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Introduction

Global analysis is a particular amalgamation of topology, geometry and analysis, with
strong physical motivations in its roots, its development and its perspectives. To formulate
a problem in global analysis exactly, we need

(1) a base manifold,

(2) suitable fibre bundles over the base manifold,

(3) a differential operator between the topological vector spaces consisting of the sec-
tions of the chosen bundles.

In quantum physical applications, the base manifold plays the role of space-time; its points
represent the location of the particles. The particles obey the laws of quantum physics,
which are encoded in the vector space structure attached to the particles in the mathematical
model. A particle carries this vector space structure with itself as it moves. Thus we arrive
at the intuitive notion of vector bundle, which had arisen as the ‘repère mobile’ inÉlie
Cartan’s works a few yearsbeforequantum theory was discovered.

To describe a system (e.g. in quantum physics) in the geometric framework of vector
bundles effectively, we need a suitably flexible differential calculus. We have to differen-
tiate vectors which change smoothly together with the vector space carrying them. The
primitive idea of differentiating the coordinates of the vector in a fixed basis is obviously
not satisfactory, since there is no intrinsic coordinate system which could guarantee the
invariance of the results. These difficulties were traditionally solved by classical tensor
calculus, whose most sophisticated version can be found in Schouten’s ‘Ricci-Calculus’.
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From there, the theory could only develop to the global direction, from the debauch of in-
dices to totally index-free calculus. This may be well illustrated by A. Nijenhuis’ activity.

It had become essentially clear by the second decade of the last century that, for a
coordinate-invariant tensorial differential calculus, we need a structure establishing an iso-
morphism between vector spaces at different points. Such a structure is called aconnec-
tion. A connection was first constructed by Levi-Civita in the framework of Riemannian
geometry by defining aparallel transportbetween the tangent spaces at two points of the
base manifold along a smooth arc connecting the given points. This makes it possible to
form a difference quotient and to differentiate vector and tensor fields along the curve. The
differentiation procedure so defined iscovariant differentiation. Thus it also becomes clear
that

connection, parallel transport, covariant differentiation

are essentially equivalent notions: these are the same object, from different points of view.
The history sketched in the foregoing is of course well-known, and technical details

are nowadays available in dozens of excellent monographs and textbooks. Somewhat para-
doxically,purely historicalfeatures (the exact original sources of main ideas, the evolution
of main streamlines) are not clear in every detail, and they would be worth of a more pro-
found study. In our present work, we would like to sketch some aspects of the rich theory
of differentiation on manifolds which are less traditional and less known, but which def-
initely seem to be progressive. One of the powerful trends nowadays is the globalization
of calculus on infinite-dimensional non-Banach topological vector spaces, i.e., its trans-
plantation onto manifolds, and a formulation of a corresponding Lie theory. The spectrum
becomes more colourful (and the theory less transparent) by the circumstance that we see
contesting calculi even on a local level. One corner stone in this direction is definitely
A. Kriegl and P. W. Michor’s truly monumental monograph [18], which establishes the
theory on calculus in so-called convenient vector spaces. Differentiation theory in con-
venient vector spaces is outlined in the contribution of J. Margalef-Roig and E. Outerelo
Doḿınguez in this volume. Another promising approach is Michel – Bastiani differential
calculus, which became known mainly due to J. Milnor and R. Hamilton. We have chosen
this way, drawing much from H. Glöckner and K.-H. Neeb’s monograph is preparation,
which will contain a thorough and exhaustive account of this calculus.

We would like to emphasize that the fundamental notions and techniques of ‘infinite
dimensional analysis’ can be spared neither by those who study analysis ‘only’ on finite-
dimensional manifolds. The reason for this is very simple: even the vector space of smooth
functions on an open subset ofRn is infinite-dimensional, and the most natural structure
with which it may be endowed is a suitable multinorm which makes it a Fréchet space.
Accordingly, we begin our treatment by a review of some basic notions and facts in con-
nection with topological vector spaces. The presentation is organized in such a way that
we may provide a non-trivial application by a detailed proof of Peetre’s theorem. This
famous theorem characterizes linear differential operators as support-decreasingR-linear
maps, and it is of course well-known, together its various proofs. The source of one of
the standard proofs is Narasimhan’s book [29]; Helgason takes over essentially his proof
[15]. Although Narasimhan’s proof is very clear in its main features, our experience is
that understanding it in every fine detail requires serious intellectual efforts. Therefore we
thought that a detailed treatment of Narasimhan’s line of thought could be useful by fill-
ing in the wider logical gaps. Thus, besides presenting fundamental techniques, we shall
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also have a possibility to demonstrate hidden subtleties of these sophisticated (at first sight
mysterious) constructions.

We discuss Peetre’s theorem in a local framework, its transplantation to vector bundles,
however, does not raise any difficulty. After climbing this first peak, we sketch the main
steps towards the globalization of Michel – Bastiani differential calculus, on the level of
basic notions and constructions, on a manifold modeled on a locally convex topological
vector space.

In the last section, for simplicity’s sake, we return to finite dimension, and we discuss
a special problem about covariant derivatives. Due toÉlie Cartan’s activity, it has been
known since the 1930s that a covariant derivative compatible with a Finsler structure can-
not be constructed on the base manifold (more precisely, on its tangent bundle), and the
velocity-dependent character of the objects makes it necessary to start from a so-called line
element bundle. In a contemporary language: the introduction of a covariant derivative,
analogous to Levi-Civita’s, metrical with respect to the Finsler structure, is only possible
in the pull-back of the tangent bundle over itself, or in some ‘equivalent’ fibre bundle. We
have to note that it was a long and tedious way fromÉlie Cartan’s intuitively very clear but
conceptually rather obscure construction to today’s strict formulations, and this way was
paved, to a great extent, by the demand for understandingÉlie Cartan. In the meantime, in
1943, another ‘half-metrical’ covariant derivative in Finsler geometry was discovered by
S. S. Chern (rediscovered by Hanno Rund in 1951). This covariant derivative was essen-
tially in a state of suspended animation until the 1990s. Then, however, came a turning
point. Due to Chern’s renewed activity and D. Bao and Z. Shen’s work, Chern’s covariant
derivative became one of the most important tools of those working in this field. We wanted
to understand which were the properties of Chern’s derivative which could give priority to
it over other covariant derivatives used in Finsler geometry (if there are such properties).
As we have mentioned, Chern’s connection is only half-metrical: covariant derivatives of
the metric tensor arising from the Finsler structure in vertical directions do not vanish in
general. ‘In return’, however, the derivative is ‘vertically natural’: it induces the natural
parallelism of vector spaces on the fibres. This property makes it possible to interpret
Chern’s derivative as a covariant derivativegiven on the base manifold, parametrized lo-
cally by a nowhere vanishing vector field. We think that this possibility of interpretation
does distinguish Chern’s derivative in some sense. As for genuine applications of Chern’s
connection, we refer to T. Aikou and L. Kozma’s study in this volume.

Notation

As usual,R andC will denote the fields of real and complex numbers, respectively.N
stands for the ‘half-ring’ of natural numbers (integers= 0). If K if one of these number
systems, thenK∗ := K r {0}. R+ := {z ∈ R|z = 0}, R∗+ := R+ ∩ R∗. A mapping from
a set intoR or C will be called afunction.

Discussing functions defined on a subset ofRn, it will be convenient to use the multi-
index notationα = (α1, . . . , αn), whereαi ∈ N, 1 5 i 5 n. We agree that

|α| := α1 + . . .+ αn, α! := α1! . . . αn!.

If β := (β1, . . . , βn) ∈ Nn, andβj 5 αj for all j ∈ {1, . . . , n}, we writeβ 5 α and
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define

α− β := (α1 − β1, . . . , αn − βn),
(
α

β

)
:=

α!
(α− β)!β!

.

If V andW are vector spaces over a fieldF, thenLF(V,W ) or simplyL(V,W ) de-
notes the vector space of all linear mappings fromV into W , andV ∗ := L(V,F) is the
(algebraic) dual ofV . If k ∈ N∗, Lk(V,W ) is the vector space of allk-multilinear map-
pingsϕ : V × . . . × V → W . We note thatL

(
V,Lk(V,W )

)
is canonically isomorphic

to Lk+1(V,W ). We use an analogous notation if, more generally,V andW are modules
over the same commutative ring.

1 Background

Topology

We assume the reader is familiar with the rudiments of point set topology, so the meaning
of such elementary terms as open and closed set, neighbourhood, connectedness, Hausdorff
topology, (open) covering, first and second countability, compactness and local compact-
ness, continuity, homeomorphism, . . . does not demand an explanation. For the sake of
definiteness, we are going to follow, as closely as feasible, the convention of Dugundji’s
Topology [7]. Thus by aneighbourhoodof a point or a set in a topological space we shall
always mean anopensubset containing the point or subset, and we include in the definition
of second countability, compactness and local compactness the requirement that the topol-
ogy is Hausdorff. This subsection serves to fix basic terminology and notation, as well as
to collect some more subtle topological ideas which may be beyond the usual knowledge
of non-specialists.

We denote byN (p) the set of all neighbourhoods of a pointp in a topological space.
A subsetF ⊂ N (p) is said to be afundamental systemof p if for everyV ∈ N (p) there

existsU ∈ F such thatU ⊂ V. If S is a topological space, andA ⊂ S, then
◦
A, Ā and∂A

denote the interior, the closure and the boundary ofA, resp. IfG is an Abelian group, and
f : S → G is a mapping, then

supp(f) := {p ∈ S|f(p) 6= 0}

is thesupportof f .
Let M be a metric space with distance function% : M ×M → R. If a ∈ M , and

r ∈ R∗+, the set

B%r (a) := {p ∈M |%(a, p) < r}

is called theopen%-ball of centrea and radiusr. (We shall omit the distinguishing%
whenever the distance function is clear from the context.) By declaring a subset ofM to be
open if it is a (possibly empty) union of open balls, a topology is obtained onM , called the
metric topologyofM , or the topologyinduced by the distance function%. Unless otherwise
stated, a metric space will always be topologized by its metric topology. Conversely, if a
topologyT on a setS is induced by a distance function% : S × S → R, thenT and% are
calledcompatible, andT is said to bemetrizable.
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By far the most important metric space is theEuclideann-spaceRn, the set of all
n-tuplesv =

(
ν1, . . . , νn

)
endowed with theEuclidean distancedefined by

%E(a, b) := ‖a− b‖ = 〈a− b, a− b〉1/2 (a, b ∈ Rn),

where〈 , 〉 is the canonical scalar product inRn, and‖ · ‖ is Euclidean normarising from
〈 , 〉. The metric topology ofRn is called theEuclidean topologyof Rn. We shall assume
thatRn (in particular,R = R1) is topologized with the Euclidean topology.

Let U be an open subset ofRn. A sequence(Ki)i∈N∗ of compact subsets ofU is said
to be acompact exhaustionof U if

Ki ⊂
◦
Ki+1 (i ∈ N∗) and U = ∪

i∈N∗
Ki.

Lemma 1.1 There does exist a compact exhaustion for any open subset ofRn.

Proof. Let a (nonempty) open subsetU of Rn be given. For every positive integerm,
define a subsetKm of U as follows:

Km :=
{
p ∈ U

∣∣∣∣%E(p, ∂U) =
1
m

}
∩Bm(0)

(by convention,%E(p, ∂U) :=∞ if ∂U = ∅). It is then clear that each setKm is compact,

Km ⊂
◦
Km+1 (m ∈ N∗), and∪i∈N∗Ki = U .

Now we recall some more delicate concepts and facts of point set topology.
A Hausdorff space is said to be aLindelöf spaceif each open covering of the space

contains acountablecovering. By a theorem of Lindelöf [7, Ch. VIII, 6.3] all second
countable spaces are Lindelöf (but the converse is not true!).

A locally compact space is calledσ-compactif it can be expressed as the union of a
sequence of its compact subsets. It can be shown (see [7, Ch. XI, 7.2]) thata topological
space isσ-compact, if and only if, it is a locally compact Lindelöf space.

LetS be a topological space. An open covering(Uα)α∈A of S is said to belocally finite
(or nbd-finite) if each point ofS has a nbdU such thatU∩Uα 6= ∅ for at most finitely many
indicesα. If (Uα)α∈A and(Vβ)β∈B are two coverings ofS, then(Uα) is a refinementof
(Vβ) if for eachα ∈ A there is someβ ∈ B such thatUα ⊂ Vβ . A Hausdorff space is said
to beparacompactif each open covering of the space has an open locally finite refinement.

The following result has important applications in analysis.

Lemma 1.2 Anyσ-compact topological space, in particular any second countable locally
compact topological space, is paracompact.

Proof. The statement is a fairly immediate consequence of some general topological facts.
Namely, theσ-compact spaces, as we have remarked above, are just the locally compact
Lindelöf spaces. Locally compact spaces are regular: each point and closed set not contain-
ing the point have disjoint nbds. Since by a theorem of K. Morita [7, VIII, 6.5]in Lindelöf
spaces regularity and paracompactness are equivalent concepts, we get the result.
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It is well-known that the classical concept of convergence of sequences is not sufficient
for the purposes of analysis. Nets, which are generalizations of sequences, and their con-
vergence provide an efficient tool to handle a wider class of problems. To define nets, let
us first recall that adirected setis a setA endowed with a partial ordering5 such that for
any two elementsα, β ∈ A there is an elementγ ∈ A such thatγ = α andγ = β. A net in
a setS is a family(sα)α∈A of elements ofS, i.e., a mappings : A→ S, α 7→ s(α) =: sα,
whereA is a directed set. Obviously, any sequences : n ∈ N 7→ s(n) =: sn ∈ S is a net,
sinceN is a directed set with its usual ordering.

A net(sα)α∈A in a topological spaceS is said toconverge(or to tend) to a pointp ∈ S
if for everyU ∈ N (p) there is aβ ∈ A such that

sα ∈ U wheneverα = β.

Then we use the standard notationp = lim
α∈A

sα, and we say that(sα)α∈A is convergentin

S and has alimit p ∈ S.

Lemma 1.3 A topological space is Hausdorff if and only if any two limits of any conver-
gent net are equal.

Indication of proof.Let S be a topological space. It can immediately be seen that if
S is Hausdorff, then any convergent net inS has a unique limit. Conversely, sup-
pose thatS is not Hausdorff. Letp, q ∈ S be two points which cannot be sep-
arated by open sets. Consider the directed setA whose elements are ordered pairs
α = (U ,V) whereU ∈ N (p), V ∈ N (q) with the partial ordering

(U ,V) = (U1,V1) :⇐⇒ (U ⊂ U1 andV ⊂ V1).

For anyα = (U ,V) let sα be some point ofU ∩ V. Then the mappings : α ∈ A 7→ sα ∈ S
is a net, and it is easy to check thats converges to bothp andq.

The next result shows that nets are sufficient to control continuity.

Lemma 1.4 A mappingϕ : S → T between two topological spaces is continuous if and
only if for every nets : A → S converging top ∈ S, the netϕ ◦ s : A → T converges to
ϕ(p).

For a (quite immediate) proof see e.g. [5, Ch. I, 6.6].

