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On conformal equivalence of Riemann-Finsler metrics

By J. SZILASI (Debrecen) and CS. VINCZE (Debrecen)

Abstract. In this article a novel approach to the study of conformal change of
Riemann-Finsler metrics is presented. Of particular interest is a result describing the
change of the canonical spray of a Finsler manifold. Some classical results are also
interpreted and proved from this new viewpoint, using coordinate free methods.

Introduction

The aim of this note is to present a new framework for the conformal
theory of Riemann-Finsler metrics based on Grifone’s theory of nonlinear
connection [3] and the calculus of vector-valued differential forms estab-
lished by A. Frölicher and A. Nijenhuis [2]. The novelty of our ap-
proach first of all lies in its purely intrinsic character (calculations with
local coordinates are completely eliminated). Thus the main points are in
focus and the fundamental mechanism behind the classical tensor calculus
used e.g. in [7] and [10] becomes transparent. Briefly, in popular parlance,
“one understands, why a theorem is true”. Nevertheless, we have to em-
phasize that the classical source Rund [10], Ch. VI. §2 and Hashiguchi’s
comprehensive study [7] were indispensable and very stimulating for our
work.

The plan of the paper is as follows. In the next section we offer a quite
detailed exposition of the conceptual and calculational background in order
to make the work self-contained as far as possible. In Section 2 some basic
facts on the gradient of a function ϕ ∈ C∞(TM) (M is a Finsler manifold)
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are collected, with special regard to the vertically lifted functions. Con-
formal equivalence of Riemann-Finsler metrics is introduced in Section 3.
We give a very simple proof, based only on the homogeneity properties
of the energy function, of Knebelman’s famous observation which points
out that the scale function must be a vertical lift. We also derive some
important conformal invariants. In Section 4 we establish a key formula,
describing the change of the canonical spray of a Finsler manifold under
a conformal change of the Riemann-Finsler metric. As a consequence, we
get immediately, how the Barthel endomorphism is changing. Having these
results, one can also describe the change of the curvature of the Barthel
endomorphism, the change of the Berwald and Cartan (and other) con-
nections, etc. We shall discuss these questions and other aspects of the
theory in a forthcoming paper. The concluding section is devoted to a nice
application, which illustrates how the mechanism is working. We present
an intrinsic proof of the classical theorem which (roughly speaking) states
that in case of a simultaneous conformal and projective change the scale
function is constant, i.e. the conformal change must be homothetic.

1. Preliminaries

1.1. Notations. We employ Grifone’s terminology and conventions [3], [4]
as far as feasible. For generalities, our base reference work is [8].
(i) M is an n(> 1)-dimensional, C∞, connected, paracompact manifold,

C∞(M) is the ring of real-valued smooth functions on M .
(ii) π : TM → M is the tangent bundle of M , π0 : TM → M is the

bundle of nonzero tangent vectors.
(iii) X(M) denotes the C∞(M)-module of vector fields on M .
(iv) Ωk(M) (k ∈ N+) is the module of (scalar) k-forms on M , Ω0(M) :=

C∞(M), Ω(M) := ⊕n
k=0 Ωk(M). Ω(M) is a graded algebra over

C∞(M), with multiplication given by the wedge product ∧. ⊗ stands
for the tensor product.

(v) Ψk(M) (k ∈ N+) is the C∞(M)-module of vector k-forms on M .
It can be regarded as the space of k-linear (over C∞(M)) skew-
symmetric maps X(M) × · · · × X(M) → X(M). Ψ0(M) := X(M),
Ψ(M) := ⊕n

k=0 Ψk(M).
(vi) iX ,LX (X ∈ X(M)) and d are the insertion operator , the Lie deriv-

ative (with respect to X) and the exterior derivative, respectively.
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1.2. Frölicher-Nijenhuis theory. Our main technical tool is the Fröli-
cher-Nijenhuis calculus of vector-valued forms and derivations, for which
we refer to the wonderful original paper [2]; see also [8], [9], [12]. To make
this work more readable, we assemble here some basic facts which will be
applied in the sequel.

To any vector k-form K ∈ Ψk(M) two derivations of Ω(M) are asso-
ciated:
(i) the derivation iK of degree k−1, completely determined by its action

on Ω0(M) = C∞(M) and Ω1(M) as follows:
• ∀f ∈ C∞(M) : iKf = 0
• ∀ω ∈ Ω1(M) : iKω = ω ◦K;

(ii) the derivation dK of degree k defined by

dK := [iK , d] := iK ◦ d− (−1)k−1d ◦ iK .

