS0
ω + dt◦E,

taking into account that iS0dE = S0E = 0 by the “energy conservation law”. The
result we have just obtained can be written in the form

iS−S0
ω = dt◦E.

This means by (1.8a) that S − S0 = (dt◦E)#. �

2.6. Theorem. Suppose h and h̃ are conservative horizontal endomorphism on

the Finsler manifold (M, E). If h and h̃ have common strong torsion, then h = h̃.

Proof. We are going to use systematically the conventions of 1.10. – By assump-
tion,

dhE = dehE = 0, T = T̃ .

Let S0 be the canonical spray of (M, E). As we have seen in the preceding proof,

iSω − iS0
ω = dt◦E, ieSω − iS0

ω = det◦E.

Subtracting the second equation from the first we obtain

i
S−eSω = dt◦E − det◦E.

The strong torsion of h is T = t◦ + H , so

dt◦E = dT−HE = dT E − dHE
2.4.
= dT E.

In the same way,
det◦E = deT E.

Combining the last three formulas we obtain

i
S−eS ω = dT E − deT E = dT E − dT E = 0.

Since ω is nondegenerate, this implies that S = S̃. Thus h and h̃ have also the

same associated semispray, therefore, by Proposition 4.9.2 of [5], h and h̃ coincide.
�
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2.7. Proposition. A homogeneous, conservative horizontal endomorphism h on a
Finsler manifold (M, E) can be expressed with the help of the Barthel endomorphism
h0 as follows:

h = h0 +
1

2
t◦ +

1

2

[
J, (dt◦E)#

]
.

Proof. Let S be the semispray associated with h, and let us denote by h̃ the hori-
zontal endomorphism generated by S according to 1.9 (A). Then

h0
1.9 (C)

=
1

2

(
1X(TM) + [J, S0]

)
2.5
=

1

2

(
1X(TM) + [J, S] −

[
J, (dt◦E)#

])

= h̃ −
1

2

[
J, (dt◦E)#

]
2.1
= h −

1

2
t◦ −

1

2

[
J, (dt◦E)#

]
,

which gives the desired formula. �



11

3. Applications to generalized Berwald manifolds

3.1. Remark. In 0.1 we have already presented a preliminary discussion of gen-
eralized Berwald manifolds, including their definition. Let us also recall from 4.1
that a generalized Berwald manifold is said to be a Berwald manifold if ∇ is a
torsion-free linear connection on M . Then ∇ is unique and we write (M, E) rather
than (M, E,∇).

3.2 Corollary. If (M, E,∇) is a generalized Berwald manifold, then (by the con-
ventions of 1.10) we have

S∇ = S0 +
(
dt◦

∇
E

)#
;(3.2a)

h∇ = h0 +
1

2
t◦∇ +

1

2

[
J,

(
dt◦

∇
E

)#
]
.(3.2b)

Proof. This is an immediate consequence of Propositions 2.5 and 2.7. �

3.3. Theorem. Suppose that (M, E,∇) and (M, E,∇) are generalized Berwald
manifolds. The linear connections ∇ and ∇ are equal if and only if they have same
torsion tensor field.

Proof. Let us denote by T∇ and T
∇

the classical torsion tensor field of ∇ and of ∇,
respectively. From the Theorem of section 3 of [4] and Lemma 1 of [13] we obtain
immediately that for any vector fields X , Y on M

(3.3a) t∇(Xc, Y c) = [T∇(X, Y )]
v
.

Thus in the case of T∇ = T
∇

the horizontal endomorphisms h∇ and h
∇

have the
same weak torsion. On the other hand, h∇ and h

∇
are homogeneous, so their

strong torsions are also equal. This implies by 2.6 that h∇ = h
∇

, whence ∇ = ∇.
The necessity of the condition T∇ = T

∇
is evident. �

3.4. Remark. For any τ ∈ R, let us denote by µτ the diffeomorphism

TM → TM, v 7→ eτv.

We recall that – in general – a vector field X of class Ck (k ∈ N) on TM or on
T M is called homogeneous of degree r (r ∈ Z) – briefly r-homogeneous – if

∀ τ ∈ R : X ◦ µτ = e(r−1)τ(Tµτ ) ◦ X.