If S andT are topological spaces, then the set of continuous mappings ofS intoT will
be denoted byC(S, T ). In particular,C(S) = C0(S) := C(S,R), and

Cc(S) := {f ∈ C(S)| supp(f) is compact}.

Topological vector spaces

When Banach published his famous book ‘Théorie des operations lińeaires’ in 1932, it was
the opinion that normed spaces provide a sufficiently wide framework to comprehend all
interesting concrete problems of analysis. It turned out, however, in a short time that this is
an illusion: a number of (non-artificial) problems of analysis lead to infinite-dimensional
vector spaces whose topology cannot be derived from a norm. In this subsection we recall
the most basic definitions and facts concerning topological vector spaces, especially locally



József Szilasi and Rezső L. Lovas 1077

convex spaces. We restrict ourselves to real vector spaces, although vector spaces over
K ∈ {R,C} can also be treated without any extra difficulties.

If V is a (real) vector space, then a subsetH of V is said to be

convexif for eacht ∈ [0, 1], tH + (1− t)H ⊂ H;

balancedif αH ⊂ H wheneverα ∈ [−1, 1];

absorbingif ∪λ∈R∗+λH = V , i.e., for allv ∈ V there is a positive real numberλ
(depending onv) such thatv ∈ λH.

By a topological vector space(TVS) we mean a real vector spaceV endowed with a
Hausdorff topology compatible with the vector space structure ofV in the sense that the
addition mapV × V → V , (u, v) 7→ u + v and the scalar multiplicationR × V → V ,
(λ, v) 7→ λv are continuous. (The product spaces are equipped with the product topology.)
Such a topology is called alinear topologyor vector topologyonV .

Let V be a topological vector space. For eacha ∈ V the translationTa : v ∈ V 7→
Ta(v) := a + v ∈ V , and for eachλ ∈ R∗ the homothetyhλ : v ∈ V 7→ λv ∈ V are
homeomorphisms. This simple observation is very important: it implies, roughly speaking,
that the linear topologylooks like the sameat any point. Thus, practically, in a TVS it is
enough to define a local concept or to prove a local property only in a neighbourhood
of the origin. We agree that in TVS contexta fundamental system will always mean a
fundamental system of the origin. ThusF is a fundamental system inV if F ⊂ N (0), and
every neighbourhood of 0 (briefly 0-neighbourhood) contains a member ofF .

In the category TVS the morphisms are thetoplinear isomorphisms: linear isomor-
phisms which are homeomorphisms at the same time. As the following classical result
shows, the structure of finite dimensional topological vector spaces is the simplest possi-
ble.

Lemma 1.5(A. Tychonoff) If V is ann-dimensional topological vector space, then there
is a toplinear isomorphism fromV onto the Euclideann-spaceRn.

Theidea of proofis immediate: we choose a basis(v1, . . . , vn) of V , and we show that
the linear isomorphism

(
ν1, . . . , νn

)
∈ Rn 7→

n∑
i=1

νivi ∈ V,

which is obviously continuous, is anopenmap. For details see e.g. [7, p. 413] or [36, p.
28].

Now we return to a generic topological vector spaceV . A subsetH of V is said to
be boundedif for every 0-neighbourhoodU there is a positive real numberε such that
εH ⊂ U . V is calledlocally convexif it has a fundamental system whose members are
convex sets, i.e., every 0-neighbourhood contains a convex 0-neighbourhood.V has the
Heine – Borel propertyif every closed and bounded subset ofV is compact.

Lemma 1.6 If a topological vector spaceV has a countable fundamental system, thenV
is metrizable. More precisely, there is a distance function% onV such that

(i) % is compatible with the linear topology ofV ;
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(ii) % is translation invariant, i.e.,%(Ta(u), Ta(v)) = %(u, v) for all a, u, v ∈ V ;

(iii) the open%-balls centred at the origin are balanced.

If, in addition,V is locally convex, then% can be chosen so as to satisfy(i)–(iii) , and also

(iv) all open%-balls are convex.

For a proof we refer to [33, I, 1.24].
A net (vα)α∈A in a locally convex spaceV is said to be aCauchy netif for every

0-neighbourhoodU in V there is anα0 ∈ A such that

vα − vβ ∈ U wheneverα, β = α0.

In particular, a sequence inV is called aCauchy sequenceif it is a Cauchy net. Note
that if the topology ofV is compatible with a translation invariant distance function% :
V × V → R, then a sequence(vn)n∈N∗ in V is a Cauchy sequence if and only if it is
a Cauchy sequence in metrical sense, i.e., for everyε ∈ R∗+ there is an integern0 such
that %(vm, vn) < ε wheneverm > n0 andn > n0. A locally convex spaceV is said
to becomplete, resp.sequentially completeif any Cauchy net, resp. Cauchy sequence is
convergent inV . These completeness concepts coincide ifV is metrizable, i.e., we have

Lemma 1.7 A metrizable locally convex space is complete if and only if it is sequentially
complete.

As for theproof, the only technical difficulty is to check that sequential completeness
implies completeness, i.e., the convergence of every Cauchy net. For a detailed reasoning
we refer to [8, B.6.2].

It follows from our preceding remarks that if the topology of a locally convex space is
induced by a translation invariant distance function, then the space is complete if and only
if it is complete as a metric space. TVSs sharing these properties deserve an own name:
a locally convex space is said to be aFréchet spaceif its linear topology is induced by
a complete, translation invariant distance function. We shall see in the next chapter that
important examples of Fréchet spaces occur even in the context of classical analysis. In the
rest of this chapter we are going to indicate how one can construct locally convex spaces,
in particular Fŕechet spaces, starting from a family of seminorms.

We recall that aseminormon a real vector spaceV is a functionν : V → R, satisfying
the following axioms:

ν(u+ v) 5 ν(u) + ν(v) for all u, v ∈ V (subadditivity);

ν(λv) = |λ|ν(v) for all λ ∈ R, v ∈ V (absolute homogeneity).

Then it follows thatν(0) = 0, andν(v) = 0 for all v ∈ V . If, in addition, ν(v) = 0
impliesv = 0, thenν is anormonV . As in the case of metric spaces, given a pointa ∈ V
and a positive real numberr, we use the notation

Bνr (a) := {v ∈ V |ν(v − a) < r}

and the term ‘openν-ball with centrea and radiusr’. It can be seen immediately that the
‘open unitν-ball’

B := Bν1 (0) = {v ∈ V |ν(v) < 1}
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is convex, balanced and absorbing.
A family P = (να)α∈A of seminorms onV is said to beseparatingif for any point

v ∈ V r {0} there is an indexα ∈ A such thatνα(v) 6= 0. A separating family of
seminorms on a vector space is also called amultinorm. A multinormed vector spaceis a
vector space endowed with a multinorm.

Lemma 1.8 SupposeP = (να)α∈A is a separating family of seminorms on a vector space
V . For eachα ∈ A andn ∈ N∗, let

V(α, n) :=
{
v ∈ V

∣∣∣∣να(v) <
1
n

}
.

If F is the family of all finite intersections of the setsV(α, n), thenF is a fundamental
system for a topology onV , which makesV into a locally convex TVS such that

(i) the members ofF are convex balanced sets;

(ii) for eachα ∈ A, the functionνα : V → R is continuous;

(iii) a subsetH of V is bounded if and only if every member ofP is bounded onH.

For a proof we refer to Rudin’s text [33].
Some comments to this important result seem to be appropriate.

Remark1.9 SupposeV is a locally convex space, and letT be its linear topology. It may
be shown that ifF is a fundamental system ofV consisting of convex balanced sets, then
F generates a separating familyP of seminorms onV . According to 1.8,P induces a
topologyT1 onV . Now it can easily be checked thatT1 = T .

Remark1.10 Suppose that in Lemma 1.8 acountablefamily P = (νn)n∈N∗ of seminorms
is given onV . Then the fundamental system arising fromP is also countable, therefore,
by Lemma 1.6, the induced topology is compatible with a translation invariant distance
function. In addition, such a distance function can explicitly be constructed in terms ofP;
for example, the formula

%(u, v) :=
∞∑
n=1

2−nνn(u− v)
1 + νn(u− v)

; (u, v) ∈ V × V

defines a distance function which satisfies the desired properties.

As a consequence of our preceding discussion, we have the following useful character-
ization of Fŕechet spaces.

Corollary 1.11 A vector space is a Fréchet space, if and only if, it is a complete multi-
normed vector space(V, (να)α∈A), where the setA is countable. Completeness is under-
stood with respect to themultinorm topologywhose subbasis is the family{

Bνα
r (v) ⊂ V |α ∈ A, r ∈ R∗+, v ∈ V

}
.

The distance function described in 1.10 is compatible with the multinorm topology.
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2 Calculus in topological vector spaces and beyond

Local analysis in the context of topological vector spaces

In infinite-dimensional analysis there is a deep breaking between the case of (real or com-
plex) Banach spaces and that of more general locally convex topological vector spaces
which are not normable: depending on the type of derivatives used (Fréchet derivative,
Gâteaux derivative, . . . ) one obtains non-equivalent calculi. As a consequence, there are
several theories of infinite-dimensional manifolds, Lie groups and differential geometric
structures. Changing the real or complex ground field to a more general topological field
or ring, even more general differential calculus, Lie theory and differential geometry may
be constructed [3, 4]. In this subsection we briefly explain the approach to differential
calculus originated by A. D. Michel [25] and A. Bastiani [2], and popularized by J. Milnor
[27] and R. Hamilton [13]. For an accurately elaborated, detailed recent account we refer
to [8].

For simplicity, and in harmony with the applications we are going to present,we restrict
ourselves to the real case. We begin with some remarks concerning the differentiability
of curves with values in a locally convex topological vector space. This is the simplest
situation, without any difficulty in principle. However, some interesting new phenomena
occur.

Definition 2.1 Let V be a locally convex vector space andI ⊂ R an interval containing
more than one point. By aC0-curveon I with values inV we mean a continuous map
γ : I → V .

(1) Letα, β ∈ R, α < β. A C0-curveγ : [α, β] → V is called aLipschitz curveif the
set {

1
s− t

(γ(s)− γ(t)) ∈ V
∣∣∣∣s, t ∈ [α, β], s 6= t

}
is bounded inV .

(2) SupposeI is an open interval. AC0-curveγ : I → V is said to be aC1-curveif the
limit

γ′(t) := lim
s→0

1
s
(γ(t+ s)− γ(t))

exists for allt ∈ I, and the map

γ′ : t ∈ I 7→ γ′(t) ∈ V

is continuous. Givenk ∈ N∗, γ is calledof classCk if all its iterated derivatives up
to orderk exist and are continuous.γ is smoothif it is of classCk for all k ∈ N.

Remark2.2 It may be shown (but not at this stage of the theory) that ifγ : I → V is a
C1-curve and[α, β] ⊂ I is a compact interval, thenγ � [α, β] is Lipschitz.

Definition 2.3 SupposeV is a locally convex vector space, and letγ : [α, β] → V be a
C0-curve. If there exists a vectorv ∈ V such that for every continuous linear formλ ∈ V ∗
we have

λ(v) =
∫ β

α

λ ◦ γ (Riemann integral),
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thenv ∈ V is called theweak integralof γ from α to β, and the notation

v =:
∫ β

α

γ =
∫ β

α

γ(t)dt

is applied. V is said to beMackey-completeif the weak integral
∫ β
α
γ exists for each

Lipschitz-curveγ : [α, β]→ V .

Remark2.4 (1) If the weak integral of aC0-curveγ : [α, β] → V exists, then it is
unique, since by a version of the Hahn – Banach theoremV ∗ separates points onV
(see e.g. [33, 3.4, Corollary]).

(2) If V is a sequentially complete locally convex vector space, then it is also Mackey-
complete: it may be shown that the weak integral of anyC0-curveγ : [α, β] → V
can be obtained as the limit of a sequence of Riemann sums. For details see [8]. The
importance of the concept of Mackey-completeness lies in the fact that a number of
important constructions of the theory depends only on the existence of some weak
integrals. For an alternative definition and an exhaustive description of Mackey-
completeness we refer to the monograph of A. Kriegl and P. Michor [18].

(3) LetV andW be locally convex spaces,ϕ : V → W a continuous linear mapping,
andγ : I → V a C1-curve. One can check by an immediate application of the
definition thatϕ ◦ γ : I →W is also aC1-curve, and

(ϕ ◦ γ)′ = ϕ ◦ γ′.

Lemma 2.5 (Fundamental theorem of calculus)Let V be a locally convex vector space,
andI ⊂ R be an open interval.

(1) If γ : I → V is aC1-curve andα, β ∈ I, then

γ(β)− γ(α) =
∫ β

α

γ′(t)dt.

(2) If γ : I → V is aC0-curve,α ∈ I, and the weak integral

η(t) :=
∫ t

α

γ(s)ds

exists for allt ∈ I, thenη : I → V is aC1-curve, andη′ = γ.

Proof of part 1. Let λ ∈ V ∗ be a continuous linear form. By Remark 2.4(3) and the
classical ‘Fundamental theorem of calculus’, it follows that

λ(γ(β)− γ(α)) = λγ(β)− λγ(α) =
∫ β

α

(λ ◦ γ)′ =
∫ β

α

λ ◦ γ′.

It means thatγ(β)− γ(α) is the weak integral ofγ′ from α to β.

Remark2.6 The second part of the lemma is proved in [13]; it needs a more sophisticated
argument, and hence additional preparations.
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Definition 2.7 Let V andW be locally convex topological vector spaces,U ⊂ V an open
set, andf : U →W a mapping.

(1) By thederivativeof f at a pointp ∈ U in the directionv ∈ V we mean the limit

Dvf(p) = df(p, v) := lim
t→0

1
t
(f(p+ tv)− f(p))

whenever it exists.f is calleddifferentiable atp if df(p, v) exists for allv ∈ V .

(2) The mapf is said to becontinuously differentiableor of classC1 (brieflyC1) onU
if it is differentiable at every point ofU and the map

df : U × V →W, (p, v) 7→ df(p, v)

is continuous.

(3) Letk ∈ N, k = 2. f is called aCk-map(or brieflyCk) if it is of classC1 andd1f :=
df is aCk−1-map. Then thek-th iterated differentialof f is dkf := dk−1(df).
If f isCk for all k ∈ N, thenf is said to beC∞ or smooth.

Notation We writeCk(U ,W ) for the set (in fact a vector space) ofCk-maps fromU into
W . WhenW is 1-dimensional, and henceW ∼= R, we usually just writeCk(U).
Remark2.8 (1) It is obvious from the definition that the derivative of alinear mapping

exists at every point. Since there are linear mappings which are not continuous, it
follows thatdifferentiability does not imply continuity. However, ifϕ : V →W is a
continuous linear mapping, thenϕ is smooth, and at every(p, v) ∈ V × V we have
dϕ(p, v) = ϕ(v), while dkϕ = 0 for k = 2.

(2) If is an important technicality thatf is Ck (k = 1), if and only if, it isCk−1, and
dk−1f isC1. Then we also havedkf = d

(
dk−1f

)
.

