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On Finsler Connections:

J. SZILASI

1. In this paper we shall discuss some new basic ideas concerning Finsler
connections. Our approach uses two key notions: horizontael structure and
(general) pseudoconnection. We hope that this new approach will result
in a real conceptual and technical simplification of M. Matsumoto’s well-
known theory [9]. Also, it may be helpful in better understanding the “pure
essence” of Finsler connections.

Our ideas also have natural relations with R. Miron’s recent theory [10].
Miron’s theory is more general than ours in the sense that it works on the
whole tangent bundle of the total space of a vector bundle, while we limit
ourselves to the vertical subbundle. However, this restriction is perfectly
adequate with the demands of classical Finsler geometry.

We shall always be working in the category of the finite dimensional,
second countable, smooth manifolds. We are concerned with global prop-
erties, but for the sake of a comparison with other (mainly the classical)
treatments, we shall systematically give coordinate expressions. As for the
notations and basic conventions we refer to the monographs [4], [5] and the
paper [14].

" This paper is in final form and no version of it will be submitted for publication
elsewhere.
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2. To begin with, let us consider a fibered space £ = (E.#.M). (Then
the only requirement is that 7 : E — M is a surjective submersion.) As
in the case of vector bundles, one can construct the vertical subbundle V¢
of the tangent bundle 7 of the total space F of {. Assigning a Whitney-
complement H¢ to VE, we say that a horizontal structure H has been given
in &. This will be written as follows:

(2.1) H: 1=V¢(®HE.

H npaturally determines the wvertical projector v : 71y — V& and the
horizontal projector h : 175 — H¢. The decomposition (2.1) also induces
a direct decomposition

of the module of the vector fields on E onto the submodule of the vertical
vector fields and that of the horizontal ones. For the sake of simplicity, the
projectors X(E) — Xy E and X(E) — Xy (FE) also will be denoted by v
and h, resp. Every horizontal structure (2.1) determines a unique mapping

2. X(M)— XygE, X+ X"

where X and X ¥ are w-related. If AL (M, 75) denotes the graded Lie algebra
of the projectable vector 1-forms on M [8], then ¢¥ can be interpreted as
such an element of AL (M, ) which is projectable onto the identity (1,1)
tensor field on M. Conversely, if I' € AL{M, 7¢) and it is projectable onto
L1 (ary, then I determines a unique horizontal structure in £. Such a vector
1-form T will be mentioned as a lifting form in the sequel.

In particular, let £ = (E, 7, M) be a vector bundle. We shall denote by
Z the Liouville vector field, that is the vertical vector field generated by the
homothetic transformations of F.

(2.2) Definition. A horizontal structure H in the vector bundle £ is said
to be satisfying the homogeneity condition (HC) if the Lie derivative £zv
of the vertical projector vanishes.

For other formulations of (HC) and a discussion see 13 . Here we only
mention the useful criterion

(2.3) (HC) == VX e X(M): [X*.Z =0
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3. Suppose that H is a horizontal structure in the fibered space £. Let A
be a vertical vector 1-form on M, symbolically X € A'(M,V§) (cf. [3]). In
this case the pair (H,A) — or (£Z,\) — is said to be an affine structure in
£. Obviously, £% — X € AL (M, 7g); this projectable vector 1-form is said to
be the affine lifting form of the affine structure (H,\). In the special case
£ := 72 there exists a canonical vertical vector 1-form, the vertical lift

2 X(M)— XyTM, Xv+— X",

Then an affine structure (H,£°) is nothing but an immediate (nonlinear)
generalization of the classical affine structures (cf. [12] 2.108).

We shall see soon that our general concept of an affine structure proves
to be useful in the theory of Finsler connections, too.

4. We briefly recall the definition of the (generalized) pseudoconnections,
which was proposed by the present author and Z. Kovécs in [14]. — Let §
and € be vector bundles over the same manifold M. A pair (V, 4} is called
a pseudoconnection in £ with respect to (w.r.t.) g if A: 5 — Tpr 18 an
M -morphism and

V: Secf x Secté — Secé, (5,0)— Voo

is a mapping which is C” (M)-linear in its first variable, additive in its
second variable and has the following characteristic property:

V& €Sect, o€Sect, feC(M): Vifo=[Act)flo+ fVzo.