Then, in particular,

∀f ∈ C∞(M) : dKf = iKdf
(i)
= df ◦K

and dK is uniquely determined by this formula. The graded commu-
tator of dK and dL is

[dK , dL] = dK ◦ dL − (−1)kldL ◦ dK (K ∈ Ψk(M), L ∈ Ψl(M)).

There exists a unique vector (k + l)-form [K, L] such that

[dK , dL] = d[K,L];

[K, L] is called the Frölicher-Nijenhuis bracket of K and L.
We note that in case of vector 0-forms (i.e. vector fields) iK and

dK become the usual insertion operator and the Lie derivative, while the
Frölicher-Nijenhuis bracket reduces to the Lie bracket of vector fields. If
K ∈ Ψ1(M), Y ∈ Ψ0(M) = X(M) then the vector 1-form [K, Y ] acts by
the formula

(1) [K,Y ](X) = [K(X), Y ]−K[X, Y ] (X ∈ X(M)).

We shall also need the identity

[fX, K] = f [X, K] + df ∧ iXK − dKf ⊗X(2)

(f ∈ C∞(M), X ∈ X(M), K ∈ Ψk(M)).
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Remark 1. In the sequel we shall consider forms over TM or TM and
apply derivations of Ω(TM) or Ω(TM). Differentiability of vector k-forms
(k ∈ N+) will be required only over TM , unless otherwise stated.

1.3. Vertical apparatus. Homogeneity.

(a) Xv(TM) and Xv(TM) denote the C∞(TM)-module of vertical vec-
tor fields on TM and TM , respectively. On TM live two canonical
objects which play an important role in Finslerian (and Lagrangian)
theory: the Liouville vector field C ∈ Xv(TM) and the vertical endo-
morphism J ∈ Ψ1(TM) (for the definitions see e.g. [9]). We have:

ImJ = Ker J = Xv(TM);(3)

J2 = 0, d2
J = 0;(4)

[J,C] = J.(5)

The vertical lift ([9], [11]) of a function f ∈ C∞(M) and a vector field
X ∈ X(M) is denoted by fv and Xv, respectively; fv := f ◦ π.

The following simple observation will be useful.

Lemma 1. A smooth function ϕ on TM or TM is a vertical lift iff

dJϕ = 0.

Note that by 1.2 (ii) and (3)

dJϕ = 0 ⇐⇒ ∀X ∈ Xv(TM) : Xϕ = 0.

We also recall [11] that the vertical lift of a 1-form df ∈ Ω1(M) (f ∈
C∞(M)) is defined by

(6) (df)v := d(fv).

(b) Let k ∈ Z. We say that a (smooth) function ϕ, or a vector field X, or
a scalar form ω and a vector form L, each of them given on TM or
TM , is homogeneous of degree k if
(i) Cϕ = kϕ,
(ii) [C, X] = (k − 1)X,
(iii) LCω = kω,
(iv) LCL = (k − 1)L.
For example ∀X ∈ X(M) : [C, Xv] = −Xv, i.e. Xv is homogeneous of
degree 0.
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1.4. Semispray, spray. Complete lift.

Definition. A mapping S : TM → TTM is said to be a semispray
on M if it satisfies the following conditions:

S is a vector field of class C1 on TM.(SPR 1)

S is smooth on TM.(SPR 2)

JS = C.(SPR 3)

A semispray S is called a spray if it is homogeneous of degree 2, i.e.

(SPR 4) [C, S] = S

also holds.
Consider a vertical lift ϕ = f ◦ π, f ∈ C∞(M). If S is a semispray

on M then the function Sϕ does not depend on S because if S̄ is another
semispray then S̄ − S is vertical (SPR 3) and

0 Lemma 1= (S̄ − S)ϕ = S̄ϕ− Sϕ ⇒ S̄ϕ = Sϕ.

Thus the function

(7) fc := Sϕ = S(f ◦ π)

is well-defined; it is said to be the complete lift of f . (For another definition
see e.g. [11].) Now the complete lift Xc of a vector field X ∈ X(M) can be
introduced as in [11]:

(8) ∀f ∈ C∞(M) : Xcf c := (Xf)c.