(3) The concept ofCk-differentiability introduced here will occasionally be mentioned
as theMichel – Bastiani differentiability. Observe that in the formulation of the de-
finition the local convexity of the underlying vector spaces does not play any role.
However, if one wants to build a ‘reasonable’ theory of differentiation (with ‘ex-
pectable’ rules for calculation), the requirement of local convexity is indispensable.

Lemma 2.9 Let V andW be locally convex vector spaces,U ⊂ V an open subset, and
f : U →W aC1-map.

(1) The map

f ′(p) : V →W, v 7→ f ′(p)(v) := df(p, v)

is a continuous linear map for eachp ∈ U , andf is continuous.

(2) Let p ∈ U , v ∈ V , and suppose thatp + tv ∈ U for all t ∈ [0, 1]. Define the
C0-curvec : [0, 1]→W by

c(t) := df(p+ tv, v) = f ′(p+ tv)(v).
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Then

f(p+ v) = f(p) +
∫ 1

0

c,

thereforef is locally constant, if and only if,df = 0.

(3) (Chain rule)SupposeZ is another locally convex vector space,V ⊂ W is an open
subset, andh : V → Z is aC1-map. Iff(U) ⊂ V, thenh ◦ f : U → Z is also a
C1-map, and for allp ∈ U we have

(h ◦ f)′(p) = h′(f(p)) ◦ f ′(p).

(4) (Schwarz’s theorem)If f is of classCk (k = 2), then

f (k)(p) : (v1, . . . , vk) ∈ V k 7→ f (k)(p)(v1, . . . , vk) := dkf(p, v1, . . . , vk)

is a continuous, symmetrick-linear map for allp ∈ U .

(5) (Taylor’s formula)Supposef is of classCk (k = 2). Then, ifp ∈ U , v ∈ V and the
segment joiningp andp+ v is in U , we have

f(p+ v) = f(p) + f ′(p)(v) + . . .+
1

(k − 1)!
f (k−1)(p)(v, . . . , v)

+
1

(k − 1)!

∫ 1

0

ck,

whereck : [0, 1]→W is aC0-curve given by

ck(t) := (1− t)k−1f (k)(p+ tv)(v, . . . , v), t ∈ [0, 1].

Indication of proof.The continuity off ′(p) is obvious, sincef ′(p) = df(p, ·), anddf is
continuous. An immediate application of the definition of differentiability leads to the
homogeneity off ′(p). To check the additivity off ′(p) some further (but not difficult)
preparation is necessary, see [8, 1.2.13, 1.2.14]. To prove the integral representation in (2),
let

γ(t) := f(p+ tv), t ∈ [0, 1].

Thenγ is differentiable at eacht ∈ [0, 1] in the sense of 2.1(2), namely

γ′(t) := lim
s→0

γ(t+ s)− γ(t)
s

= lim
s→0

1
s
(f(p+ tv + sv)− f(p+ tv))

=: df(p+ tv, v) = f ′(p+ tv)(v) =: c(t).

Thusγ′ = c, and the fundamental theorem of calculus (2.5(1)) gives

f(p+ v)− f(p) = γ(1)− γ(0) =
∫ 1

0

γ′ =
∫ 1

0

c.
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To see thatf is continuous, choose a continuous seminormν : W → R, and letε be an
arbitrary positive real number. Then there exists a balanced neighbourhoodU0 of the origin
in V such thatp+ U0 ⊂ U , and for allt ∈ [0, 1], v ∈ U0 we have

ν(c(t)) = ν(f ′(p+ tv)(v)) 5 ε.

Now it may be shown [8, 1.1.8] that

ν
(∫ 1

0
c
)

5 sup{ν(c(t)) ∈ R|t ∈ [0, 1]},

therefore

ν(f(p+ v)− f(p)) = ν
(∫ 1

0
c
)

5 ε,

and hencef is continuous. This concludes the sketchy proof of (1) and (2).
For a proof of the chain rule and Schwarz’s theorem we refer to [13] and [8]. The latter

reference also contains a detailed treatment of Taylor’s formula.

Remark2.10 We keep the hypotheses and notations of the Lemma.

(1) The continuous linear mapf ′(p) : V → W introduced in 2.9(1) is said to be the
derivativeof f atp. Note that the symbolf ′(t) carries double meaning iff : I →W
is aC1-curve: by 2.1(2)f ′(t) ∈ W , while by 2.9(1)f ′(t) ∈ L(R,W ). Fortunately,
this abuse of notation leads to no serious conflict since the vector spacesW and
L(R,W ) can be canonically identified via the linear isomorphism

γ ∈ L(R,W ) 7→ γ(1) ∈W.

(2) In Lemma 2.9 we have listed only the most elementary facts concerning Michel –
Bastiani differentiation. It is a more subtle problem, for example, to obtain inverse
(or implicit) function theorems in this (or a more general) context. The idea of gener-
alization of the classicalinverse function theoremfor mappings between some types
of Fréchet spaces is due to John Nash. Nash’s inverse function theorem played an im-
portant role in his famous paper on isometric embeddings of Riemannian manifolds
[30]. It was F. Sergeraert who stated the theorem explicitly in terms of a category of
maps between Fréchet spaces [34]. In Moser’s formulation [28] the theorem became
an abstract theorem in functional analysis of wide applicability. Further generaliza-
tions have been given by Hamilton [14], Kuranishi [19], Zehnder [37], and more
recently Leslie [22] and Ma [24]. In reference [10], inspired by Hiltunen’s results
[16], Glöckner provesimplicit function theoremsfor mappings defined on topologi-
cal vector spaces over valued fields. In particular, in the real and complex cases he
obtains implicit function theorems for mappings from not necessarily locally convex
topological vector spaces to Banach spaces.

To emphasize that the results of calculus in Banach spaces cannot be transplanted
into the wider framework of topological vector spaces in general, finally we men-
tion a quite typical pathology: the uniqueness and existence of solutions to ordinary
differential equations are not guaranteed beyond Banach spaces. For a simple illus-
tration of this phenomenon in Fréchet spaces see [13, 5.6.1].
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(3) We briefly discuss the relation between the concept of Michel – Bastiani differentia-
bility and the classical concept of Fréchet differentiability for mappings between Ba-
nach spaces. Recall that a continuous map from an open subsetU of a Banach space
V into a Banach spaceW is calledcontinuously Fŕechet differentiableorFC1, if for
all p ∈ U there exists a (necessarily unique) continuous linear mapf ′(p) : V → W
such that

lim
v→0

f(p+ v)− f(p)− f ′(p)(v)
‖v‖

= 0,

and the mapf ′ : U → L(V,W ), p 7→ f ′(p) is continuous (with respect to the
operator norm inL(V,W )). Inductively, we definef to beFCk (k = 2) if f ′ is
FCk−1. Now it may be shown thateveryFCk-map isCk (in the sense of Michel –
Bastiani), and everyCk+1-map between open subsets of Banach spaces isFCk, so
the two concepts coincide in theC∞ case. For a proof we refer to [26] or [11].

(4) As an equally important approach to non-Banach infinite-dimensional calculus we
have to mention the so-calledconvenient calculuselaborated in detail by A. Kriegl
and P. W. Michor [18]. LetV andW be locally convex vector spaces andU ⊂
V an open subset. A mappingf : U → W is said to beconveniently smoothif
f ◦ γ : I → W is a smooth curve for each smooth curveγ : I → U . By the
chain rule 2.9(3) it is clear that if a mapping is Michel – Bastiani smooth, then it
is conveniently smooth as well. The converse of this statement is definitely false:
a conveniently smooth mapping need not even be continuous. However,if V is a
Fréchet space, thenf : U → W is conveniently smooth if and only if it is Michel –
Bastiani smooth. For a sketchy proof see [31, II, 2.10].

Remark2.11 It should be noticed that all the difficulties arising in our preceding discussion
disappear if the underlying vector spaces are finite dimensional. The first reason for this lies
in the fact that Tychonoff’s theorem (1.5) guarantees, roughly speaking, that the Euclidean
topology ofRn is the only linear topology that ann-dimensional real vector space can have.
This canonical topology is locally convex, locally compact and metrizable. In particular,
if V andW are finite dimensional vector spaces, thenL(V,W ) also carries the canonical
linear topology. This also leads to a significant difference between the calculus in finite or
infinite dimensional Banach spaces on the one hand, and in non-Banachable spaces on the
other hand. For example, ifV andW are (non-Banach) Fréchet spaces, then the vector
space of continuous linear maps betweenV andW is not necessarily a Fréchet space. In
the following we assume that all finite dimensional vector spaces are endowed with the
canonical topology assured by Tychonoff ’s theorem.

In the finite dimensional case the differentiability concepts introduced above result in
the same class ofCk mappings. For lack of norms we shall always use the Michel –
Bastiani definition. So ifV andW are finite dimensional (real) vector spaces,U ⊂ V
is an open set, then a mappingf : U → W is C1 if there is a continuous mapping
f ′ : U → L(V,W ) such that at each pointp ∈ U and for allv ∈ V we have

f ′(p)(v) = lim
t→0

1
t
(f(p+ tv)− f(p)).

Higher derivatives and smoothness can be defined by induction, as in 2.7(3). Notice
that if f ∈ Ck(U ,W ) (k = 2), then itskth derivative at a pointp ∈ U is denoted by
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f (k)(p), and it is an element of

L
(
V,Lk−1(V,W )

) ∼= Lk(V,W )

given by

f (k)(p)(v1, . . . , vk)

:= lim
t→0

1
t

(
f (k−1)(p+ tv1)(v2, . . . , vk)− f (k−1)(p)(v2, . . . , vk)

)
for each(v1, . . . , vk) ∈ V k.

Smooth functions and differential operators onRn

In this subsection we have a closer look at the most important special case, when the do-
main of the considered functions is a subset of the Euclideann-spaceRn, and we describe
the linear differential operators acting on the spaces of these functions.

First we recall a basic existence result.

Lemma 2.12 LetU be a nonempty open subset ofRn, and(Ui)i∈I an open covering ofU .
There exists a family(fi)i∈I of smooth functions onU such that

(i) 0 5 fi(p) 5 1 for all i ∈ I andp ∈ U ;

(ii) supp(fi) ⊂ Ui for all i ∈ I;

(iii) (supp(fi))i∈I is locally finite;

(iv) for each pointp ∈ U we have
∑
i∈I fi(p) = 1.

The family (fi)i∈I in the Lemma is said to be apartition of unitysubordinate to the
covering(Ui)i∈I . The heart of the proof consists of an application of the purely topological
Lemma 1.2 and the construction of a smooth functionf : Rn → R, called a smooth bump
function, with the following properties:

0 5 f(p) 5 1 for all p ∈ Rn; f(q) = 1 if q ∈ B1(0); supp(f) ⊂ B2(0)

(the balls are taken with respect to the Euclidean distance).
More generally, letU andV be open subsets,K a closed subset ofRn, and suppose

thatK ⊂ V ⊂ U . A smooth functionf : U → R is said to be abump function forK
supported inV if 0 5 f(p) 5 1 for eachp ∈ U , f(q) = 1 if q ∈ K, andsupp(f) ⊂ V. As
an immediate consequence of Lemma 2.12, we have

Corollary 2.13 If U andV are open subsets,K is a closed subset ofRn, andK ⊂ V ⊂ U ,
then there exists a bump function forK supported inV.

Indeed, ifU0 := V, U1 := U rK, then(U0,U1) is an open covering ofU , so by 2.12
there exists a partition of unity(f0, f1) subordinate to(U0,U1). Thenf1 � K = 0, and for
eachq ∈ K we havef0(q) = (f0 + f1)(q) = 1, therefore the functionf := f0 has the
desired properties.
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Remark2.14 In the following the canonical basis ofRn will be denoted by(ei)ni=1, and
(ei)ni=1 will stand for its dual. The family(ei)ni=1 will also be mentioned as the canonical
coordinate system forRn. If U ⊂ Rn is an open subset, andf ∈ C∞(U), then

Dif : U → R, p 7→ Dif(p) := f ′(p)(ei) (i ∈ {1, . . . , n})

is theith partial derivativeof f (with respect to the canonical coordinate system). For each
multi-indexα = (α1, . . . , αn) ∈ Nn we write

Dαf := Dα1
1 . . . Dαn

n f ; Dαi
i f := Di . . . Di︸ ︷︷ ︸

αitimes

f (i ∈ {1, . . . , n})

with the conventionDαf := f if |α| = 0. We say thatDα is an elementary partial
differential operator of order|α|. A linear differential operatoris a linear combination
D =

∑
‖α‖5m aαD

α, wherem ∈ N, aα ∈ C∞(U). Clearly,D mapsC∞(U) linearly
into C∞(U). It is not difficult to show (see e.g. [6, (8.13.1)], or [20, Ch. XI,§1]) that
if a linear differential operator is identically0 onC∞(U), then each of its coefficients is
identically0 onU . From this it follows that the coefficients of a linear diferential operator
D =

∑
‖α‖5m aαD

α are uniquely determined; the highest value of|α| such thataα 6= 0
is called theorder of D.

Lemma 2.15(generalized Leibniz rule)Let U 6= ∅ be an open subset ofRn. If f, h ∈
C∞(U) andα ∈ Nn is a multi-index, then

Dα(fh) =
∑

µ+ν=α

(
α

ν

)
(Dνf)(Dµh).

Remark2.16 We need some further notations. We shall denote byC∞c (Rn) the subspace
of C∞(Rn) consisting of smooth functions onRn which have compact support. For any
nonempty subsetS of Rn,C∞c (S) will stand for the space of functions inC∞c (Rn) whose
support lies inS. A function inC∞c (S) will be identified with its restriction toS. (Notice
that L. Schwartz’s notationE(U) := C∞(U), D(U) := C∞c (U), D(K) := C∞c (K) is
widely used in distribution theory.)

Proposition 2.17 Let a (nonempty) open subsetU of Rn be given. For any compact setK
contained inU and any multi-indexα ∈ Nn, define the function‖ ‖Kα : C∞(U) → R by
setting

‖f‖Kα := sup
p∈K
|Dαf(p)|, f ∈ C∞(U).

Then the family
(
‖ ‖Kα

)
is a multinorm onC∞(U) which makes it into a Fŕechet space hav-

ing the Heine – Borel property, such thatC∞c (K) is a closed subspace ofC∞(U) whenever
K ⊂ U is compact.

Proof. It is clear that the family
(
‖ ‖Kα

)
is a multinorm, so it defines a locally convex

topology onC∞(U) according to 1.8. We claim that the TVS so obtained is metrizable
and complete. In order to show this we construct anothercountablefamily of seminorms
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onC∞(U) which is equivalent to the given one in the sense that the two families generate
the same topology.

Let (Kn)n∈N∗ be the compact exhaustion ofU described in the proof of 1.1. If for each
n ∈ N∗

νn(f) := sup
p∈Kn,|α|5n

|Dαf(p)|, f ∈ C∞(U),

then(νn)n∈N∗ is a multinorm onC∞(U), which defines a metrizable locally convex topol-
ogy onC∞(U) by 1.8 and 1.10. To prove the equivalence of the two seminorm-families,
it is enough to check that each member of the first family is majorized by a finite linear
combination of the second family, and conversely.