As is well-known (see e.g. [5], Proposition 4.2.5), if X is of class C1, then it is
r-homogeneous if and only if

[C, X ] = (r − 1)X ;

we have used this characterization of homogeneity up to now. In particular, a vector
field of class C2 on TM or on T M is said to be quadratic if it is homogeneous
of degree two. One obtains by an easy calculation that the Lie bracket of an
r-homogeneous and an s-homogeneous C1-vector field is homogeneous of degree
r + s − 1 ([5], Proposition 4.2.6). Observe that the vertical lift of a Ck vector field
is homogeneous of degree zero, so for any C1 vector field X on M ,

[C, Xv] = −Xv.

Conversely, it is not difficult to show that a continuous vertical vector field is a
vertical lift if and only if it is homogeneous of degree zero.
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3.5. Theorem. A generalized Berwald manifold (M, E,∇) reduces to a Berwald
manifold (M, E) if and only if the vector field (dt◦

∇
E)# is quadratic.

Proof. – Assume first that (M, E,∇) is a Berwald manifold. Then the canonical
spray S0 is smooth on the whole tangent manifold TM ([15], 6.6), therefore

(
dt◦

∇
E

)# (3.2a)
= S∇ − S0

is also smooth on TM . Since
[
C,

(
dt◦

∇
E

)#
]

= [C, S∇ − S0] = [C, S∇] − [C, S0] = S∇ − S0 =
(
dt◦

∇
E

)#
,

(dt◦
∇

E)# is homogeneous of degree two, hence it is quadratic. – Conversely, suppose

that (dt◦
∇

E)# is a quadratic vector field on TM . Then, taking into account 3.4,
for any vector fields X, Y ∈ X(M),

[
Xv,

(
dt◦

∇
E

)#
]

is a 1-homogeneous vector field of class C1;

[[
Xv,

(
dt◦

∇
E

)#
]
, Y v

]
is a 0-homogeneous vector field of class C0,

therefore the last vector field is a vertical lift . Now let us denote by h̃∇ the hori-
zontal endomorphism generated by S∇. Then

h̃∇

2.1
= h∇ −

1

2
t◦
∇

(3.2b)
= h0 +

1

2

[
J,

(
dt◦

∇
E

)#
]
,

therefore

[Xh0 , Y v] =
[
h̃∇Xc −

1

2

[
J,

(
dt◦

∇
E

)#
]
Xc, Y v

]

(1.4c), (1.5a)
=

[
X
eh∇ , Y v

]
−

1

2

[[
Xv,

(
dt◦

∇
E

)#
]
, Y v

]
.

The second term on the rigth hand side is a 0-homogeneous vector field of class C0

as we have just shown. The first term is a 0-homogeneous smooth vector field on
TM , because a use of the Jacobi identity, the 0-homogeneity of vertical lifts and

the homogeneity of h̃∇ yields

0 =
[
C,

[
X
eh∇ , Y v

]]
+

[
X
eh∇ , [Y v, C]

]
+

[
Y v,

[
C, X

eh∇

]]

=
[
C,

[
X
eh∇ , Y v

]]
+

[
X
eh∇ , Y v

]
.

Thus we can state: For any vector fields X, Y ∈ X(M), [Xh0 , Y v] is a vertical lift .
This implies by 4.6 that (M, E) is a Berwald manifold. �

3.6. Remark. A coordinate version of 3.5 for Finsler manifolds with one-form
metrics can be found in [1]. – It is not needless to point out that the linear connec-
tion of the Berwald manifold (M, E) in question does not coincide with the given
linear connection ∇ in general.
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3.7. Remark. We recall that two sprays S1 and S2 on a manifold M are said to
be projectively equivalent if there exists a function λ : TM → R, smooth on T M ,
C1 on TM such that S1 = S2 + λC. Then λ is automatically 1-homogeneous, i.e.,
Cλ = λ.

3.8. Proposition. Let (M, E,∇) be a generalized Berwald manifold. If the spray
S∇ arising from ∇ is projectively equivalent to the canonical spray S0 then S∇ = S0,
and – consequently – (M, E) is a Berwald manifold.