The following familiar formulas can be easily deduced:

∀X,Y ∈ X(M), f ∈ C∞(M) :

Xvf c = Xcfv = (Xf)v(9)

[Xc, Y c] = [X, Y ]c, [Xv, Y c] = [X,Y ]v,(10)

[C,Xc] = 0 (i.e. Xc is homogeneous of degree 1),(11)

JXc = Xv, [J,Xc] = 0.(12)

For the subsequent applications a useful observation will be the next
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Local basis property. If (X1, . . . , Xn) is a local basis of X(M) then

(Xv
1 , . . . , Xv

n, Xc
1 , . . . , Xc

n) is a local basis for X(TM).

Lemma 2. ∀f ∈ C∞(M):
(i) f c is homogeneous of degree 1.

(ii) dJfc = d(fv)
(6)
= (df)v.

Proof. (i) By the definition of f c, we can write

f c = Sϕ, ϕ = f ◦ π,

where S is a spray . Thus

Cf c = C(Sϕ) = [C, S]ϕ + S(Cϕ)
(SPR 4), Lemma 1

= Sϕ = f c,

which means the 1-homogeneity of f c.

(ii) The vector 1-form dJf c clearly kills the vertical vector fields so it
is completely determined by its action on the complete lifts.

∀X ∈ X(M) :

(dJf c)(Xc) = df c(JXc)
(12)
= dfc(Xv) = Xvf c (9)

= Xcfv = (dfv)(Xc),

hence dJf c = d(fv). ¤

1.5. Horizontal endomorphisms. Now we recall some basic concepts of
a version of Grifone’s theory of nonlinear connections [3], whose role will
be played by the “horizontal endomorphisms” in our approach.

Definition. A vector 1-form h ∈ Ψ1(TM) is said to be a horizontal
endomorphism on M if it satisfies the following conditions:

h is smooth over TM.(HE 1)

h is a projector, i.e. h2 = h.(HE 2)

Ker h = Xv(TM).(HE 3)

The horizontal lift of a vector field X ∈ X(M) (with respect to h) is
Xh := hXc.
• H := [h,C] is the tension of h,

• t := [J, h] is the weak torsion of h,
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• T := iSt + H (S is an arbitrary semispray on M) is the strong torsion
of h.
It follows immediately from the definitions that

h ◦ J = 0, J ◦ h = J ;(13)

X(TM) = Xv(TM)⊕ Xh(TM), Xh(TM) := Im h.(14)

Owing to (HE 1), the vector forms H,T ∈ Ψ1(TM), t ∈ Ψ2(TM) are
smooth over TM ; cf. also Remark 1.

Any horizontal endomorphism h naturally determines an almost com-
plex structure F ∈ Ψ1(TM) (F 2 = −1, F is smooth on TM) such that

(15) F ◦ h = −J, F ◦ J = h;

it is called the almost complex structure associated with h.

1.6. Semibasic trace ([5], [12]). A scalar form ω ∈ Ωk(TM) (k ∈ N+) is
said to be semibasic if

∀X ∈ X(TM) : iJXω = 0.

A vector form L ∈ Ψl(TM) (l ∈ N+) is called semibasic if

J ◦ L = 0 and ∀X ∈ X(TM) : iJXL = 0.

Suppose that L ∈ Ψl(TM) is semibasic. The semibasic trace L̃ of L is the
semibasic scalar (l − 1)-form defined by recurrence as follows:
(i) if l = 1, then L̃ := trace(F ◦ L), where F is the associated almost

complex structure of an arbitrarily chosen horizontal endomorphism
(ii) if l > 1, then iX L̃ := ĩXL for all X ∈ X(TM).

Lemma 3. J̃ = n.

Proof. J̃ := trace(F ◦ J)
(15)
= trace(h). Choose a local basis

(X1, . . . , Xn) for X(M). (14) guarantees that (Xv
1 , . . . , Xv

n, Xh
1 , . . . , Xh

n) is
a local basis of X(TM). Since

h(Xv
i )

(HE 3)
= 0,

h(Xh
i ) := h(hXc

i ) = h2(Xc
i )

(HE 2)
= h(Xc

i ) =: Xh
i (1 ≤ i ≤ n),

we obtain immediately that trace(h) = n. ¤
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We shall need the following formula [12]:

(16) for each ω ∈ Ωk(TM) semibasic form: ω̃ ⊗ C = (−1)k+1iSω

(S is an arbitrary semispray).