Now, on the one hand, it is obvious that for every positive integern and smooth function
f in C∞(U) we have

νn(f) 5
∑
|α|5n

‖f‖Kn
α

(
2.18= ‖f‖Kn

n

)
,

thusνn is majorized by
(
‖ ‖Kn

α

)
|α|5n. To prove the converse, choose a compact setK ⊂

U , and define the following functions:

δ : K → ]0,∞] , p 7→ δ(p) := %E(p, ∂U);
∆ : K → R+, p 7→ ∆(p) := %E(p, 0) = ‖p‖.

Then bothδ and ∆ are continuous;δ attains its minimumc ∈ R∗+, and∆ attains its
maximumC ∈ R+ onK. Now choosen ∈ N∗ such that

1
n
< c and n > C.

Then the memberKn of the compact exhaustion ofU contains the compact setK. If, in
addition,n = |α|, the seminormνn is a majorant of the seminorm‖ ‖Kα .

For a proof of the remaining claims we refer to [33, 1.46].

Remark2.18 LetU be an open subset ofRn, S any subset ofU , andm ∈ N. It is easy to
check that the mapping

‖ ‖Sm : f ∈ C∞c (U) 7→ ‖f‖Sm :=
∑
|α|5m

sup
p∈S
|Dαf(p)|

is also a seminorm onC∞c (U). Using this seminorm, in case ofS = U we shall omit the
superscript in the notation.

Now, following Narasimhan [29, 1.5.1], we introduce a purely technical term. We say
that a functionf ∈ C∞(U) ism-flat at a pointp ∈ U if Dαf(p) = 0, whenever|α| 5 m.
We shall find the following observation useful:

Lemma 2.19 If a functionf ∈ C∞(Rn) is m-flat at the origin, then for everyε ∈ R∗+
there exists a functionh ∈ C∞(Rn), vanishing on a0-neighbourhood, such that‖h −
f‖m < ε.
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Proof. Corollary 2.13 assures the existence of a functionψ ∈ C∞(Rn) such that

∀p ∈ Rn : 0 5 ψ(p) 5 1, ψ(p) = 0 if p ∈ B 1
2
(0), ψ(p) = 1 if p ∈ Rn rB1(0).

Given a positive real numberδ, consider the homothetyhδ of Rn, and let

h :=
(
ψ ◦ h1/δ

)
f.

Then, obviously,h ∈ C∞(Rn), andh vanishes on a 0-neighbourhood. So it is sufficient
to show that if|α| 5 m,

sup
p∈Rn

|Dαh(p)−Dαf(p)| → 0 asδ → 0. (∗)

Sinceh(p) = f(p) if ‖p‖ > δ, it follows that

sup
p∈Rn

|Dαh(p)−Dαf(p)| = sup
‖p‖5δ

|Dαh(p)−Dαf(p)|

5 sup
‖p‖5δ

|Dαh(p)|+ sup
‖p‖5δ

|Dαf(p)|.

By our assumption, we haveDαf(0) = 0 for |α| 5 m; thus

sup
‖p‖5δ

|Dαf(p)| → 0 asδ → 0. (∗∗)

Now we consider the functionDαh. Using 2.15, we obtain

Dαh = Dα
((
ψ ◦ h1/δ

)
f
)

=
∑

µ+ν=α

(
α

ν

)
Dν
(
ψ ◦ h1/δ

)
Dµf

=
∑

µ+ν=α

(
α

ν

)
δ−nu

(
(Dνψ) ◦ h1/δ

)
Dµf.

Sinceψ is constant outsideB1(0), the functionDνψ is bounded. If

Cν := sup
p∈Rn

|Dνψ(p)|, C := max
ν

(
α

ν

)
Cν ,

then we get the following estimation:

|Dαh| 5 C
∑

µ+ν=α

δ−|ν||Dµf |.

As f ism-flat at 0,Dµf is (m− |µ|)-flat at the origin. Thus, using Landau’s symbolo(·),

sup
‖p‖5δ

|Dµf(p)| = o
(
δm−|µ|

)
,

therefore

sup
‖p‖5δ

|Dαh(p)| = o
(∑

µ+ν=α δ
m−|µ|−|ν|

)
= o

(
δm−|α|

)
,
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and hence

sup
p∈Rn

|Dαh(p)−Dαf(p)| 5 o
(
δm−|α|

)
+ sup
‖p‖5δ

|Dαf(p)|.

In view of (∗∗), this implies the desired relation (∗).

Lemma 2.20 Let U ⊂ Rn be a (nonempty) open set. SupposeD : C∞(U) → C∞(U),
f 7→ Df is a linear mapping which decreases supports, that is

supp(Df) ⊂ supp(f)

for all functionsf ∈ C∞(U). Then for each pointp ∈ U there exists a relatively compact
neighbourhoodV of p

(
V̄ ⊂ U

)
, a positive integerm and a positive real numberC such

that

‖Du‖0 5 C‖u‖m

holds for any functionu ∈ C∞c (V r {p}) (‖ ‖k (k ∈ N) is the seminorm introduced in
2.18).

Note Recall that any functionf ∈ C∞c (V r {p}) is identified with a functioñf ∈ C∞(U)
according to 2.16. SinceD is support-decreasing, we may apply it tof by the formula
Df := Df̃ .

Proof of the lemma.Suppose the contrary: there is a pointp ∈ U such that for any rela-
tively compact nbdV ⊂ U of p, any positive integerm and positive real numberC, there
is a functionu ∈ C∞c (V r {p}) such that

‖Du‖0 > C‖u‖m.

1st step Choose a relatively compact setU0 ⊂ U in N (p), and letm := 1, C := 22. By
our assumption, there is a functionu1 ∈ C∞c (U0 r {p}) such that

‖Du1‖0 > 22‖u1‖1.

Let U1 := {q ∈ U0|u1(q) 6= 0}. ThenU0 r U1 ∈ N (p), so, using our assumption again,
there is a functionu2 ∈ C∞c

(
U0 r U1 r {p}

)
such that

‖Du2‖0 > 24‖u2‖2.

Now we defineU2 :=
{
q ∈ U0 r U1

∣∣u2(q) 6= 0
}

, and we repeat our argument. Thus, by
induction, we obtain a sequence(Uk)k∈N∗ of open sets and(uk)k∈N∗ of functions such
that

Uk ⊂ U0 r {p} (k ∈ N∗); Uk ∩ U` = ∅ if k 6= `;

uk ∈ C∞c
(
U0 r U1 r . . .r Uk−1 r {p}

)
⊂ C∞c (U);

Uk =
{
q ∈ U0 r U1 r . . .r Uk−1

∣∣uk(q) 6= 0
}

(k ∈ N∗),

and, finally,

‖Duk‖0 > 22k‖uk‖k. (∗)
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2nd step Consider the function

u :=
∑
k∈N∗

2−k

‖uk‖k
uk.

Since at each point ofU0, at most one member of the right-hand side differs from zero,u
is well-defined. We claim thatu is smooth on its domain. To prove this, we have to show
that each pointp ∈ U0 has a neighbourhood on whichu is smooth. We divide the points of
U0 into three disjoint classes in the following way. First, let

V1 :=
∞
∪
k=1
Uk.

Then any pointp ∈ V1 is contained in someUk, on whichu is obviously smooth. Next,
let V2 be the set of points inU0 which have a neighbourhoodV intersecting with at most
one of theUk ’s. Thenu is smooth onV as well. Finally, letV3 be the set of points
in U0 whose every neighbourhood intersects with infinitely many of theUk ’s. The only
difficulty is to verify the smoothness ofu in a neighbourhood of such points. By the
Bolzano – Weierstraß theorem,V3 cannot be empty.

Let p ∈ V3. First we show thatu is continuous atp. Sincep /∈ Uk (k ∈ N∗), u(p) = 0.
Let ε > 0 be arbitrary, and

k :=
⌈
log2

1
ε

⌉
(where the symbold e denotes upper integer part). Now we define

δ := min
15i5k

d
(
p,Ui

)
.

Thenδ > 0, otherwisep ∈ V2 would follow. If q ∈ Bδ(p), we have eitheru(q) = 0 or
q ∈ U` for somè > k, thus

|u(q)| =
∣∣∣∣ 2−`

‖u`‖`
u`(q)

∣∣∣∣ 5 ∣∣∣∣ 2−`

‖u`‖0
u`(q)

∣∣∣∣ 5 2−` < 2−k 5 2− log2(1/ε) = ε,

thereforeu is continuous atp.
Now we proceed by induction. Letm be a fixed positive integer, and suppose that all

partial derivatives ofu up to orderm − 1 exist and are continuous, and they all vanish at
p. Letα ∈ Nn be a multi-index such that|α| = m − 1, andi ∈ {1, . . . , n}. To show that
DiD

αu(p) exists, we have to consider the following limit:

lim
t→0

Dαu(p+ tei)−Dαu(p)
t

= lim
t→0

Dαu(p+ tei)
t

.

Let ε > 0 be arbitrary. Now we definek almostin the same way as in the previous part of
the proof:

k := max
{
m,

⌈
log2

1
ε

⌉}
.
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Let t ∈ ]0, δ[, whereδ is definedexactlyin the same way as above. Then eitherDαu(p+
tei) = 0, or p+ tei ∈ U` for somè > k. Let

t0 := sup{s ∈ ]0, t[ |p+ sei /∈ U`}.

Then the functions 7→ Dαu(p + sei) is continuous on[t0, t] and differentiable on]t0, t[,
so, by Lagrange’s mean value theorem, there is someξ ∈ ]t0, t[ such that

(s 7→ Dαu(p+ sei))′(ξ) = DiD
αu(p+ ξei)

=
Dαu(p+ tei)−Dαu(p+ t0ei)

t− t0
=
Dαu(p+ tei)

t− t0
.

Thus we have the following estimation:∣∣∣∣Dαu(p+ tei)
t

∣∣∣∣ 5 ∣∣∣∣Dαu(p+ tei)
t− t0

∣∣∣∣ = |DiD
αu(p+ ξei)|

=
∣∣∣∣ 2−`

‖u`‖`
DiD

αu`(p+ ξei)
∣∣∣∣ 5 ∣∣∣∣ 2−`

‖DiDαu`‖0
DiD

αu`(q)
∣∣∣∣

5 2−` < 2−k 5 2− log2(1/ε) = ε.

If t ∈ ]−δ, 0[, then we proceed in the same way to obtain

DiD
αu(p) = lim

t→0

Dαu(p+ tei)−Dαu(p)
t

= 0.

ThereforeDiD
αu exists at every point ofU0. Its continuity is shown in the same way as

that ofu.

3rd step We obviously have

u � Uk = 2−k(‖uk‖k)−1uk. (∗∗)

SinceD is linear and support-decreasing, it follows that

(Du) � Uk = 2−k(‖uk‖k)−1(Duk) � uk.

Thus, taking into account relations(∗) and(∗∗), we conclude that there is a pointpk ∈ Uk
such that

|Du(pk)| = 2−k(‖uk‖k)−1|Duk(pk)| > 2−k(‖uk‖k)−1 · 22k‖uk‖k = 2k.

On the other hand, the functionDu is continuous, and its support is compact, hence it is
bounded. This contradicts the above assertion.

Lemma 2.21 SupposeU ⊂ Rn is a nonempty open set, and letV be a relatively compact
open set contained inU . Consider a support-decreasing linear mappingD : C∞(U) →
C∞(U). Assume there is a positive integerm and a positive real numberC such that

‖Du‖0 5 C‖u‖m (∗)

for all u ∈ C∞c (V). Then
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(i) Du(p) = 0 wheneveru ism-flat atp,

(ii) there exist smooth functionsaα (α ∈ Nn, |α| 5 m) in C∞(V) such that for each
u ∈ C∞c (V), p ∈ V we have

Du(p) =
∑
|α|5m

aα(p)(Dαu)(p).

Proof. (i) By Lemma 2.19, there is a sequence(un)n∈N of functions inC∞c (V) such
thatun vanishes in a neighbourhood ofp for eachn ∈ N, and

lim
n→∞

‖un − u‖m = 0.

Taking into account our condition (∗), this implies that(Dun)n∈N converges uni-
formly to Du on V. Sincesupp(Dun) ⊂ supp(un), andun vanishes nearp, we
haveDun(p) = 0 for eachn ∈ N. Hence

Du(p) = lim
n→∞

(Dun)(p) = 0,

as we claimed.

(ii) To prove the second statement, consider for an arbitrarily chosen pointp ∈ U and
multi-indexα = (α1, . . . , αn) ∈ Nn the polynomial

µα,p(ξ) :=
(
ξ1 − p1

)α1 · . . . · (ξn − pn)αn

(ξ =
(
ξ1, . . . , ξn

)
is a symbol). Thenµα,p can be viewed as a smooth function in

C∞(U), and the functions

ηα : p ∈ U 7→ ηα(p) := (Dµα,p)(p) (α ∈ Nn)

also belong toC∞(U). Now letu ∈ C∞c (V), and define

f := u−
∑
|α|5m

1
α!

(Dαu)(p)µα,p.

Then for eachβ ∈ Nn, |β| 5 m we have

Dβf = Dβu−
∑
|α|5m

1
α!

(Dαu)(p)
α!

(α− β)!
µα−β,p.

Since

µα−β,p(p) =
{

0 if β 6= α,
1 if β = α,

it follows that

Dβf(p) = 0, |β| 5 m;
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i.e., the functionf ism-flat atp. Thus, by part (i),Df(p) = 0, therefore

Du(p) =
∑
|α|5m

1
α!

(Dαu)(p)ηα(p);

so with the help of the smooth functionsaα := 1
α!ηα (α ∈ Nn, |α| 5 m) Du can be

represented in the desired form.

Now we introduce a more sophisticated version of the concept of a linear differential
operator mentioned in 2.14.

Definition 2.22 Let U ⊂ Rn be a nonempty open subset. Adifferential operatoronU is
a linear mappingD : C∞(U) → C∞(U) with the following property: for each relatively
compact open setV whose closure in contained inU there exists a finite family of functions
aα ∈ C∞(V) (α ∈ Nn) such that for eachu ∈ C∞(V),

Du =
∑
α

aα(Dαu).

Note Differential operators in this more general sense also have a well-definedorder lo-
cally, according to 2.14.

Having this concept, we are ready to formulate and prove the main result of this sub-
section.

Theorem 2.23 (local Peetre theorem)Let U ⊂ Rn be a nonempty open subset. If
D : C∞(U) → C∞(U) is a support-decreasing linear mapping, thenD is a differen-
tial operator onU . Conversely, any differential operator is support decreasing.

Proof. The converse statement is clearly true. To prove the direct statement, consider a
linear mappingD : C∞(U)→ C∞(U) with the property

supp(Du) ⊂ supp(u), u ∈ C∞(U).