A trivial but surprisingly important example of pseudoconnections is
given in the following

(4.1) Lemma. Let ¢ denote the identity morphism of VE&. — There exists
a unique pseudoconnection (Vi,1) (briefly V') in V& w.r.t. itself (briefly in
V'€) satisfying the following condition:

VoeSect, XeXyE: o =0,
where o¥ is the vertical lift of the section o (cf. [14], Lemma 3). ®

For a proof see again [14], Lemma 3 and 4. (Another, coordinate-free,
proof has been communicated to the author by Z. Kovacs. His reasoning
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is based on elementary homological algebra.) We mention in advance that
the trivial pseudoconnection V* will play the same role in our theory as the
“flat, vertical connection” ([9], p. 57) in Matsumoto’s theory.

5. Now we are in a position to formulate some of the indispensable defi-
nitions concerning Finsler connections. But what is a Finsler connection?
We begin with an answer to this question. — Suppose that ¢ = (E,n, M)
is a fixed vector bundle of rank r with n-dimensional base manifold M.

(5.1) Definition. A Finsler connection is a linear connection in the verti-
cal bundle V¢, i.e. a linear connection of type

%(E) Xva——}va? (X,Y) |—'—>va

(cf. [6], [11]). If H is a horizontal structure in £ and V is a Finsler
connection, then the pair (V, H) is said to be a Matsumoto pair.

Let (U, (u');_,) be a chart in M. Consider and fix the vector bundle
chart (7~ (U); (z*);_,, (y*)._,) — where £* := ui o — for ¢ as described

in [14], p. 1168. If H is a horizontal structure in £, then there exists a unique
family of functions

such that

V'Z:E{].,...,n}Z (61},3 :a:-;—* iaaya.

The functions N are called the (local) parameters of H w.r.t. the fixed
- vector bundle chart. It is easy to see that the lifts

5 o\ .
—_— = - < 9 <
bxi (au“) ’ lsisn

constitute a local basis for the horizontal subbundle H¢. — Returning to
the Finsler connection V, its parameters over 7~ *(U/) are defined by the
relations

H
8) (9N8

0 3 %,
5.2 = ’6 i sl e B
(5:2) V—ais dy° lia OyP’ vaﬁa OyP Cap Oy

1<i<n; 1<aB,v<r)

as usual in case of linear connections (our notation is the traditional one).
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(5-3) Definition. A Finsler connection V is said to be reqular if the kernel
of the mapping L : X € X(E) — L(X) 1= Vx Z is a horizontal structure
in§. ie if X(E) =Xy E®KerL (cf. [6], def. 1.6.1).

(5.4) Proposition. A Finsler connection V is regular iff
3.5) det (éﬁ —|~y*C£A) # 0.

Proof. %(E) XvE®KerL — L | ¥/E is an isomorphism +——
(L (33 )) is a local basis of Xy F <= (5.5), because
=1

s, d 3
Ls s : el | — A ==
Vaell,...,r} L(@ya’) V_Q_y " 8y°f+

8 2
)\ B8 1) Ao
ALY (5 Fy Oa’*) 8ys

(5.5) Corollary. If V is a regular Finsler connection, then the parameters
of the horizontal structure Ker L are the unique functions L¢ satisfying the
equations

¥ T — L} (63 +4°0%,) =0,

d 8 o
dxi T Bxt L3

B (1 < i< n)is alocal basis for Ker L, then

o o
- . ‘8
VZE{].,...,R}. U—L( .) _— 6 LA a ‘y gy’g_

611:% Axt P ayJ\
s 0 2B L
3y*@ y*’
50 15.6) holds. At the same time, (5.5) guarantees that the functions L are
uniquely determined by (5.6). m

= (T3 - 1 (57 +4°C5,)

6. Recall that any horizontal structure H in the vector bundle £ gives rise
e a splitting H : 7" 7y, ~— 75 of the canonical short exact sequence

A 2 *
0 —VE 7y — 71y —0

(A 1= the natural inclusion, 4 : a € T,E +— (z, T,w(a))) such that
H{ =TmH — and conversely.
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(6.1) Definition. Let H be a horizontal structure in the vector bundle ¢
and consider the splitting H derived by H. — A triplet (V", V", H) is said
to be a Cartan triad if (V" 'H) is a pseudoconnection in V& w.r.t. m Ty
and (V?, 1) is a pseudoconnection in V& w.r.t. itself. V" and V* are called
the h-connection term and the v-connection term of the triad, resp.