1.7. Finsler manifolds. Let a function E : TM → R, called energy , be
given. The pair (M, E), or simply M , is said to be a Finsler manifold if
the energy function satisfies the following conditions:

∀v ∈ TM : E(v) > 0, E(0) = 0.(F0)

E is of class C1 on TM smooth on TM .(F1)

CE = 2E, i.e. E is homogeneous of degree 2.(F2)

The form ω := ddJE ∈ Ω2(TM), called the fundamental
form, is symplectic.

(F3)

The mapping

g : Xv(TM)× Xv(TM) → C∞(TM)(17)

(JX, JY ) 7→ g(JX, JY ) := ω(JX, Y )

is a well-defined, nondegenerate symmetric bilinear form (over C∞(TM))
which we call the Riemann-Finsler metric of the Finsler manifold (M,E).
(Note that if E is of class C2, we get the category of Riemannian mani-
folds!)

We have the following important identities:

iJω = 0, iCω = dJE;(18)

LCω = ω;(19)

E =
1
2
g(C, C).(20)

On any Finsler manifold there is a spray S : TM → TTM , which is
uniquely determined on TM by the formula

(21) iSω = −dE.

This spray is called the canonical spray of the Finsler manifold.
The following result is the miracle of Finsler geometry:



On conformal equivalence of Riemann-Finsler metrics 175

The fundamental lemma of Finsler geometry [3]. On a Finsler man-
ifold (M, E) there is a unique horizontal endomorphism h∈Ψ1(TM) such
that

dhE = 0 (“h is conservative”),(B1)

the strong torsion of h vanishes.(B2)

h is called the Barthel endomorphism of M , and is given by the formula

h =
1
2
(1 + [J, S]),

where S is the canonical spray.

Suppose that (M, E) is a Finsler manifold with Riemann-Finsler met-
ric g. There exists a unique tensor C : X(TM) × X(TM) → X(TM),
satisfying the following.

J ◦ C = 0,(CAR 1)

∀X, Y, Z ∈ X(TM) : g(C(X,Y ), JZ) =
1
2
(LJXJ∗g)(Y, Z).(CAR 2)

(J∗ is the adjoint operator of J , see [9]). C is called the Cartan tensor of
the Finsler manifold, its lowered tensor Cb is defined by

Cb(X,Y, Z) := g(C(X, Y ), JZ).

Definition. [5] Let (M, E) be a Finsler manifold and consider the vol-
ume form

w :=
(−1)n(n+1)/2

n!
ωn

on TM . The divergence of a vector field X ∈ X(TM) is the function δX
given by

(δX)w = LXw.

Lemma 4. [5] ∀X ∈ X(TM) : δ(JX) = ˜[J, JX] + 2C̃(X).

Corollary 1. δC = n.

Proof. Applying (19) we obtain by an easy induction that

(δC)w :=LCw =
(−1)n(n+1)/2

n!
nωn = nw. ¤
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2. Gradient operator on the tangent bundle
of a Finsler manifold

Let (M,E) be a Finsler manifold with fundamental form ω. Consider
a smooth function ϕ : TM → R. Nondegeneracy of ω guarantees the
existence and unicity of the vector field gradϕ ∈ X(TM) characterized by
the condition

dϕ = igrad ϕω;

this vector field is called the gradient of ϕ.

Lemma 5. If M is a Finsler manifold then

∀ϕ ∈ C∞(TM) : δ grad ϕ = 0.

Proof. Using H. Cartan’s magic formula, we have

Lgrad ϕω = igrad ϕdω + digrad ϕω
(F3)
=

= digrad ϕω = ddϕ = 0,

thus the result follows. ¤

Proposition 1. Let (M, E) be a Finsler manifold and suppose that

ϕ ∈ C∞(TM) is a vertical lift: ϕ = f ◦π, f ∈ C∞(M). Then the gradient

vector field of ϕ has the following properties:

(i) gradϕ ∈ Xv(TM).

(ii) [C, gradϕ] = − grad ϕ, i.e. gradϕ is homogeneous of degree 0.

(iii) gradϕ(E) = f c.