Let V ⊂ U be a relatively compact open set such thatV̄ ⊂ U . According to 2.20, for each
point p ∈ V there is a neighbourhoodUp ⊂ U of p, a positive integermp and a positive
real numberCp such that

‖Du‖0 5 Cp‖u‖mp

holds for any functionu ∈ C∞c (Up r {p}). The family (Up)p∈V is an open covering
of V̄, so by its compactness, there are finitely many pointsp1, . . . , pk in V such that the
corresponding open setsU1, . . . ,Uk still coverV̄. Let

m := max{mpi
|i ∈ {1, . . . , k}} and C := max{Cpi

|i ∈ {1, . . . , k}}.

Then for eachi ∈ {1, . . . , k} andu ∈ C∞c (Ui r {pi}) we have

‖Du‖0 5 C‖u‖m. (∗)
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We show that there is also a positive constantC̃ such that

‖Du‖0 5 C̃‖u‖m

holds for any functionu ∈ C∞c (V r {p1, . . . , pk}). Using Lemma 2.12, let(fi)k+1
i=1 be a

partition of unity subordinate to the open covering
(
U1, . . . ,Uk,U r V̄

)
of U . Then each

functionu ∈ C∞c (V r {p1, . . . , pn}) can be written in the form

u =
k+1∑
i=1

fiu =
k∑
i=1

fiu,

and (∗) holds for every member of the sum, therefore

‖Du‖0 =
∥∥∥D (∑k

i=1 fiu
)∥∥∥

0
=
∥∥∥∑k

i=1D(fiu)
∥∥∥

0

5
k∑
i=1

‖D(fiu)‖0 5
k∑
i=1

C‖fiu‖m = C

k∑
i=1

‖fiu‖m.

Thus it is enough to show that there are positive constantsCi such that

‖fiu‖m 5 Ci‖u‖m (i = 1, . . . , k)

which are independent ofu (and may depend on the partition of unity chosen, however).
By the generalized Leibniz rule (2.15), we have

‖fiu‖m =
∑
|α‖5m

sup
p∈V
|Dα(fiu)(p)|

=
∑
|α‖5m

sup
p∈V

∣∣∣∑µ+ν=α

(
α
ν

)
(Dνfi)(p)(Dµu)(p)

∣∣∣
5

∑
|α‖5m

sup
p∈V

∑
µ+ν=α

(
α

ν

)
|Dνfi(p)||Dµu(p)|

5
∑
|α‖5m

∑
µ+ν=α

(
α

ν

)
sup
p∈V
|Dνfi(p)||Dµu(p)|

5
∑
|α‖5m

∑
µ+ν=α

(
α

ν

)(
supp∈V |Dνfi(p)|

) (
supp∈V |Dµu(p)|

)
=
∑
|µ|5m

[∑
|µ+ν|5m

(
µ+ν
ν

)
supp∈V |Dνfi(p)|

]
sup
p∈V
|Dµu(p)|.

Letting

Ci :=
∑

|µ+ν|5m

(
µ+ ν

ν

)
sup
p∈V
|Dνfi(p)|,
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we obtain

‖fiu‖m 5 Ci
∑
|µ|5m

sup
p∈V
|Dµu(p)| = Ci‖u‖m,

thus the desired estimation is valid for each term. Finally, if

C̃ := C
k∑
i=1

Ci,

then we conclude

‖Du‖0 5 C
k∑
i=1

‖fiu‖m 5 C
k∑
i=1

Ci‖u‖m = C̃‖u‖m.

Lemma 2.21 then implies that for eachp ∈ V r {p1, . . . , pn},

Du(p) =
∑
|α|5m

aα(p)(Dαu)(p), aα ∈ C∞(V).

However, both functionsDu and
∑
|α|5m aα(Dαu) are continuous, so the desired relation

is valid at every point ofV.

Transition from local to global

1st step: manifolds and bundles Since we have a chain rule forC1-mappings between
locally convex TVSs, the concept of a manifold modeled on such a vector space can
be introduced without any difficulty: we may follow the well paved path of the finite-
dimensional theory.

LetM be a Hausdorff space andV a locally convex TVS. By aV -chartonM we mean
a pair(U , x), whereU ⊂M is an open subset ofM , andx is a homeomorphism ofU onto
an open subset ofV . Two charts,(U , x) and(V, y) are said to besmoothly compatibleif
the transition mapping

y ◦ x−1 : x(U ∩ V)→ y(U ∩ V)

is a smooth mapping between open subsets ofV in Michel – Bastiani’s sense, orU ∩ V =
∅. A V -atlas onM is a familyA = (Ui, xi)i∈I of pairwise compatibleV -charts ofM
such that the setsUi form an open covering ofM . A smoothV -structure onM is a
maximalV -atlas, and asmoothV -manifold is a Hausdorff space endowed with a smooth
V -structure. A smoothV -manifold is said to be aFréchet manifold, a Banach manifold
and ann-manifold, resp., if the model spaceV is a Fŕechet space, a Banach space and an
n-dimensional (real) vector space, resp. In the latter case, without loss of generality, the
Euclideann-spaceRn can be chosen as a model space.

The concept of smoothness of a mapping between aV -manifoldM and aW -manifold
N can formally be defined in the same way as in the finite-dimensional case: a mapping
ϕ : M → N is said to besmoothif it is continuous and, for every chart(U , x) onM and
(V, y) onN , the mapping

y ◦ ϕ ◦ x−1 : x
(
ϕ−1(V) ∩ U

)
⊂ V →W
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is Michel – Bastiani smooth. If, in addition,ϕ has a smooth inverse, then it is called a
diffeomorphism. The space of all smooth mappings fromM to N will be denoted by
C∞(M,N). In particular,C∞(M) stands for the algebra of smooth functions onM , and

C∞c (M) := {f ∈ C∞(M)| supp(f) is compact}.

Let π : E → M be a smooth mapping between smooth manifolds modeled on some
locally convex TVSs, and letV be a fixed locally convex space.π : E → M is said to be
avector bundlewith typical fibreV if the following conditions are satisfied:

(i) everyfibreEp := π−1(p), p ∈M , is a locally convex TVS;

(ii) for each pointp ∈ M there is a neighbourhoodU of p and a diffeomorphismΦ :
U × V → π−1(U) such thatπ ◦Φ = pr1, wherepr1 : U × V → U is the projection
to the first factor, and the mappings

Φq : V → Eq, v 7→ Φq(v) := Φ(q, v), q ∈ U

are toplinear isomorphisms.

Further terminology:M is thebase manifold, E is thetotal manifold, andπ is theprojec-
tion of the bundle.Φ is a trivialization of π−1(U) (or a local trivialization of E). For a
vector bundleπ : E → M , we shall use both the abbreviationπ (which is unambiguous)
and the shorthandE (which may be ambiguous), depending on what we wish to empha-
size. If the base manifold is finite dimensional, and the typical fibre is ak-dimensional
vector space, then we shall speak of a vector bundle ofrankk.

Let π1 : E1 → M1 andπ2 : E2 → M2 be vector bundles. A smooth mappingϕ :
E1 → E2 is calledfibre preservingif π1(z1) = π1(z2) impliesπ2(ϕ((z1)) = π2(ϕ(z2))
for all z1, z2 ∈ E. Thenϕ induces a smooth mappingϕ : M1 → M2 such thatπ2 ◦
ϕ = ϕ ◦ π1. A fibre preserving mappingϕ : E1 → E2 is said to be abundle mapif it
restricts to continuous linear mappingsϕ1 : (E1)p → (E2)ϕ(p), p ∈ M . If, in addition,
M1 = M2 =: M , andϕ = 1M , thenϕ is called astrong bundle map.

Supposeπ : E → M is a vector bundle with typical fibreV andf : N → M is a
smooth mapping. For eachq ∈ N , let (f∗E)q := {q}×Ef(q) be endowed with the vector
space structure inherited fromEf(q):

(q, z1) + (q, z2) := (q, z1 + z2), λ(q, z) := (q, λz)(
z1, z2, z ∈ Ef(q), λ ∈ R

)
. If

f∗E := ∪
q∈N

(f∗E)q = {(q, z) ∈ N × E|f(q) = π(z)} =: N ×M E,

then f∗E carries a unique smooth structure which makes it a vector bundle with base
manifoldN , projectionπ1 := pr1 � N×M E and typical fibreV . If Φ : U×V → π−1(U)
is a local trivialization ofE, then the mapping

f∗Φ : f−1(U)× V → π−1
1 (f−1(U)), (q, v) 7→ (q,Φ(f(q), v))

is a local trivialization forf∗E. The vector bundleπ1 : f∗E → N so obtained is said
to be thepull-back of π over f , and it is also denoted byf∗π. Note that the mapping
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π2 := pr2 � N ×M E is a bundle map fromf∗E toE which induces the given mappingf
between the base manifolds.

For our next remarks, let us fix a vector bundleπ : E →M . A sectionof π is a smooth
mappingσ : M → E with π ◦σ = 1M ; thusσ(p) ∈ Ep for all p ∈M . Similarly, a section
of π over an open subsetU ⊂ M is a smooth mappingσ : U → E with π ◦ σ = 1U . The
supportof a sectionσ : U → E is supp(σ) := {p ∈ U|σ(p) 6= 0} (the closure is meant
in U). We denote byΓ(π) (or Γ(E)) the set of sections ofπ. Γ(U , E) stands for the set
of sections ofE overU ; Γc(U , E) = {σ ∈ Γ(U , E)| supp(σ) is compact}. Γ(U , E), in
particular,Γ(π) is surely nonempty: we have thezero sectionp ∈ U 7→ o(p) := 0p :=

the zero vector ofEp.
◦
E := ∪p∈M (Ep r {0p}) will denote thedeleted bundlefor E, and

◦
π := π �

◦
E. Sections (local sections with common domain) can be added to each other

and multiplied by smooth functions onM using the standard pointwise definitions. These
two operations makeΓ(π) andΓ(U , E) aC∞(M)-module and aC∞(U)-module, resp.
In particular,Γ(π) andΓ(U , E) (as well asΓc(U , E)) are real vector spaces. Under some
assumptions on the topological and the smooth structure of the base manifold and the TVS
structure of the typical fibre, the spaces of sections can be endowed with ‘similarly nice’
TVS structure. For more information on this subtle problem see Kriegl – Michor’s mono-
graph [18, section 30]. In the next subsection we shall briefly discuss the finite dimensional
case.

Now suppose that a smooth mappingf : N →M is also given, and consider the pull-
back bundleπ1 : N ×M E → N . A smooth mappingS : N → N ×M E is a section of
π1 if and only if there is a smooth mappingS : N → E such thatπ ◦ S = f andS(q) =
(q, S(q)) for all q ∈ N ; S is mentioned as theprincipal part of the sectionS. A smooth
mappingS : N → E satisfyingπ ◦ S = f is called asection ofE alongf . Identifying
a section off∗E with its principal part, we get a canonical module isomorphism between
Γ(f∗E) and the moduleΓf (E) = Γf (π) of sections ofE alongf .

2nd step: tangent bundle The crucial step in transporting of calculus from the model
spaceV to a smoothV -manifoldM is the construction of tangent vectors. Choose a point
p of M and consider all triples of the form(U , x, a), where(U , x) is a chart aroundp and
a ∈ V . The relation∼ defined by

(U , x, a) ∼ (V, y, b) :⇐⇒
(
y ◦ x−1

)′
(x(p))(a) = b

is an equivalence relation. The∼-equivalence class[(U , x, a)] of a triple(U , x, a) is said
to be atangent vector toM at p. The set of tangent vectors toM atp is thetangent space
to M at p; it will be denoted byTpM . A chart (U , x) aroundp determines a bijection
ϑp : TpM → V by the rule

v ∈ TpM 7→ ϑp(v) := a ∈ V if (U , x, a) ∈ v.

There is a unique locally convex TVS structure onTpM which makes the bijectionϑp a
toplinear isomorphism. To be explicit, the linear structure ofTpM is given by

λv + µw := ϑ−1
p (λϑp(v) + µϑp(w)); v, w ∈ TpM ; λ, µ ∈ R.

The TVS structure so obtained onTpM does not depend on the choice of(U , x), since
if (V, y) is another chart aroundp, andηp : TpM → V is associated with(V, y), then

ηp ◦ ϑ
−1
p =

(
y ◦ x−1

)′ (x(p)), which is a toplinear isomorphism.
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Let TM := ∪p∈MTpM (disjoint union), and define the mappingτ : TM → M
by τ(v) := p if v ∈ TpM . There is a unique smooth structure onTM which makes
τ : TM → M into a vector bundle with fibres(TM)p = TpM and typical fibreV . To
indicate the construction of this smooth structure, let(U , x) be a chart onM , and assign to
eachv ∈ τ−1(U) ⊂ TM the pair

(
x(τ(v)), ϑτ(v)(v)

)
∈ V × V . Thus we get a bijective

mapping

τU :=
(
x ◦ τ , ϑτ(·)

)
: τ−1(U)→ x(U)× V ⊂ V × V.

As (U , x) runs over all charts of an atlas ofM , the pairs
(
τ−1(U), τU

)
form an atlas for

TM and make it into a smooth manifold modeled onV × V such that the topology of
TM is the finest topology for which each mappingτU is a homeomorphism. (For details
see [8, 2.3].) The vector bundle so obtained is called thetangent bundleof M , and it is
denoted byτ , TM or τM . If, in particular,U is an open subset of the model spaceV , then
U (as well asV ) can be regarded as a smooth manifold modeled onV . In this case there
is a canonical identificationTU ∼= U × V , which will be frequently used, without further
mention.

Now take two manifoldsM andN , modeled onV andW , respectively. Letf : M →
N be a smooth mapping andp ∈M . Choose charts(U , x) aroundp and(V, y) aroundf(p)
such thatf(U) ⊂ V. Let ϑp : TpM → V andηf(p) : Tf(p)N → W be the isomorphisms
associated with(U , x) and(V, y). Then

(f∗)p := η−1
f(p) ◦

(
y ◦ f ◦ x−1

)′
(x(p)) ◦ ϑp : TpM → Tf(p)N

is a well-defined linear mapping, called thetangent mapof f at p. (‘Well-defined’ means
that (f∗)p does not depend on the choice of(U , x) and (V, y).) Having the fibrewise
tangent maps, we associate tof : M → N the bundle map

f∗ : TM → TN, f∗ � TpM := (f∗)p.

Let, in particular,f : M →W be a smooth mapping. Then the mapping

df := pr2 ◦ f∗ : TM →W ×W →W

is called thedifferentialof f . By restriction, it leads to a continuous linear mapping

df(p) = dpf := df � TpM →W,

for eachp ∈M .
The sections of the tangent bundleτ : TM → M are said to bevector fieldsonM .

We denote theirC∞(M)-module byX(M) rather thanΓ(τ) or Γ(TM). Any vector field
X onM induces a derivationϑX of the real algebraC∞(M) by the rule

f ∈ C∞(M) 7→ ϑX(f) = X.f := df ◦X.

It may be shown that ifX,Y ∈ X(M), then there exists a unique vector field[X,Y ] onM
such that on each open subsetU of M we have

ϑ[X,Y ](f) = ϑX(ϑY (f))− ϑY (ϑX(f))
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for all f ∈ C∞(U), and the mapping[·, ·] : X(M) × X(M) → X(M) makesX(M) a
(real) Lie algebra. For an accurate proof of these claims we refer to [8]. Lang’s monograph
[20] treats vector fields on Banach manifolds, while Klingenberg’s book [17] deals with
the Hilbertian case. Notice that ifdimM =∞, then not all derivations ofC∞(M) can be
described as above by vector fields.