Proof. In view of (3.2a), S∇ is projectively equivalent to S0 if and only if

(
dt◦

∇
E

)#
= λC,

where the function λ : TM → R satisfies the requirements of 3.7. Then on the one
hand

iS∇−S0
ω

(3.2a)
= i(

d
t◦

∇

E
)#ω = iλC ω = λiC ω = λdJE,

on the other hand

iS∇−S0
ω = dt◦

∇
E

(see the proof of 2.5). Comparing these two equations we obtain the formula

dt◦
∇

E = λdJE.

Hence, for any semispray S,

dt◦
∇

E(S) = λdJE(S).

But

dt◦
∇

E(S)
(1.3c)
= dE

(
t◦
∇

(S)
)

= dE
(
t∇(S, S)

)
= dE(0) = 0,

while

λdJE(S) = λdE(JS) = λdE(C) = λCE = 2λE,

so it follows that λE = 0, which implies immediately the vanishing of λ. �

4. Wagner-Ichijyō connections and Wagner manifolds

4.1. Definition. Let ∇ be a linear connection on the manifold M . A triplet

(
∇

D, h∇, α) is said to be a Wagner-Ichijyō connection (induced by ∇) if (
∇

D, h∇) is
an Ichijyō connection (3.1, 3.2 ), α is a smooth function on M and the h-horizontal

torsion
∇

A of
∇

D has the following form:

(4.1a)
∇

A = dαv ∧ h∇ := dαv ⊗ h∇ − h∇ ⊗ dαv.



14

4.2. Proposition. Let (
∇

D, h∇, α) be a Wagner-Ichijyō connection on the mani-
fold M . Then we have the following relations:

T∇(X, Y ) = dα(X)Y − dα(Y )X (X, Y ∈ X(M));(4.2a)

t∇ = dαv ∧ J := dαv ⊗ J − J ⊗ dαv;(4.2b)

t◦
∇

= αcJ − dαv ⊗ C.(4.2c)

Proof. Let X and Y be arbitrary vector fields on M . – We have already learnt
in 3.5 that

∇

A(Xc, Y c) =
(
T∇(X, Y )

)h∇

.

But

∇

A(Xc, Y c)
(4.1a)
= dαv(Xc)h∇(Y c) − dαv(Y c)h∇(Xc) = (Xcαv)Y h∇

− (Y cαv)Xh∇
(1.7c)
= (Xα)vY h∇ − (Y α)vXh∇ =

[
(Xα)Y − (Y α)X

]h∇

,

so we obtain the formula (4.2a). – Next we check that (4.2b) is also valid. We can
write

t∇(Xc, Y c)
(3.3a)
=

(
T∇(X, Y )

)v (4.2a)
=

[
dα(X)Y − dα(Y )X

]v

= (Xα)vY v − (Y α)vXv (1.7c)
= (Xcαv)Y v − (Y cαv)Xv

(1.7f)
= [(dαv)Xc]J(Y c) −

[
(dαv)Y c

]
J(Xc)

= (dαv ∧ J)(Xc, Y c),

whence the desired relation. – Finally, for any semispray S on M ,

t◦∇(Xc) = t∇(S, Xc)
(4.2b)
= dαv(S)JXc − dαv(Xc)(JS)

= (Sαv)JXc − dαv(Xc)C
(1.7a)
= αcJXc − dαv(Xc)C

= (αcJ − dαv ⊗ C)Xc,

which proves (4.2c). �

4.3. Definition. A quadruple (M, E,∇, α) is said to be a Wagner manifold if
(M, E,∇) is a generalized Berwald manifold, α is a smooth function on M , and the
relation

(4.3a) T∇(X, Y ) = dα(X)Y − dα(Y )X (X, Y ∈ X(M))

holds.
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4.4. Remark. It can be seen immediately that for a Wagner manifold (M, E,∇, α)
the Ichijyō connection induced by ∇ is just a Wagner-Ichijyō connection.

4.5. Theorem. Let (M, E) be a Finsler manifold. Suppose that ∇ is a linear
connection and α a smooth function on M . Then the following assertions are
equivalent:

(i) (M, E,∇, α) is a Wagner manifold.