Proof. (i) Since ϕ is a vertical lift, we get from Lemma 1 that

∀X ∈ X(TM) : dJϕ(X) = dϕ(JX) = 0.

Thus

g(JX, J grad ϕ)
(17)
= ω(JX, gradϕ) = −(igrad ϕω)(JX)

= −dϕ(JX) = 0.
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We know that g is nondegenerate and (by (3)) that JX ∈ Xv(TM) is
arbitrary, so it follows that J gradϕ = 0. Since Ker J = Xv(TM) (also
by (3)), we get the desired relation grad ϕ ∈ Xv(TM).

i[C,grad ϕ]ω = LCigrad ϕω − igrad ϕLCω
(19)
=(ii)

= LCdϕ− igrad ϕω.

Evaluating the Lie derivative, we obtain:

∀X ∈ X(TM) : (LCdϕ)(X) = Cdϕ(X)− dϕ[C,X]

= C(Xϕ)− [C,X]ϕ = X(Cϕ) Lemma 1= X(0) = 0.

Hence
i[C,grad ϕ]ω = i− grad ϕω,

and, therefore, [C, grad ϕ] = − grad ϕ.

(iii) grad ϕ(E) = dE(gradϕ)
(21)
= −iSω(grad ϕ)

= ω(grad ϕ, S) = (igrad ϕω)(S)

= dϕ(S) = Sϕ
(7)
= f c. ¤

3. Conformally equivalent Riemann-Finsler metrics

Definition. Consider the Finsler manifolds (M,E) and (M, Ē) and
let us denote by g and ḡ their Riemann-Finsler metrics. g and ḡ are said
to be conformally equivalent if there exists a positive smooth function
ϕ : TM → R such that ḡ = ϕg. In this case we also speak of a conformal
change of the metric. The function ϕ is called the scale function or the
proportionality function. If the scale function is constant, then we say that
the conformal change is homothetic.

Remark 2. If ḡ = ϕg, then

Ē
(20)
=

1
2
ḡ(C, C) =

1
2
ϕg(C,C)

(20)
= ϕE.
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Lemma 6 (Knebelman’s observation). The proportionality function

between conformally equivalent Riemann-Finsler metrics is a vertical lift.

Proof. Consider the Finsler manifolds (M, E) and (M, Ē). In case
of conformal equivalence we have just seen that Ē = ϕE. Using the
homogeneity property (F2) of Ē and E it follows that

2Ē = CĒ = C(ϕE) = (Cϕ)E + ϕ(CE) = (Cϕ)E + 2ϕE = (Cϕ)E + 2Ē,

therefore Cϕ = 0; i.e. ϕ is homogeneous of degree 0. Since ϕ is smooth on
the whole tangent manifold TM , this implies by a routine reasoning that
ϕ is fiberwise constant which obviously means that ϕ is a vertical lift. ¤

Proposition 2. Let (M,E) and (M, Ē) be Finsler manifolds with

Riemann-Finsler metrics g and ḡ, respectively. g and ḡ are conformally

equivalent if and only if

dJE

E
=

dJ Ē

Ē
(over TM).

In particular, dJE
E is invariant under the conformal changes of the Rie-

mann-Finsler metric.

Proof. The necessity is clear: if ḡ = ϕg, then Ē = ϕE, where
dJϕ = 0 by Lemma 6, and so

dJ Ē

Ē
=

dJ (ϕE)
ϕE

=
(dJϕ)E + ϕdJE

ϕE
=

dJE

E
.

Suppose, conversely, that over TM

dJE

E
=

dJ Ē

Ē
.

Then we get immediately the relation

dJ (ln ◦E) = dJ (ln ◦Ē),

or, equivalently,

dJ

(
ln ◦ Ē

E

)
= 0.
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This means by Lemma 1 that the function ln ◦ Ē
E , and therefore Ē

E is a
vertical lift. So there is a positive function f ∈ C∞(M) such that
Ē
E = f ◦ π0. If ϕ := f ◦ π, then we have

∀X, Y ∈ X(TM) : ḡ(JX, JY ) := ω̄(JX, Y ) := ddJ Ē(JX, Y )

= ddJ (ϕE)(JX, Y ) = d(EdJϕ + ϕdJE)(JX, Y ) Lemma 1=

= d(ϕdJE)(JX, Y ) = dϕ ∧ dJE(JX, Y ) + ϕddJE(JX, Y )

= dϕ(JX)dJE(Y )− dϕ(Y )dJE(JX) + ϕω(JX, Y )

= dJϕ(X)dJE(Y )− dϕ(Y )dE(J2X) + ϕg(JX, JY )
Lemma 1, (4)

=

= ϕg(JX, JY );

hence
ḡ = ϕg,

as was to be shown. ¤

Proposition 3. The Cartan tensor is invariant under a conformal

change of a Riemann-Finsler metric, while the lowered Cartan tensor

changes by the formula C̄b = ϕCb, where ϕ is the scale function.