Back to the finite dimension

In the subsequent concluding part of this section we shall considervector bundles of finite
rank over a common base manifoldM . Then, by our convention,M is also finite dimen-
sional; letn := dimM , n ∈ N∗. We assume, furthermore, thatthe topology ofM is
second countable. Then, as it is well-known,M admits a (smooth) partition of unity; in
particular, for each neighbourhood of every point ofM there is a bump function supported
in the given neighbourhood. Under these conditions we have the following useful technical
result:

Lemma 2.24 Letπ : E →M be a vector bundle of rankk over then-dimensional second
countable base manifoldM , and letp be a point ofM . Then for eachz ∈ Ep there is
a sectionσ ∈ Γ(π) such thatσ(p) = z. If U ⊂ M is an open set containingp, and
σ : U → E is a section ofπ overU , then there is a sectioñσ ∈ Γ(π) which coincides with
σ in a neighbourhood ofp.

Proof. Choose a local trivializationΦ : V × Rk → π−1(V) of E with p ∈ V and a bump
functionf ∈ C∞(M) supported inV such thatf(p) = 1. Givenz ∈ Ep, there is a unique
vectorv ∈ Rk for whichΦ(p, v) = z. Define a mappingσ : M → E by

σ(q) :=
{

Φ(q, f(q)v) if q ∈ V,
0 if q /∈ V.

Thenσ is clearly a (smooth) section ofπ with the desired propertyσ(p) = z, so our first
claim is true. The second statement can be verified similarly.

By a frameof π : E → M over an open subsetU of M we mean a sequence(σi)ki=1

of sections ofE overU such that(σi(p))ki=1 is a basis ofEp for all p ∈ U . If the domain
U of the sectionsσi is not specified, we shall speak of alocal frame. Local frames are
actually the same objects as local trivializations.Indeed, if(σ1, . . . , σk) is a frame ofE
overU , then the mapping

Φ : U × Rk → E,
(
p,
∑k
i=1 ν

iei

)
7→

k∑
i=1

νiσi(p)

is a trivialization ofπ−1(U). Conversely, ifΦ : U ×Rk → E is a local trivialization ofE,
then the mappings

σi : p ∈ U 7→ σi(p) := Φ(p, ei) (1 5 i 5 k)

form a local frame ofE.
Now consider two vector bundles,π1 : E1 → M andπ2 : E2 → M of finite rank. A

mappingΓ(E1) → Γ(E2) will be calledtensorial if it is C∞(M)-linear. The following
simple result is of basic importance and frequently (in general, tacitly) used.
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Lemma 2.25(the fundamental lemma of strong bundle maps)A mappingF : Γ(π1) →
Γ(π2) is tensorial if and only if there is a strong bundle mapF : E1 → E2 such that
F(σ) = F ◦ σ for all σ ∈ Γ(π1).

For a proof see e.g. John M. Lee’s text [21]. In the following we shall usually identify
a tensorial mappingF : Γ(π1)→ Γ(π2) with the corresponding bundle mapF , and write
Fσ rather thanF(σ) or F ◦ σ.

The concept of a linear differential operator introduced in 2.14 can immediately be
generalized to the context of vector bundles. Our initial definition is strongly motivated by
the property formulated in the local Peetre theorem 2.23.

Definition 2.26 An R-linear mappingD : Γ(π1) → Γ(π2), σ 7→ D(σ) =: Dσ is said to
be alinear differential operatorif it is support-decreasing, i.e.,supp(Dσ) ⊂ supp(σ) for
any sectionσ ∈ Γ(π1).

Linear differential operators are natural with respect to restrictions: if U is an open
subset ofM , andD : Γ(π1) → Γ(π2) is a linear differential operator, then (using the
abbreviation(πi)U := πi � π−1

i (U), i ∈ {1, 2}) there is a unique differential operator
DU : Γ((π1)U )→ Γ((π2)U ) such thatDσ � U = DU (σ � U) for every sectionσ ∈ Γ(π1).
Indeed, letp ∈ U be an arbitrary point. By Lemma 2.24, for any sectionσU ∈ Γ((π1)U )
there is a sectionσ of π1 such thatσ = σU in a neighbourhood ofp. If (DUσU )(p) :=
(Dσ)(p), thenDU : Γ((π1)U ) → Γ((π2)U ) is a well-defined linear differential operator
with the desired naturality property. An equivalent formulation:D is a local operator
in the sense thatfor each open subsetU of M and each sectionσ ∈ Γ(π1) such that
σ � U = 0, we have(Dσ) � U = 0.

Let (U , x) be a chart onM . Suppose thatπ1 andπ2 are trivializable overU , i.e.,
there exist trivializationsΦ1 : U × Rk → π−1

1 (U) andΦ2 : U × R` → π−1
2 (U). If

σ ∈ Γ(π1), thenσ̃ := pr2 ◦ Φ−1
1 ◦ σ ◦ x−1 is a smooth mapping fromx(U) ⊂ Rn to

Rk, and the mappingσ ∈ Γ(π1) 7→ σ̃ ∈ C∞
(
x(U),Rk

)
is a linear isomorphism. Let

D : Γ(π1) → Γ(π2) be a linear differential operator, and consider the induced operator
DU : Γ((π1)U ) → Γ((π2)U ). There exists a well-defined continuous linear mappingD̃
from the Fŕechet spaceC∞

(
x(U),Rk

)
into the Fŕechet spaceC∞

(
x(U),R`

)
such that

pr2 ◦ Φ−1
2 ◦DU (σ � U) ◦ x−1 = D̃

(
pr2 ◦ Φ−1

1 ◦ (σ � U) ◦ x−1
)
;

briefly D̃Uσ = D̃(σ̃). D̃ is said to be thelocal expressionof D with respect to the chart
(U , x) and the trivializationsΦ1, Φ2.

Now we are in a position to transpose Peetre’s local theorem (2.23) to the context of
vector bundles.

Theorem 2.27(Peetre’s theorem)Letπ1 andπ2 be vector bundles overM of rankk and
`, respectively. IfD : Γ(π1) → Γ(π2) is a linear differential operator, then there exists
a chart (U , x) at each point ofM , such thatπ1 andπ2 are trivializable overU , and the
corresponding local expression ofD is of the form

f ∈ C∞
(
x(U),Rk

)
7→

∑
|α|5m

Aα ◦Dαf,

where for each multi-indexα such that|α| 5 m,Aα is a smooth mapping fromx(U) ⊂ Rn
toL

(
Rk,R`

)
.
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Peetre’s theorem makes it possible to define theorder of a linear differential operator
D : Γ(π1)→ Γ(π2) at a pointp ∈M as the largestm ∈ N for which there exists a multi-
indexα such that|α| = m, andAα(p) 6= 0 in a local expression ofD in a neighbourhood
of p. It follows at once that ifD is of order0, then it may be identified with a strong bundle
mapE1 → E2, therefore it acts by the ruleσ ∈ Γ(π1) 7→ D ◦ σ ∈ Γ(π2). Equivalently, in
view of Lemma 2.25,D can be considered as a tensorial mapping fromΓ(π1) to Γ(π2).

For the rest of this section, we letπ : E → M be a vector bundle of rankk over
ann-dimensional base manifoldM . We continue to assume thatM admits a partition of
unity.

An important class of first order differential operators fromΓ(π) to Γ(π) may be spec-
ified by introducing the concept of covariant differentiation. The notion is well-known, but
fundamental, so we briefly recall that a mapping

D : X(M)× Γ(π)→ Γ(π), (X,σ) 7→ DXσ

is said to be acovariant derivativeonE if it is tensorial inX and derivation inσ. DXσ is
called the covariant derivative ofσ in the direction ofX, while for any sectionσ ∈ Γ(π),
the mapping

Dσ : X(M)→ Γ(π), σ 7→ DXσ

is thecovariant differentialof σ. ThenDσ ∈ LC∞(M)(X(M),Γ(π)). For every fixed
vector fieldX onM , the mapping

DX : Γ(π)→ Γ(π), σ 7→ DXσ

is obviouslyR-linear. Moreover,DX is a local operator. Indeed, letU ⊂ M be an open
set, and choose a pointp ∈ M . The existence of bump functions supported inU also
guarantees that there is a smooth functionf onM such thatf(p) = 0 andf = 1 outside
U . If σ ∈ Γ(π), andσ � U = 0, thenσ = fσ, and

(DXσ)(p) = (DX(fσ))(p) = (Xf)(p)σ(p) + f(p)(DXσ)(p) = 0,

thereforeDXσ � U = 0. R-linearity and locality imply thatDX is a linear differential
operator. To see that it is of first order, let

(
U ,
(
ui
)n
i=1

)
be a chart onM , and(σj)kj=1

a frame overU . If X ∈ X(M), σ ∈ Γ(π), thenX � U =
∑n
i=1X

i ∂
∂ui , σ � U =∑k

r=1 f
rσr

(
Xi, fr ∈ C∞(U); 1 5 i 5 n, 1 5 r 5 k

)
, and by the local character ofDX ,

(DXσ) � U = DX�U (σ � U) =
n∑
i=1

k∑
r=1

Xi

(
∂fr

∂ui
σr + frD ∂

∂ui
σr

)
.

The local sectionsD ∂

∂ui
σr can be combined from the frame(σj)kj=1 in the form

D ∂

∂ui
σr =

k∑
s=1

Γsirσs, Γsir ∈ C∞(U);
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so we get

(DXσ) � U =
n∑
i=1

k∑
s=1

Xi

(
∂fs

∂ui
+
∑k
r=1 Γsirf

r

)
σs.

Since ∂f
s

∂ui := Di

(
fs ◦ u−1

)
◦ u, DX is indeed of first order. Notice that the functions

Γsir ∈ C∞(U) (1 5 i 5 n; 1 5 r, s 5 k) are called theChristoffel symbolsof D with
respect to the chart

(
U ,
(
ui
)n
i=1

)
and local frame(σi)ki=1.

3 The Chern – Rund derivative

Conventions

Throughout this section we shall work over ann-dimensional (n ∈ N∗) smooth manifold
M admitting a partition of unity. More precisely, the main scene of our next considerations
will be the tangent bundleτ : TM → M of M and the pull-back bundleτ1 : τ∗TM =
TM ×M TM → TM . We shall also need the tangent bundleτTM : TTM → TM of

TM , the deleted bundle
◦
τ :

◦
TM → M

( ◦
TM := {v ∈ TM |v 6= 0}, ◦τ := τ �

◦
TM

)
for

τ and the pull-back
◦
τ∗TM =

◦
TM ×M TM of TM via

◦
τ . For theC∞(TM)-modules

Γ(τ∗TM) ∼= Γτ (TM) andΓ
(◦
τ∗TM

) ∼= Γ◦
τ
(TM) we use the convenient notationsX(τ)

andX
(◦
τ
)
, resp. Any vector fieldX onM induces a vector field̂X alongτ and

◦
τ with

principal partsX◦τ andX◦ ◦τ , resp.X̂ is called abasic vector fieldalongτ (or
◦
τ ). Locally,

the basic vector fields generate the modulesX(τ) andX
(◦
τ
)
. A distinguished vector field

alongτ is thecanonical vector field

δ : v ∈ TM 7→ δ(v) := (v, v) ∈ TM ×M TM.

Generic vector fields alongτ (or
◦
τ ) will be denoted byX̃, Ỹ , . . . . From the moduleX(τ)

(or X
(◦
τ
)
) one can build the spaces of type(r, s) tensors alongτ (or

◦
τ ). TheseC∞(TM)-

multilinear machines can also be interpreted as ‘fields’. For example, a type(0, 2) tensor

field g : X
(◦
τ
)
× X

(◦
τ
)
→ C∞

( ◦
TM

)
can be regarded as a mapping

v ∈
◦
TM 7→ gv ∈ L2

(
T◦
τ(v)

M,R
)

which has the following smoothness property: the function

g
(
X̃, Ỹ

)
: v ∈

◦
TM 7→ g

(
X̃, Ỹ

)
(v) := gv

(
X̃(v), Ỹ (v)

)
is smooth for any two vector fields̃X, Ỹ along

◦
τ .

For coordinate calculations we choose a chart
(
U ,
(
ui
)n
i=1

)
on M , and employ the

induced chart(
τ−1(U),

(
xi, yi

))
; xi := ui ◦ τ , yi : v ∈ τ−1(U) 7→ yi(v) := v

(
ui
)
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(1 5 i 5 n) onTM . The coordinate vector fields

∂

∂ui
: f ∈ C∞(U) 7→ ∂f

∂ui
:= Di

(
f ◦ u−1

)
◦ u ∈ C∞(U) (1 5 i 5 n)

form a frame ofτ : TM → M over U . Similarly,
(

∂
∂xi ,

∂
∂yi

)n
i=1

is a local frame of

τTM : TTM → TM . The basic vector fields

∂̂

∂ui
: v ∈ τ−1(U) 7→

(
v,

(
∂

∂ui

)
τ(v)

)
(1 5 i 5 n)

provide a local frame forτ∗TM . Using this frame, overτ−1(U) we have

X̂ =
n∑
i=1

(
Xi ◦ τ

) ∂̂

∂ui
if X ∈ X(M), X � U =

n∑
i=1

Xi ∂

∂ui
;

δ =
n∑
i=1

yi
∂̂

∂ui
.

The coordinate expression of a generic sectionX̃ of τ∗TM is

X̃ � τ−1(U) =
n∑
i=1

X̃i ∂̂

∂ui
, X̃i ∈ C∞

(
τ−1(U)

)
(1 5 i 5 n).

Canonical constructions onTM and τ∗TM

We begin with a frequently used, simple observation. LetV be ann-dimensional real
vector space, endowed with the canonical smooth structure determined by a linear isomor-
phism ofV ontoRn. For anyp ∈ V , V may be naturally identified with its tangent space
TpV via the linear isomorphism

ıp : v ∈ V 7→ ıp(v) := %̇(0) ∈ TpV, %(t) := p+ tv (t ∈ R)

(%̇(0) is the tangent vector of% at 0 in the sense of classical manifold theory). If(ei)ni=1 is
a basis ofV , and

(
ei
)n
i=1

is its dual, then

ıp(v) =
n∑
i=1

ei(v)
(
∂

∂ei

)
p

.

By means of these identifications, we get an injective strong bundle map

i : TM×M TM → TTM, (v, w) ∈ {v}×Tτ(v)M 7→ i(v, w) := ıv(w) ∈ TvTτ(v)M.

Im(i) =: V TM is said to be thevertical bundleof τTM : TTM → TM . It is easy to
check thatV TM = Ker(τ∗). By Lemma 2.25,i may be interpreted as a tensorial mapping
from X(τ) to X(TM) denoted by the same symbol.Xv(TM) := i(X(τ)) is the module
of vertical vector fieldson TM (in fact, Xv(TM) is a Lie-subalgebra ofX(TM)). In
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particular,Xv := iX̂ is said to be thevertical lift of X ∈ X(M); C := iδ is theLiouville
vector fieldonTM . It is easy to check that

[Xv, Y v] = 0, [C,Xv] = −Xv; X,Y ∈ X(M).