(ii) The Wagner-Ichijyō connection (
∇

D, h∇, α) induced by ∇ is h∇-metrical, i.e.,

∇

Dh∇
g = 0.

(iii) The horizontal endomorphism h∇ is of form

(4.5a) h∇ = h0 + αcJ − E[J, gradαv] − dJE ⊗ gradαv.

Proof of (i) ⇐⇒ (ii). – This equivalence is an immediate consequence of 4.4 and
4.3/(a) ⇐⇒ (c).

Proof of (i) =⇒ (iii). – Let X be a vector field on M . Evaluating the one-form
dt◦

∇
on Xc, we obtain

dt◦
∇

E(Xc) = dE
(
t◦∇(Xc)

)
= t◦∇(Xc)E

(4.2c)
=

[
αcXv − dαv(Xc)C

]
E

= αc(XvE) − 2Edαv(Xc)
(∗)
= αciC ω(Xc) − 2Edαv(Xc)

(1.8a)
= αciC ω(Xc) − 2Eigrad αvω(Xc) = i(αcC−2E grad αv)ω(Xc),

taking into account at the step (∗) that

XvE = dE(JXc) = dJE(Xc) = iCω(Xc).

Thus we infer immediately that

(
dt◦

∇
E

)#
= αcC − 2E gradαv.

Combining this result with (3.2b), we can proceed as follows:

h∇ = h0 +
1

2
t◦
∇

+
1

2
[J, αcC] −

1

2
[J, 2E gradαv]

(4.2c), (1.4d)
= h0 +

1

2
(αcJ − dαv ⊗ C) +

1

2
αc[J, C] −

1

2
dαc ∧ iCJ

+
1

2
dJαc ⊗ C − E[J, gradαv] + dE ∧ igradαvJ

− dJE ⊗ gradαv (1.5b), (1.7c), (1.8a)
= h0 +

1

2
αcJ −

1

2
dαv ⊗ C
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+
1

2
αcJ +

1

2
dαv ⊗ C − E[J, gradαv] − dJE ⊗ gradαv

= h0 + αcJ − E[J, gradαv] − dJE ⊗ gradαv,

and so the implication (i) =⇒ (iii) is verified.

Proof of (iii) =⇒ (i). First we show that the horizontal endomorphism given by
(4.5a) is conservative. – For any vector field X on M we have

Xh∇ := h∇Xc (4.5a)
= Xh0 + αcXv − E[J, gradαv]Xc − dJE ⊗ gradαv(Xc)

= Xh0 + αcXv − E[Xv, gradαv] + EJ [Xc, gradαv] − (XvE) gradαv

(1.8a)
= Xh0 + αcXv − E[Xv, gradαv] − (XvE) gradαv.

Thus

dh∇
E(Xc) = dE(Xh∇) = Xh∇E = αc(XvE) − EXv[gradαv(E)]

+ E gradαv(XvE) − (XvE) gradαv(E)
(1.8c)
= αc(XvE) − E(Xvαc)

+ E gradαv(XvE) − (XvE)αc = E(gradαv(XvE) − Xvαc).

Since on the one hand

ω(gradαv, Xc) = d(dJE)(gradαv, Xc) = gradαvdJE(Xc)

− XcdJE(gradαv) − dJE
(
[gradαv, Xc]

)
= gradαv(XvE)

− XcdE(J gradαv) − dE
(
J [gradαv, Xc]

) (1.8.a)
= gradαv(XvE),

on the other hand

ω(gradαv, Xc) = dαv(Xc) = Xcαv (1.7c)
= Xvαc,

it follows that gradαv(XvE) = Xvαc, and therefore dh∇
E(Xc) = 0 – as we claimed.

Thus (M, E,∇) is a generalized Berwald manifold.
To conclude the proof we have to check that the torsion tensor of ∇ has the

form (4.3a). For this let us first observe that

(∗)
[
J, [J, gradαv]

]
= 0,

since by the graded Jacobi identity (1.4b)

0 =
[
J, [J, gradαv]

]
−

[
J, [gradαv, J ]

]
+

[
gradαv, [J, J ]

]

(1.4a), (1.5b)
= 2

[
J, [J, gradαv]

]
.