Proof. Consider the conformal change ḡ = ϕg. Then ∀X,Y, Z ∈
X(TM):

2ḡ(C̄(X,Y ), JZ)
(CAR 2)

= LJX(J∗ḡ)(Y, Z) = LJX(J∗(ϕg))(Y, Z)

= JX(ϕg(JY, JZ))− ϕg(J [JX, Y ], JZ)− ϕg(JY, J [JX, Z])

= JX(ϕ)g(JY, JZ) + 2ϕg(C(X, Y ), JZ) Lemma 6= 2ḡ(C(X,Y ), JZ),

therefore C̄ = C. This relation implies immediately that C̄b = ϕCb. ¤

4. The fundamental relation between the
canonical sprays

Theorem 1. Suppose that g and ḡ are conformally equivalent Rie-

mann-Finsler metrics on M , namely

ḡ = ϕg; ϕ = exp ◦α ◦ π, α ∈ C∞(M).
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Then the corresponding canonical sprays satisfy the relation

(22) S̄ = S − αcC + E gradαv.

Proof. On the one hand, since Ē = ϕE, we have

−dĒ = −d(ϕE) = −ϕdE − Edϕ
(21)
= iϕSω − Edϕ.

On the other hand,

−dĒ
(21)
= iS̄ω̄ = iS̄ddJ(ϕE) = iS̄d(EdJϕ + ϕdJE)

= iS̄(dϕ ∧ dJE + ϕddJE) = (iS̄dϕ)dJE

− (iS̄dJE)dϕ + ϕiS̄ω = S̄(ϕ)dJE − dE(JS̄)dϕ

+ ϕiS̄ω
Prop. 1, (7), (F2), (18)

= igrad ϕ(E)Cω − 2Edϕ + iϕS̄ω.

Comparing the right sides of these relations, we obtain that

iϕS̄ω = iϕSω − igrad ϕ(E)Cω + Edϕ = iϕS−grad ϕ(E)C+E grad ϕω.

Hence

S̄ = S − 1
ϕ

gradϕ(E)C + E
1
ϕ

gradϕ.

Since

gradϕ = grad(exp ◦αv) = (exp′ ◦αv) grad αv = ϕ grad αv

and therefore

1
ϕ

gradϕ(E) = gradαv(E)
Prop. 1/(iii)

= αc,

(22) is proved. ¤

Corollary 2. Under the conditions of Theorem 1, the Barthel endo-

morphisms are related as follows:

h̄ = h− 1
2
(αcJ + (dα)v ⊗ C) +

1
2
E[J, gradαv] +

1
2
dJE ⊗ gradαv.
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Proof. h̄ := 1
2 (1 + [J, S̄])

(22)
= h− 1

2 [J, αcC] + 1
2 [J,E gradαv]. Here

• −[J, αcC] = [αcC, J ]
(2)
= αc[C, J ] + dαc ∧ iCJ − dJαc ⊗ C

(5), Lemma 2
= −αcJ − (dα)v ⊗ C

• [J,E gradαv]
(2)
= E[J, grad αv]− dE ∧ igrad αvJ + dJE ⊗ gradαv

Prop. 1
= E[J, grad αv] + dJE ⊗ grad αv,

thus we obtain the desired relation. ¤

5. An application

A well-known, classical result states (in H. Weyl’s terminology) that
“the projective and conformal properties of a Finsler space determine its
metric properties uniquely” [10], p. 226. Now we are going to formulate
this nice and important theorem in our framework and prove it purely
intrinsically .

Definition (cf. [1]). (a) Two sprays S and S̄ given on the manifold M
are said to be projectively equivalent if there is a function λ : TM → R
satisfying the following conditions:
(Proj 1) λ is smooth on TM , C1 on TM .
(Proj 2) S̄ = S + λC.