We represent a Cartan triad locally by the family
(FL, C2p0 NE)

it “af? "

where the functions N are the parameters of H, the C‘;’ﬁ-s are defined by

(5.2) (replacing V with V) and the functions F” are determined by the
relations

9
(6.2) v 9 _ps O

e = ¥ 3
o

——————

In(6.2) 2% : zenm '({U)+— {2,550 m(2)) € E x5 TM. More generally,
we shall need the following convention: if X € X(M), X denotes the section

z€Er— X(2):=(2,X on(2)) € E xp TM.

The next result (cf. [14], Theorem) provides a simple but important
connection between Cartan triads and Matsumoto pairs.

(6.3) Theorem. Let (V*,V°,H) be a Cartan triad. If the mapping
V: X(E)x Xy E — Xy E is given by the formula
VxY =VixY +Vi.xY,
then V is a Finsler connection, consequently (V, H) is a Matsumoto pair
which is said to be associated with (V",V® H).
Conversely, suppose that (V,H) is a Matsumoto pair and form the
mappings
Vh: Secn Ty X XvE -— XvE, (X,Y)— VY, ;Y
L7 va X va —_— .IvE, (X, Y) — VXY
Then the triad (V*, V", H) is a Cartan triad. m

The (not too hard) proof follows the same line as the proof of the above cited
theorem of [14], so we omit it. Similarly, a quite straightforward calculation
yields the



ON FINSLER CONNECTIONS 659
(6.4) Proposition. If (V,H) is a Matsumoto pair with parameters
(Tfj.ngjNi“) — see (5.2) — and (V" V*, H) is the associated Cartan
triad of (V, H) with parameters (Fi‘g,égw,Nf‘), then

o _ e Ao ~e Y
Fiﬁ*‘rs‘ﬁ_Ni A8 0,67_ By
(L<i<n 1<a,8,9<r).
[ |

(6.5) Definition. A Cartan triad (V",V*, H) is said to be satifying the
Cs-condition if
VXecXyE: V%Z=V.2Z

(cf. [7] and [9] def. 13.1).

(6.6) Proposition. If the Cartan triad (V* V", H) satisfies the C,-
condition, then the connection term V in its associated Matsumoto pair
is regular.

Proof. Due to the proof of (5.4) it is enough to show that L ( aga :

1 < @ <ris alocal basis of Xy E. But this follows immediately by (C.,),
because

. ; 0
L( aa) vV, z2¥v,zev 2Py, 0
ay gy« By> dy™ Jy= 3y
; 0 (wy 0O
e AVA — = S

7. In this section we introduce and briefly discuss a further important
notion: the notion of deflection. |

(7.1) Proposition and Definition. (cf. [9], p. 67)
(a) Let (V*,V®, H) be a Cartan triad. The mapping

D: X(M)— XyE, XHV%Z
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is a vertical vector l-form (ie. D € A*(M,V¢)) whose coordinate
expression is

@ o a i
D is said to be the deflection of the given Cartan triad.
(b) The deflection of a Matsumoto pair (V, H) is the (1, 1) tensor field

—

D: X eXE)r— D(X):=Vix 2.

It appears in coordinates thus:

0 : a ;
D =y (T3 - NY SA)W ® dx*.

(7.2) Proposition. If V is a regular Finsler connection, then the Mat-
sumoto pair (V,Ker L) and the Cartan triad associated with (V,Ker L)

have no deflection.

Proof. From the meaning of the horizontal structure Ker L, YV X € X(F) :
hX € Ker L, hence

D(X):=Viux Z 2 Lhx) = 0.

Let us denote by £ the splitting belonging to Ker L. Taking into account
(6.3), the deflection of (V*, V¥, Ker L) is the mapping

D: XeX(M)—VLZ=V,¢Z

Here £ o X € Ker L, thus

0=IL(LoX):=V, +Z < D=0.

Lo X
|

From (7.1) we immediately get the
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(7.3) Proposition. If D is the deflection of the Cartan triad (Vh, V¥, H),
then (H, D) is an affine structure in the vector bundle § whose affine lifting
form has the coordinate expression

3] ) .
74 D= PP = ® da'.
1.4} (6:1:‘ tﬁ) 8ya® X
[ |

Comparing (7.4) with the formula (8.17") of [9], we can conclude that
the quite natural affine structure (H, D) plays the same role in our theory as
Matsumoto’s somewhat mysterious “non-linear connection associated with

a V-connection” in his theory. (See also Matsumoto’s instructive Remark
8.2 1in [9].)