In terms of local coordinates,

i(v, w) =
n∑
i=1

yi(w)
(
∂

∂yi

)
v

(τ(v) = τ(w));

i

(
∂̂

∂ui

)
v

= i

(
v,

(
∂

∂ui

)
τ(v)

)
=
(
∂

∂yi

)
v

,

hence

(
∂

∂ui

)v
=

∂

∂yi
(1 5 i 5 n);

Xv =
n∑
i=1

(
Xi ◦ τ

) ∂

∂yi
if X � U =

n∑
i=1

Xi ∂

∂ui
.

A further and surjective strong bundle map is

j := (τTM , τ∗) : TTM → TM ×M TM, z ∈ TvTM 7→ j(z) := (v, τ∗(z)),

which can also be regarded as a tensorial mapping fromX(TM) to X(τ). j acts on the

local frame
(

∂
∂xi ,

∂
∂yi

)n
i=1

by

j
(

∂

∂xi

)
=

∂̂

∂ui
, j

(
∂

∂yi

)
= 0 (1 5 i 5 n),

thereforeKer(j) = Im(i) = Xv(TM). The compositionJ := i ◦ j is said to be the
vertical endomorphismof X(TM) (or TTM ). It follows that

Im(J) = Ker(J) = Xv(TM), J2 = 0.

By the complete liftof a smooth functionf on M we mean the functionfc : v ∈
TM 7→ fc(v) := v(f) ∈ R. Then, obviously,fc ∈ C∞(TM). It can be shown thatfor
any vector fieldX onM there exists a unique vector fieldXc onTM such thatXcfc =
(Xf)c for all f ∈ C∞(M) [35]. Xc is said to be thecomplete liftof X. A great deal
of calculations may be simplified by the fact thatif (Xi)ni=1 is a local frame ofTM , then
(Xv

i , X
c
i )
n
i=1 is a local frame ofTTM .

It follows immediately thatjXc = X̂, or, equivalently,JXc = Xv. Concerning the
vertical and the complete lifts, we have

[Xc, Y c] = [X,Y ]c, [Xv, Y c] = [X,Y ]v, [C,Xc] = 0; X,Y ∈ X(M).

We shall need, furthermore, the following

Lemma 3.1 If X andZ are vector fields onM , andF is a smooth function onTM , then

X(F ◦ Z) = (XcF + [X,Z]vF ) ◦ Z.
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The simplest, but not too aesthetic way to prove this relation is to express everything
in terms of local coordinates.

On τ∗TM there exists a canonical differential operator of first order which makes it
possible to differentiate tensors alongτ in vertical directions. We call this operator the
canonical v-covariant derivative, and we denote it by∇v. It can explicitly be given as
follows: for each sectioñX in X(τ),

∇v
X̃
F :=

(
iX̃
)
F if F ∈ C∞(TM);

∇v
X̃
Ỹ := j

[
iX̃, η

]
if Ỹ ∈ X(τ) andη ∈ X(TM) such thatjη = Ỹ .

Using the frame
(

∂̂
∂ui

)n
i=1

over τ−1(U), if X̃ � τ−1(U) =
∑n
i=1 X̃

i ∂̂
∂ui and Ỹ �

τ−1(U) =
∑n
i=1 Ỹ

i ∂̂
∂ui , then

∇v
X̃
F � τ−1(U) =

n∑
i=1

X̃i ∂F

∂yi
, ∇v

X̃
Ỹ � τ−1(U) =

n∑
i,j=1

X̃i ∂Ỹ
j

∂yi
∂̂

∂uj
.

From the last expression it is clear that∇v
X̃
Ỹ is well-defined: it does not depend on the

choice ofη. The mapping∇v :
(
X̃, Ỹ

)
∈ X(τ)× X(τ)→ ∇v

X̃
Ỹ ∈ X(τ) has the formal

properties of a covariant derivative operator: it is tensorial inX̃ and satifies the derivation
rule

∇v
X̃
FỸ =

(
∇v
X̃
F
)
Ỹ + F∇v

X̃
Ỹ , F ∈ C∞(TM).

From the very definition, or using the coordinate expression, it can easily be deduced
that

∇v
X̃
Ŷ = 0, ∇v

X̃
δ = X̃; X̃ ∈ X(τ), Y ∈ X(M).

Using an appropriate version of Willmore’s theorem on tensor derivations (see e.g. [35,
1.32]),∇v can uniquely be extended to a tensor derivation of the tensor algebraX(τ). For
any tensorÃ alongτ we may also consider the (canonical) v-covariant derivatives ofÃ
by the ruleiX̃∇

vÃ := ∇v
X̃
Ã (iX̃ denotes the substitution operator associated toX̃). If,

in particular,F ∈ C∞(TM), then∇vF is a one-form,∇v∇vF := ∇v(∇vF ) is a type
(0, 2) tensor alongτ . ∇v∇vF is called the (vertical)Hessianof F . For any two vector
fieldsX,Y onM we have

∇v∇vF
(
X̂, Ŷ

)
= Xv(Y vF ) = [Xv, Y v]F + Y v(XvF )

= Y v(XvF ) = ∇v∇vF
(
Ŷ , X̂

)
,

so the tensor∇v∇vF is symmetric.

Ehresmann connections and Berwald derivatives

Definition 3.2 By anEhresmann connectionon TM we mean a mappingH : TM ×M
TM → TTM satisfying the following conditions:
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(C1) H �
◦
TM ×M TM is smooth;

(C2) for all v ∈
◦
TM ,H � {v} × Tτ(v)M is a linear mapping toTvTM ;

(C3) j ◦ H = 1TM×MTM ;

(C4) if o : M → TM is the zero section ofTM , thenH(o(p), v) = (o∗)p(v) for all
p ∈M , v ∈ TpM .

Then (C3) and (C4) are clearly consistent, however,the smoothness ofH (and the
objects derived fromH) is not guaranteed on its whole domain. (This weakening of
smoothness allows more flexibility in applications.) IfHTM := Im(H), thenTTM =
HTM ⊕ V TM (Whitney sum);HTM is said to be ahorizontal subbundleof TTM .

Given an Ehresmann connectionH on TM , there exists a unique strong bundle map

V : TTM → TM ×M TM , smooth in general only onT
◦
TM , such that

mathcalV ◦ i = 1TM×MTM and Ker(V) = Im(H).

V is called thevertical mapassociated toH. h := H ◦ j andv := i ◦ V are projectors on
TTM , thehorizontalandvertical projectorbelonging toH, respectively.H (as well as
V, h andv) induce tensorial mappings at the level of sections.Xh(TM) := H(X(τ)) =
h(X(TM)) is called the space ofhorizontal vector fieldson TM . In particular,Xh :=
H
(
X̂
)

= hXc is thehorizontal lift of X ∈ X(M). We have:X(TM) = Xh(TM) ⊕
Xv(TM) (direct sum of modules). In terms of the local frames

(
∂̂
∂ui

)n
i=1

of τ∗TM and((
∂
∂xi

)n
i=1

,
(

∂
∂yi

)n
i=1

)
of TTM , we get the following coordinate expressions:

H

(
∂̂

∂ui

)
=

∂

∂xi
−

n∑
j=1

N j
i

∂

∂yj
; V

(
∂

∂xi

)
=

n∑
j=1

N j
i

∂̂

∂uj
, V

(
∂

∂yi

)
=

∂̂

∂ui
;

h
(

∂

∂xi

)
=

∂

∂xi
−

n∑
j=1

N j
i

∂

∂yj
, h

(
∂

∂yi

)
= 0;

v
(

∂

∂xi

)
=

n∑
j=1

N j
i

∂

∂yj
, v

(
∂

∂yi

)
=

∂

∂yi
(1 5 i 5 n).

The functionsN j
i , defined onτ−1(U) and smooth on

◦
τ−1(U), are called theChristoffel

symbolsof H with respect to the given local frames. (The minus sign in the first formula
is more or less traditional.)

Via linearization, any Ehresmann connectionH leads to a covariant derivative∇ :

X
( ◦
TM

)
× X

(◦
τ
)
→ X

(◦
τ
)

on τ∗TM , called theBerwald derivativeinduced byH. The

explicit rules of calculation are

∇HX̃ Ỹ := V
[
HX̃, iỸ

]
and ∇iX̃ Ỹ := ∇v

X̃
Ỹ ; X̃, Ỹ ∈ X

(◦
τ
)
.

Theh-part of∇, given by∇h
X̃
Ỹ := ∇HX̃ Ỹ , has the coordinate expression

∇hd∂
∂ui

∂̂

∂uj
= ∇( ∂

∂ui )
h

∂̂

∂uj
=

n∑
k=1

∂Nk
j

∂yi
∂̂

∂uk
(1 5 i, j 5 n),
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where the functionsNk
j are the Christoffel symbols ofH. If Ã is any tensor along

◦
τ , we

may also consider theh-Berwald differential∇hÃ of Ã given by∇hÃ
(
X̃
)

:= ∇h
X̃
Ã.

t := ∇hδ is said to be thetensionofH. Then for any sectioñX along
◦
τ we have

t
(
X̃
)

= ∇hδ
(
X̃
)

= ∇HX̃δ = V
[
HX̃, C

]
.

H is calledhomogeneousif t = 0. If a homogeneous Ehresmann connection is of class
C1 at the zeros, then there exists a covariant derivativeD onM (more precisely, onTM )
such that for allX,Y ∈ X(M),

(DXY )v =
[
Xh, Y v

]
.

So under homogeneity andC1-differentiability Ehresmann connections lead to classical
covariant derivatives on the base manifold.

For covariant derivatives given on a generic vector bundle there is no reasonable con-
cept of ‘torsion’. However, ifD is a covariant derivative on the pull-back bundleτ∗TM ,
and an Ehresmann connectionH is also specified onTM , we have useful generalizations
of the classical torsion: thevertical torsionT v(D) and thehorizontal torsionTh(D) given
by

T v(D)
(
X̃, Ỹ

)
:= DiX̃ Ỹ −DiỸ X̃ − i−1

[
iX̃, iỸ

]
and

Th(D)
(
X̃, Ỹ

)
:= DHX̃ Ỹ −DHỸ X̃ − j

[
HX̃,HỸ

]
,

respectively. (It is easy to check that bothT v(D) andTh(D) are tensorial.)
The vertical torsion of any Berwald derivative∇ vanishes. Indeed, for allξ, η ∈

X(TM) we have

i(T v(∇)(jξ, jη)) = i∇Jξjη − i∇Jηjξ − [Jξ, Jη]
= J [Jξ, η]− J [Jη, ξ]− [Jξ, Jη] = −NJ(ξ, η),

whereNJ is theNijenhuis torsionof J . However, as it is well-known,NJ = 0, therefore
T v(∇) = 0.

The horizontal torsion of the Berwald derivative induced by an Ehresmann connection
H is said to be thetorsion ofH. Denoting this tensor byT, we get

iT
(
X̂, Ŷ

)
=
[
Xh, Y v

]
−
[
Y h, Xv

]
− [X,Y ]v; X,Y ∈ X(M).

If H is of classC1 and homogeneous, then there is a covariant derivativeD onM such
that(DXY )v =

[
Xh, Y v

]
(X,Y ∈ X(M)); hence

iT
(
X̂, Ŷ

)
= (DXY −DYX − [X,Y ])v =: (T (D))v,

soT reduces to the usual torsion ofD.
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Definition 3.3 By a semisprayon TM we mean a mappingS : TM → TTM such

that τTM ◦ S = 1TM , JS = C (or, equivalently,jS = δ) andS �
◦
TM is smooth.

A semispray is said to be aspray if it is of classC1 on TM , and has the homogeneity
property[C,S] = S. A spray is calledaffine if it is of classC2 (and hence smooth) on
TM .

Any semisprayS onTM induces an Ehresmann connectionHS onTM such that for
all X ∈ X(M) we have

HS
(
X̂
)

=
1
2
(Xc + [Xv, S]).

The torsion ofHS vanishes. Conversely,if an Ehresmann connectionH has vanishing
torsion, then there exists a semisprayS on TM such thatHS = H, i.e., ‘H is generated
by a semispray’. These important results (at least in an intrinsic formulation) are due to
M. Crampin and J. Grifone (independently). For details we refer to [35].

Parametric Lagrangians and Finsler manifolds

First we recall that a functionf : TM → R is calledpositive-homogeneous of degreer
(r ∈ R), briefly r+-homogeneousif for eachλ ∈ R∗+ andv ∈ TM we havef(λv) =

λrf(v). If f is smooth on
◦
TM , thenCf = rf , or, equivalently,∇vδf = rf (Euler’s

relation). Conversely, this property implies thatf is r+-homogeneous on
◦
TM .

Definition 3.4 By a parametric Lagrangianwe mean a1+-homogeneous functionF :

TM → R which is smooth on
◦
TM . ThenQ := 1

2F
2 is called thequadratic Lagrangian

or energy functionassociated toF . The symmetric type (0,2) tensor

gF := ∇v∇vQ =
1
2
∇v∇vF 2

along
◦
τ is themetric tensordetermined byF . If, in addition,

F (v) > 0 wheneverv ∈
◦
TM,

thenF is calledpositive definite.

Lemma 3.5 LetF : TM → R be a parametric Lagrangian. Then

(i) ∇v∇vF
(
δ, X̂

)
= 0 for every vector fieldX onM , therefore the vertical Hessian

of F is degenerate.

(ii) The quadratic LagrangianQ = 1
2F

2 is 2+-homogeneous;C1 on TM , smooth on
◦
TM .

(iii) The metric tensorgF = ∇v∇vQ is 0+-homogeneous in the sense that∇vδgF = 0.

(iv) g andQ are related bygF (δ, δ) = 2Q.
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(v) If ϑ̃F
(
X̃
)

:= g
(
X̃, δ

)
, then ϑ̃F is a one-form along

◦
τ , andϑF := ϑ̃F ◦ j is a

one-form on
◦
TM . We havẽϑF = ∇vQ = F∇vF .

Except the second statement of (ii), each claim can be verified by immediate calcula-
tions. For example, taking into account that∇v

X̃
Ŷ = 0 for all X̃ ∈ X(τ), Y ∈ X(M),

∇v∇vF
(
δ, X̂

)
= ∇vδ(∇

vF )
(
X̂
)

= C
(
∇v
X̂
F
)
−∇vF

(
∇vδX̂

)
= C(XvF )

= [C,Xv]F +Xv(CF ) = −XvF +XvF = 0,

whence (i). As for the (not difficult) proof of the fact thatQ is C1 on TM , see [35, p.
1378, Observation].

Remark3.6 Bothϑ̃F andϑF are called theLagrange one-formassociated toF ; ωF :=
dϑF is theLagrange two-form(d is the classical exterior derivative onTM ). ωF and the
metric tensorgF are related by

ωF (Jξ, η) = gF (jξ, jη); ξ, η ∈ X
( ◦
TM

)
(to check this it is enough to evaluate both sides on a pair(Xc, Y c) with X,Y ∈ X(M)).
We conclude thatthe Lagrange two-form and the metric tensor associated to a parametric
Lagrangian are non-degenerate at the same time. (Non-degeneracy is meant pointwise.
This implies a corresponding property at the level of vector fields, but not vice versa.)