(b) We say that the Finsler manifolds (M, E) and (M, Ē) are pro-
jectively equivalent if their canonical sprays have the property described
in (a).

Remark 3. (Proj 1) and (Proj 2) easily imply that λ is homogeneous
of degree 1.

Theorem 2. Suppose that (M, E) and (M, Ē) are projectively equi-
valent Finsler manifolds of dimension n > 1. If their Riemann-Finsler
metrics are conformally equivalent as well then the conformal change is
homothetic.

Proof. Keeping the previous notation, now we have by (Proj 2) and
(22) the relations

S̄ = S + λC and S̄ = S − αcC + E grad αv
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simultaneously. From these it follows that

(23) λC = −αcC + E grad αv.

Applying both sides to the energy function E, we obtain by (F2) and
Proposition 1/(iii) that

2λE = −2αcE + αcE,

i.e.
λ = −1

2
αc.

Substituting this into (23), we get the relation

gradαv =
αc

2E
C.

Let µ := αc

2E . In view of Lemma 2 and (F2), µ is homogeneous of degree
−1. Thus we have:

gradαv = µC,(24)

Cµ = −µ.(25)

Let S0 be an arbitrary semispray on M . First we note that

(26) C̃(S0) = 0.

Indeed,

n
Cor. 1= δC = δ(JS0)

Lemma 4= ˜[J, JS0] + 2C̃(S0)

= [̃J,C] + 2C̃(S0)
(5)
= J̃ + 2C̃(S0)

Lemma 3=

= n + 2C̃(S0),

so (26) is true. Secondly, we claim that

(27) ˜[J, grad αv] = 0.

To see this, consider the vector field X := µS0. Then

JX = µJS0 = µC
(24)
= grad αv,
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therefore

0 Lemma 5= δ grad αv = δ(JX) Lemma 4= ˜[J, JX] + 2C̃(X)

= ˜[J, gradαv] + 2µC̃(S0)
(26)
= ˜[J, gradαv],

so (27) is also true. Now we come back to (24). Taking Frölicher-Nijenhuis
bracket with J we get the relation

(28) [J, gradαv] = [J, µC].

We calculate the semibasic trace of both sides.

0
(27)
= ˜[J, gradαv]

(28)
= ˜[J, µC]

(2)
= µ̃J

− ˜dµ ∧ iCJ + ˜dJµ⊗ C = µJ̃ + ˜dJµ⊗ C

Lemma 3, (16)
= µn + iS0dJµ = µn + iS0iJdµ

= µn + dµ(JS0) = µn + Cµ
(25)
= µn− µ = (n− 1)µ,

so µ = 0. This implies in view of (24) that gradαv = 0. Thus

(dα)v (6)
= d(αv) = igrad αvω = 0,

therefore dα = 0. Because M is connected (1.1.(i)), this means that the
function α is constant which was to be proved. ¤

Remark 4. Observe that under the hypothesis of Theorem 2 the pro-
jective equivalence is trivial: the function λ vanishes.

Corollary 3. Suppose that the Riemann-Finsler metrics g and ḡ on M

are conformally equivalent:

ḡ = ϕg; ϕ = exp ◦α ◦ π, α ∈ C∞(M).

Then the following assertions are equivalent:

(i) The conformal change is homothetic.

(ii) The canonical sprays S and S̄ coincide.

(iii) The Barthel endomorphisms h and h̄ coincide.

Proof. (i) ⇒ (ii) Indeed, if (i) holds, then αc and grad αv vanish
so (22) implies that S = S̄.
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(ii) ⇒ (i) This follows immediately from Theorem 2.
(ii) ⇒ (iii) This is evident.
(iii) ⇒ (ii) From the hypothesis that (iii) holds we obtain the relation

[J, S̄] = [J, S].

Applying both sides to the spray S, we have by (1) that

[C, S̄]− J [S, S̄] = [C, S]− J [S, S].

Using (SPR 4), it follows that

S̄ − J [S, S̄] = S.

Let Z :=S − S̄. Then Z ∈ Xv(TM) and

J [S, S̄] = J [Z, S̄].

Here, by Proposition 4.3.7 of [9],

J [Z, S̄] = Z = S − S̄.

Therefore
S̄ − S + S̄ = S

hence S̄ = S, proving the implication (iii) ⇒ (ii). ¤
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