8.
(8.1) Definition. The mapping
P': Secrm'ty X ¥vE -— XvE, (X,Y)r—v[HoX,Y]— Viy
is said to be the P'-torsion of the Cartan triad (V* ,V°, H).
Note that if X € X(M), then H o X = ¢#(X) = X¥ hence
VX EX(M), Y eXvE: PYX,Y)=[X" Y]- VLY.
ThusVic {1,...,n}, e {1,...,r}

Pl E -_.‘9_ = aNzﬁ == Fﬁ i'
dui” By® L

the functions

are said to be the coordinate functions of the P -torsion.

(8.2) Proposition. Under the homogeneity condition (HC),
“X 2 X(M) . Pl()? ,Z) = —D(X); if, moreover, the deflection vanishes,
we get the relation

e Py =0.
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Proof. From the preceding remark

(2.3)

PY(X,Z)=[x",2]-Viz "2 -V&Z

(7.1)

—D(X);

. ON®
Y Py =y° OyP

Fa (HC’) Noz _yﬁ-Fi% (7:1) 0’
1f D vamshes u

With the help of the P1 torsu)n and the trivial pseudoconnectlon v

(lemma (4.1)) one can construct some important special Cartan triads (cf.
(81, p. 120).

(8.3) Definition. A Cartan triad (V",V?, H) is said to be a

Hashiguchi triad if P! = 0,

a Rund triad if V° = V?,

a Berwald triad if it is a Rund triad and a Hashiguchi triad at the same
time.

So we have the following “commutative diagram”:

(VR, V¥, H) TY . Ui |
: Rund triad
Cartan triad ——t— UnaG irid
Pl = O L Pl — 0
Hashiguchs triad V' =V w— Berwald triad

(8.4) Definition. If (V, H) is a Matsumoto pair and its associated Cartan
triad is the Berwaldian one, then the Finsler connection V is said to be the
Berwald connection.

From our previous results one can deduce with a little extra work the

(8.5) Theorem. Any horizontal structure H : 75 = VED HE in a vector
bundle { determines a unique Berwald triad and — consequently — a unique
Berwald connection V*. H satisfies the homogeneity condition (HC) iff VB
has no deflection. m

(Further details — from a slightly different point of view — can be
found in [14] and [15].)
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9. In this concluding section we shall have a look at a very special classical
situation. — Suppose that (M, L) is a Lagrange space in Miron’s sense [10],
that is L : TM — R is a regular Lagrange function:
&L
det —— 0.
(o) #o
Let X; be the L'agr’ange' vector field for L. It can be _characteriz—ed by the
well-known relation ix, w; = —dE (E := Z(L) — L, w; is the Lagrangian
2-form; cf. e.g. [1], def. 3.5.11). The coordinate expression of X is
| 8 | .0
- L Gt —
oz + 7 By

-/ 8L oL g 521 \*
g oqp® e WY , "
“ fq (33‘:"6:41' 4 393*"‘)’ g") (By"ay-’)

-XL:yi

where

Since the 25 of this century it has been a well-established folklore that
the family |

- ()

determines — in our terminology — a horizontal structure and hence —
owing to (8.5) — a Berwald connection in 75;. This connection is called
the classical Berwald connection of the Lagrange space (M, L) (cf. [9],
Tearema 4.1). Utilizing now a clever observation of M. Crampin [2] we
obtain the following elegant result:

(9.1) Theorem. Let (M,L) be a Lagrange space and let X be the La-
grange vector field for L. The mapping

/B . XE%(M)H%(X“-I-[X”,XL])

(X< and X" are the obvious eomplete and vertical lifts of X ) is a lifting
form in the sense of section 2. The horizontal structure determined by ¢
induces just the classical Berwald connection.

Proof. Calculating by brute force, we get the coordinate expression

O 1 a\° 8 .8 8
B — =, i -
¢ (c“m) T2 ((6?) " [ay“?’ o T ¢ 6ny

1/ 8 +6G‘3‘ 8)
2\ 9zt | Oy oy
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for ¢5, from which our assertions follow easily. =

So at least three things of a seemengly quite different kind, namely
horizontal structures, Berwald connection and Lagrangian mechanics have
met in a fascinating manner.
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