Definition 3.7 By a Finsler functionwe mean a positive definite parametric Lagrangian
whose associated metric tensor is non-degenerate (and hence is a pseudo-Riemannian met-
ric on

◦
τ∗TM ). A manifold is said to be aFinsler manifoldif its tangent bundle is endowed

with a Finsler function.

Proposition 3.8 If (M,F ) is a Finsler manifold, then the metric tensorgF is positive

definite, i.e.,gF is a Riemannian metric in
◦
τ∗TM .

Proof. The problem can be reduced to prove the following: if a smooth functionQ :
Rnr{0} → [0,∞[ is 2+-homogeneous, and the second derivativeQ′′(p) : Rn×Rn → R
is a non-degenerate symmetric bilinear form at each pointp ∈ Rn r {0}, thenQ′′(p) is
positive definite. A further reduction is provided by the fact that the index ofQ′′(p) does
not depend on the point ofp ∈ Rnr{0} (this can be seen, e.g., by an immediate continuity
argument). Thus it is enough to show thatQ′′(p) is positive definite at a suitably chosen
pointp.

The continuity ofQ and the compactness of the Euclidean unit sphere∂B1(0) implies
the existence of a pointe ∈ ∂B1(0) such thatQ(e) 5 Q(a) for all a ∈ ∂B1(0). LetH
be the orthogonal complement of the linear span ofe. If v ∈ H, thenQ′(e)(v) = 0, and
Q′′(e)(v, v) = 0. On the other hand, applying (v) of 3.5, it follows that

Q′′(e)(e, v) = Q′(e)(v) = 0, v ∈ H.

Now let u ∈ Rn r {0} be any vector. It can uniquely be decomposed in the formu =
αe+ v; α ∈ R, v ∈ H. Since by Euler’s relationQ′′(e)(e, e) = 2Q(e), we get

Q′′(e)(u, u) = 2α2Q(e) +Q′′(e)(v, v) = 0.

This inequality is in fact strict, becauseQ′′(e) is non-degenerate.
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Note The above proof is due to P. Varjú, a student of University of Szeged (Hungary).
Another argument can be found in [23].

If (M,F ) is a Finsler manifold, then by 3.6 the Lagrange two-formωF is non-
degenerate, so there exists a unique semisprayS onTM such thatiSωF = −dQ. Due to
the 2+-homogeneity ofQ, S is in fact a spray, called thecanonical sprayof the Finsler
manifold.

Lemma 3.9(fundamental lemma of Finsler geometry)Let (M,F ) be a Finsler manifold.
There exists a unique Ehresmann connectionH onTM such thatH is homogeneous, the
torsion ofH vanishes, anddF ◦ H = 0.

Proof. We are going to show only the existense statement. As for the uniqueness, which
needs more preparation and takes about one page, we refer to [35, p. 1384].

Let S be the canonical spray of(M,F ), and consider the Ehresmann connectionHS
induced byS according to the Crampin – Grifone construction. Then, as we have already
pointed out, the torsion ofHS vanishes. Since

HS is homogeneous
def.⇐⇒ t = 0 ⇐⇒ i ◦ t = 0 ⇐⇒

[
Xh, C

]
= 0, X ∈ X(M),

we calculate:
[
Xh, C

]
=
[
1
2 (Xc + [Xv, S]), C

]
= 1

2 [[Xv, S], C] = − 1
2 ([[S,C], Xv]

+[[C,Xv], S]) = 1
2 ([S,Xv] + [Xv, S]) = 0.

Now we show thatdF ◦HS = 0. SincedQ = FdF , andF vanishes nowhere on
◦
TM ,

our claim is equivalent to

dQ ◦ HS = 0 ⇐⇒ XhQ = 0 for all X ∈ X(M).

By the definition ofS, 0 = iSωF + dQ. We evaluate both sides on a horizontal liftXh:

0 = ωF
(
S,Xh

)
+XhQ = dϑF

(
S,Xh

)
+XhQ = Sϑ̃F

(
jXh

)
−Xhϑ̃F (jS)

− ϑ̃F
(
j
[
S,Xh

])
+XhQ

3.5(v)= S
(
∇vQ

(
jXh

))
−Xh(∇vQ(δ))

−∇vQ
(
j
[
S,Xh

])
+XhQ = S(XvQ)− 2XhQ− J

[
S,Xh

]
Q+XhQ

= [S,Xv]Q− 2XhQ−XcQ+XhQ+XhQ,

taking into account thatSQ = dQ(S) = −iSωF (S) = −ωF (S, S) = 0, and (see [35,
3.3, Cor. 3])J

[
S,Xh

]
= Xc −Xh. Finally, by the definition ofHS again,[S,Xv]Q =

XcQ− 2XhQ, therefore−2XhQ = 0.
Thus we have proved that the canonical spray of a Finsler manifold induces an Ehres-

mann connection with the desired properties.

Note In a coordinate-free form, the fundamental lemma of Finsler geometry was first
stated and proved by J. Grifone [12]. We call the Ehresmann connection so described the
Barthel connectionof the Finsler manifold. (Other terms, e.g., ‘nonlinear Cartan connec-
tion’ are also used.) Now we briefly discuss the relation between the fundamental lemma
of Finsler geometry and Riemannian geometry.

Consider the type(0, 3) tensorC[ := ∇vgF = ∇v∇v∇vQ along
◦
τ and the type(1, 2)

tensorC defined by the musical duality given by

gF

(
C
(
X̃, Ỹ

)
, Z̃
)

= C[
(
X̃, Ỹ , Z̃

)
; X̃, Ỹ , Z̃ ∈ X

(◦
τ
)
.
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C, as well asC[, is called Cartan tensor of the Finsler manifold(M,F ). It is easy to see
thatC[ vanishes if and only ifgF is the lift of a Riemannian metricg : X(M)× X(M)→
C∞(M) on M in the sense thatgF = g ◦ τ . (ThengF

(
X̂, Ŷ

)
= g(X,Y ) ◦ τ for

all X,Y ∈ X(M).) In this particular case the canonical spray of(M,F ) becomes an
affine spray, and, as we have already remarked, the Barthel connection induces a covariant
derivativeD onM such that(DXY )v =

[
Xh, Y v

]
for all vector fieldsX,Y onM . It can

be shown by an immediate calculation thatD is just the Levi-Civita derivative on(M, g).
Thus, roughly speaking,if a Finsler manifold reduces to a Riemannian manifold, then its
Barthel connection reduces to the Levi-Civita derivative on the base manifold.

Covariant derivatives on a Finsler manifold

For the sake of convenient exposition, first we introduce some technical terms. Let a covari-
ant derivative operatorD on

◦
τ∗TM and an Ehresmann connectionH onTM be given. We

say thatD is strongly associatedtoH if Dδ = V (= the vertical map belonging toH). The
v-partDv and theh-partDh of D are given byDv

X̃
(·) := DiX̃(·) andDh

X̃
(·) := DHX̃(·),

respectively. Ifg is a (pseudo) Riemannian metric on
◦
τ∗TM , thenD is calledv-metrical,

h-metricalor ametric derivative, if Dvg = 0,Dhg = 0 andDg = 0, respectively. By the
h-Cartan tensorof a Finsler manifold(M,F ) we mean the type(0, 3) tensorCh[ := ∇hgF ,
or the(1, 2) tensorCh given by

gF

(
Ch
(
X̃, Ỹ

)
, Z̃
)

= Ch[
(
X̃, Ỹ , Z̃

)
; X̃, Ỹ , Z̃ ∈ X

(◦
τ
)

along
◦
τ , where∇ is the Berwald derivative induced by the Barthel connection. (∇ will be

mentioned as theFinslerian Berwald derivativeon (M,F ) in the following.)
From a ‘modern’ point of view, the covariant derivative operators introduced in Finsler

geometry by L. Berwald,́E. Cartan, S. S. Chern, H. Rund and later by M. Hashiguchi
using classical tensor calculus, can be interpreted as covariant derivatives on

◦
τ∗TM , spec-

ified by some nice properties (compatibility or ‘semi-compatibility’ with the metric tensor
and the Barthel connection, vanishing of some torsion tensors). The covariant derivative
constructed býE. Cartan in 1934 is an exact analogue of the Levi-Civita derivative on a
Riemannian manifold, but it lives on the pull-back bundle

◦
τ∗TM . To be more precise,

Cartan’s derivativeD : X
( ◦
TM

)
× X

(◦
τ
)
→ X

(◦
τ
)

is the only covariant derivative on a

Finsler manifold(M,F ) which is metric(DgF = 0), and whose vertical and horizontal
torsion vanish(the latter is taken with respect to the Barthel connectionH). ThenD is
strongly associated toH, and it is related to the Finslerian Berwald derivative by

Dv = ∇v +
1
2
C, Dh = ∇h +

1
2
Ch.

For a proof of this, as well as the next result, we refer to [35].
In 1943 S. S. Chern, using Cartan’s calculus of differential forms; later, but indepen-

dently, in 1951, H. Rund by means of tensor calculus, constructed a covariant derivative
on a Finsler manifold which may be described in our language as follows:

Lemma 3.10 Let (M,F ) be a Finsler manifold, and letH denote its Barthel connection.

There exists a unique covariant derivativeD on
◦
τ∗TM such thatDv = ∇v, Dhg = 0
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(i.e.,D is h-metrical with respect toH), and the (H-)horizontal torsion ofD vanishes.
ThenD is strongly associated toH, and it is related to the Finslerian Berwald derivative
by

Dv = ∇v, Dh = ∇h +
1
2
Ch.

It will be useful to summarize the classical covariant derivatives used in Finsler geom-
etry in a tabular form.

D =
(
Dv, Dh

)
Dvg Dhg T v(D) Th(D) Dδ

Berwald(
∇v,∇h

) C[ Ch[ 0 T = 0
t ◦ j + V

= V
Cartan 0 0 0 0 V

Chern – Rund
Dv := ∇v C[ 0 0 0 V

Hashiguchi
Dh := ∇h 0 Ch[ 0 T = 0 V

(Data printed in bold are prescribed.)
It is a historical curiosity that Chern’s covariant derivative and Rund’s covariant deriv-

ative were identified only in 1996 [1]. Another construction of the Chern – Rund derivative
can be found in a quite recent paper of H.-B. Rademacher [32]: it is given locally as a
covariant derivative on the base manifoldM , ‘parametrized’ by a nowhere vanishing vec-
tor field on an open subset ofM , satisfying some Koszul-type axioms. Now we identify
Rademacher’s constructions with ours presented in 3.10.

Theorem 3.11 Let (M,F ) be a Finsler manifold. SupposeU ⊂ M is an open set, andU
is a nowhere vanishing vector field onU . If gU is defined by

gU (X,Y ) := gF

(
X̂, Ŷ

)
◦ U ; X,Y ∈ X(U),

thengU is a Riemannian metric onU , and there exists a unique covariant derivative

DU : X(U)× X(U)→ X(U), (X,Y ) 7→ DU
XY

such thatDU is torsion-free and almost metric in the sense that

XgU (Y, Z) = gU
(
DU
XY, Z

)
+ gU

(
Y,DU

XZ
)

+ C[
(
D̂U
XY , Ŷ , Ẑ

)
◦ U

for any vector fieldsX,Y, Z onU . DU is related to the Chern – Rund derivativeD by

DU
XY =

(
DXc Ŷ

)
◦ U ; X,Y ∈ X(U).

Proof. To show theexistence, we define the mappingDU by the prescription(
DU
XY
)
(p) := DXc Ŷ (U(p)); X,Y ∈ X(U), p ∈ U ;
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whereD is the Chern – Rund derivative on(M,F ). It is then obvious thatDU is additive in
both of its variables. To check theC∞(U)-linearity inX and the Leibniz rule, we choose a
smooth functionf onU , and using the properties of the Chern – Rund derivative, calculate:

DU
fXY :=

(
D(fX)c Ŷ

)
◦ U =

(
fcDXv Ŷ + fvDXc Ŷ

)
◦ U

= (fv ◦ U)
(
DXc Ŷ ◦ U

)
= fDU

XY
(
fv := f ◦ ◦τ

)
;

DU
XfY :=

(
DXcfvŶ

)
◦ U =

(
(XcF v)Ŷ + fvDXc Ŷ

)
◦ U = (Xf)Y + fDU

XY.

Taking into account that the horizontal torsion ofD vanishes, and hence0 = DXh Ŷ −
DY hX̂ − j

[
Xh, Y h

]
= DXh Ŷ −DY hX̂ − [̂X,Y ], it follows that

DU
XY −DU

YX =
(
DXc Ŷ −DY cX̂

)
◦ U

=
(
DXh Ŷ −DY hX̂

)
◦ U = [̂X,Y ] ◦ U = [X,Y ],

i.e.,DU is torsion-free. It remains to show thatDU is almost metric. By Lemma 3.1 and
using thatD is h-metrical, we get

XgU (Y, Z) = X
(
gF

(
Ŷ , Ẑ

)
◦ U
)

=
(
(Xc + [X,U ]v)gF

(
Ŷ , Ẑ

))
◦ U

=
((
Xh + vXc + [X,U ]v

)
gF

(
Ŷ , Ẑ

))
◦ U = gF

(
DXh Ŷ , Ẑ

)
◦ U

+ gF

(
Ŷ ,DXhẐ

)
◦ U + C[

(
VXc + [̂X,U ], Ŷ , Ẑ

)
◦ U.

Finally, we identify the termVXc+[̂X,U ]. Observe that at each pointp ∈ U ,Uh(U(p)) =
H ◦ Û(U(p)) = H(U(p), U(p)) = H ◦ δ(U(p)) = S(U(p)), whereS is the canonical
spray of(M,F ). Using this, the torsion-freeness of the Barthel connection and the relation
Ch(·, δ) = 0 (as for the latter, see [35, 3.11]), we have

(vXc + [X,U ]v) ◦ U =
(
vXc +

[
Xh, Uv

]
−
[
Uh, Xv

])
◦ U

=
(
vXc + i∇XhÛ − i∇UhX̂

)
◦ U =

(
vXc + i∇XhÛ − i∇SX̂

)
◦ U

=
(
v(Xc − [S,Xv]) + i∇XhÛ − 1

2
iCh

(
X̂, δ

))
◦ U = i

(
DXc Ŷ

)
◦ U

=
(
DU
XY
)v
.

This completes the proof of the existence statement. As for uniqueness, it can be shown
(see the cited paper of Rademacher) that ifDU is an almost-metric, torsion-free covariant
derivative operator onU , then it obeys a Koszul-type formula, and hence it is uniquely
determined.
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[9] H. Glöckner: Infinite-dimensional Lie groups without completeness restrictionsIn:

A. Strasburger, W. Wojtynski, J. Hilgert and K.-H. Neeb (eds): Geometry and Analy-
sis on finite and infinite-dimensional Lie groups(Banach Center Publications, 2002)
43–59
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