Thus, calculating as before,

t∇ := [J, h∇]
(4.5a)
= [J, h0] + [J, αcJ ] −

[
J, E[J, gradαv]

]
− [J, dJE ⊗ gradαv]
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(1.4e,f)
= αc[J, J ] + dJαc ∧ J − dαc ∧ J ◦ J − E

[
J, [J, gradαv]

]

− dJE ∧ [J, gradαv] + dE ∧ J ◦ [J, gradαv] − dJdJE ⊗ gradαv

+ ddJE ⊗ J gradαv + dJE ∧ [J, gradαv]
(1.5a,b), (1.8a), (∗)

= dJαc ∧ J

(1.7c)
= dαv ∧ J = dαv ⊗ J − J ⊗ dαv.

This implies the relation (4.3a), as we have already seen in the proof of (4.2b). �

4.6. Corollary. If (M, E,∇, α) is a Wagner manifold then the spray S∇ generated
by h∇ and the canonical spray S0 are related by

(4.6a) S∇ = S0 + αcC − 2E gradαv.

Proof. It turned out in the proof of (i) =⇒ (iii) that (dt◦
∇

E)# = αcC−2E gradαv.
In view of (3.2a) this implies (4.6a). �

4.7. Remark. The relations (4.5a) and (4.6a) have already been obtained by
Cs. Vincze in [17], but his reasoning follows a very different, less direct path.

5. Examples: Finsler manifolds with “one-form metric”

5.1. Finsler-Minkowski functionals. To avoid any confusion, we lay down here
the following definition. – A function f : Rn → R is said to be a Finsler-Minkowski
functional and the pair (Rn, f) a Finsler-Minkowski vector space if

∀ v ∈ Rn : f(v) ≥ 0; f(v) = 0 ⇐⇒ v = 0 (positivity);(5.1a)

∀ τ ∈ [0,∞ [ , ∀ v ∈ Rn : f(τv) = τf(v) (positive homogeneity);(5.1b)

f ∈ C3(Rn \ {0}) (differentiability);(5.1c)

the second Fréchet derivative of the function F :=
1

2
f2 is a positive(5.1d)

definite symmetric bilinear function from Rn × Rn to R at any point

of Rn \ {0} (strong convexity).

Then the mapping

〈 , 〉 : p ∈ Rn \ {0} 7→ 〈 , 〉p,(5.1e)

∀ v, w ∈ TpRn ∼= Rn : 〈 , 〉p(v, w) =: 〈v, w〉p := F ′′(p)(v, w)

is a Riemannian metric on Rn \ {0}.
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5.2. Let β be a one-form on a manifold M . In the sequel we are going to denote

by β̃ the function

TM → R, v 7→ β̃(v) := βπ(v)(v).

We shall also utilize the following fact. – If ∇ is a linear connection on M , then
for any vector field X ∈ X(M) and one-form β ∈ Ω(M)

(5.2 a) Xh∇ β̃ = ∇̃Xβ

(see [21], Lemma 2).

5.3. Let us suppose for our subsequent considerations that M is a parallelizable
manifold with a parallelization (Xi)

n
i=1; Xi ∈ X(M), 1 ≤ i ≤ n ([2], p. 117). Let

(λi)n
i=1 be the coframe dual to (Xi)

n
i=1. Using the convention fixed in 5.2, consider

the mapping

λ̃ := (λ̃1, . . . λ̃n) : TM → Rn, v 7→ λ̃(v) =
(
λ̃1(v), . . . λ̃n(v)

)
.

Suppose that f : Rn → R is a Finsler-Minkowski functional, and let us introduce
the functions

L := f ◦ λ̃, E :=
1

2
L2.

Then (M, E) is a Finsler manifold, the Finsler structure constructed in this way is
said to be a one-form Finsler structure. Following (at least partly) the traditions,
in the sequel we shall mention (M, E) as a “Finsler manifold with one-form metric”
(cf. [11]). – Concerning some basic analytic data of (M, E), we have the following
results.

(5.3a) The fundamental two-form of (M, E) is

ω =
∼

λ
∗

df ∧ iJ
∼

λ
∗

df − (f ◦ λ̃)dJ

∼

λ
∗

df

(the ∗ denotes pull-back).

(5.3b) The vertical metric g (1.10) of (M, E) is the pull-back of the Riemannian

metric 〈 , 〉 via λ̃, i.e.

g =
∼

λ
∗

〈 , 〉;

hence the mapping λ̃ preserves the Finslerian norms.

(5.3c) The (lowered) first Cartan tensor of (M, E) can be represented in the form

C♭ =
1

2

(
η ⊙ dJ (f ◦ λ̃) + (f ◦ λ̃)

◦

DJη
)
,

where (
◦

D, h)is a Finsler connection of Berwald-type ([13]), η is a type (0, 2)
tensor field given by

(X, Y ) ∈ X(T M) × X(T M) 7→ η(X, Y ) := ddJ (f ◦ λ̃)(JX, Y ) ∈ C∞(TM),

and ⊙ is the symbol of the symmetric product.
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5.4. Proposition. Let (M, E) be the Finsler manifold with the one-form metric
constructed in 5.3. Consider the linear connection ∇ determined by the paral-
lelization (Xi)

n
i=1 ([2], 9.1.2), and let h∇ be the horizontal endomorphism arising

from ∇. Then (M, E,∇) is a generalized Berwald manifold. If, in addition, ∇ is
torsion-free, then (M, E) is a locally Minkowski manifold.

Proof. – First we show that (M, E,∇) is a generalized Berwald manifold, i.e.
dh∇

E = 0. The members of the dual coframe (λi)n
i=1 are clearly parallel with

respect to ∇, so for any vector fields X , Y on M we have

0 = [(∇λi)(Y, X)]v =
[(
∇Xλi

)
(Y )

]v I.2.8 of [20]
= Y v∇̃Xλi (1 ≤ i ≤ n);

hence for any vector field X on M ,

∇̃Xλi = 0 (1 ≤ i ≤ n)

On the other hand

Xh∇λ̃i = ∇̃Xλi (1 ≤ i ≤ n)

by (5.2a). So we conclude that

∀X ∈ X(M) : Xh∇λ̃i = dh∇
λ̃i(Xc) = 0 (1 ≤ i ≤ n),

therefore
dh∇

λ̃i = 0, 1 ≤ i ≤ n.

From this we obtain the desired relation dh∇
E = 0 by the chain rule. – To prove

the second assertion, let us consider the Ichijyō connection (
∇

D, h∇). Since – as we

have just seen – (M, E,∇) is a generalized Berwald manifold, 4.3 assures that
∇

D

is h-metrical. Furthermore ∇ is clearly a flat connection and – by assumption – it
is torsion-free. These three properties imply by 4.8 that (M, E) is indeed a locally
Minkowski manifold. �

5.5. Curvature and torsion data. Suppose that (M, E) is a Finsler manifold
with one-form metric, according to 5.3. Let ∇ be the linear connection determined

by the parallelization of M , and let us consider the Ichijyō connection (
∇

D, h∇).
(Using local coordinates, this connection has already been constructed in [11] under
the name “one-form connection”.) Concerning the partial curvatures and torsion of

(
∇

D, h∇), the following tables can be obtained as easy consequences of our preceding
considerations and 3.5.

Curvature (X, Y Z ∈ X(T M))

horizontal
∇

R = 0

mixed
∇

P = 0

vertical
∇

Q(X, Y )Z = C(F (C(X, Z), Y ) − C(X, FC(Y, Z))
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Torsion (X, Y ∈ X(M))

h-horizontal
∇

A(Xh∇ , Y h∇) = (T∇(X, Y ))h∇

h-mixed
∇

B(Xh∇ , Y v) = −F∇C(Xh∇ , Y h∇)

v-horizontal
∇

R1 = 0

v-mixed
∇

P1 = 0

v-vertical
∇

S1 = 0

(F is an arbitrary almost complex structure on TM , C is determined by (5.3c).)
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