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ON THE CURVATURE AND INTEGRABILITY
OF HORIZONTAL MAPS

J. SZILASI (Debrecen)

1. Introduction. In the recent progress of connection theory (especially in Finsler
geometry, see [9]) and its applications the vector bundle viewpoint plays a central
role, Purely geometrically, from this point of view the notion of a (general) connec-
tion ([11], Definition 3) is based upon a Whitney decomposition of the tangent
bundle of the total space of the considered vector bundle into the vertical subbundle
and a horizontal one. Each of the horizontal subbundles can be obtained with the
help of a (right, smooth) splitting of the canonical short exact sequence ([4], Vol.
IT, p. 335) constructed from the given vector bundle. These splittings are called
horizontal maps. Hence the theory of connections may be developed starting from
a horizontal map; a sketch of such an approach can be found in the author’s paper
[11], cf. also [2], [12]. In this note we are going to investigate mainly the integrability
of a horizontal map. Here, integrability means that the image bundle of the hori-
zontal map under discussion is an involutive distribution in the usual sense ([4],
Vol. I, p. 134). Our main result gives a number of necessary and sufficient conditions
for a horizontal map to be integrable. These criteria will be formulated in terms of
horizontal projection, vertical projection, almost product structure and curvature tensor
Jield induced by the horizontal map 5 in question. We shall also discuss some in-
teresting relations between the Dombrowski map K belonging to # and the curvature
tensor field, furthermore — in the linear case — between K and the usual curvature
Jorm induced by 4. These relations generalize some results of Dombrowski’s im-
portant paper [1].

Grifone’s and Vilms® works [5], [12] were very stimulating for the present in-
vestigations. A discussion of similar questions also occurs in Duc’s excellent survey [2].

Notations, terminology and basic conventions are as in the monograph [4]
and in the paper [11].

2. Preliminaries. For the convenience of the reader, we begin with some defini-
tions and technical remarks needed in the subsequent considerations.

Let M be a manifold. ZZ(M), 4°(M,1y), Endzy and End (M) denote
the C=(M)-module of (p, ¢) tensor fields on M, t,,-valued p-forms on M, Ty—17y
(linear) bundle maps, and % (M)—~% (M) C=(M)linear maps, respectively. It is
known (e.g. from [7], Proposition 3.1) that the module of g-linear maps % (M)X...
o XE(M)-F (M) is isomorphic to the module Z1(M); in particular F1(M)=
=End Z(M). Now suppose that f€End 1,,. Then vpeM: fiT,M=f,€End T, M,
so the map f: pe M—~f(p):= /» 15 an element of A*(M, 1) and the correspondence
S—F defines a (natural) isomorphism End 7,z A2 (M, ty). Because of End T,M =
=(T,M)*®T,M one can also write fcSec (1} ®Ty)=%1(M). Summarizing, we
obtain the following.
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Lemma. %3(M)=End & (M)=>=End 1y =A*(M, Ty)-
We shall identify these isomorphic modules, without further reference.

Dermarion 1. (See [3] or [7], Proposition 3.12). Let f, g€End ty. Their
Nijenhuis-torsion is the (1,2) tensor field [f, gl: ZIMYXEM)~Z(M) given by

—g[X,fY1—fIX, g¥1+gof [X, Y]+foglX, Y]

((fX, gY] etc. are the usual Lie products of vector fields).
The introduction of the following useful concept was inspired by Haantjes’s the-
orem ([3], Theorem III).

" DerNiTION 2. Let f¢End ty. Suppose that VpeM: f,=:f|T,M has con-
stant eigenvalues Ay, ..., 4 with constant geometric multiplicity (1=k=n). Let
us denote by S(4;) those subbundles of 7, whose fibers at a point pcM are the
invariant subspaces belonging to A;. f is called integrable if the subbundles § (4)
and the Whitney sums S(A)®...®S4) (j=2, ..., k) are involutive distributions.

In the sequel ¢=(F, x, B, F) will always denote a fixed vector bundle over the

n-dimensional base manifold B. The sequence of vector bundles 0 — ¥; > 1z —~

=, 7*(15)—0 (where ¥} denotes the vertical subbundle of the tangent bundle 1g)
is a short exact sequence, which is also called the canonical exact sequence starting
from &. So a horizontal map is 2 bundle map #: 7*(t5) -1k, while the horizontal
projection, vertical projection and almost product structure mentioned above are

hi= Hodn, vi=1—h, P=2h—1

respectively. If o: ¥;—~¢ is the canonical bundle map described e.g. in [4], Vol. 1
p. 291, then K:=aol is the Dombrowski-map induced by #. (For details, see
[11].) The endomorphisms h,v, P¢End 1y — according to the lemma — will also
be interpreted as (1, 1) tensor fields. In this case — for better clarity — we shall
sometimes write &, 7, P instead of h, v and P. Observe (cf. [11], Section 5) that these
endomorphisms satisfy the conditions of Definition 2, hence we can speak about

their integrability.

3. Curvature of horizontal maps. Following Grifone’s idea, which in turn was
inspired by [3], we define the curvature tensor field of a horizontal map # as the
Nijenhuis-torsion R:= —~1/2[h, h]. The geometric meaning of this construction will
be clarified by the next results. There are, of course, other possibilities to define
curvature for a horizontal map; see e.g. [8], [12] and — in the linear case — [10].

ProvosiTioNn 1. Let UCB be a trivializing neighbourhood for & and (x', ¥
the local coordinate system over n~(U) described in [11), Section 5. If the functions
I's: z~Y(U)~R are the comnection parameters of H with respect to (X', y*) and

i a 4 a — 17 a -2 -1
T=7 3xi+z Fr V=V t')x"-l_V e are ?ector fields over w*(U), then
R(Z, V)=-zi1va'==-i where

if aya s

ars_ary_,or L, om
T ooxt ox T oy* I ay?”
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COROLLARY. YZ, VEZ(E): R(Z, VYEXy(E):=Sec V..
The proof is a standard, but lengthy calculation, so we omit it.

In view of hX*=X* hY*=Y" (where X* and Y* are the horizontal lifts of
X and Y with respect to 5, see [11], Definition 2) we immediately obtain from the
definition of R and of the Nijenhuis torsion

ProposITioN 2 (cf. [13] and [2]). VX, YeZ(B): R(X*", YH=h[X*, Y¥|—[X*, Y*].

Using this proposition and the obvious relation Koh=0 we have the following
generalization of formula (23) of [1]:

ProposITION 3. If K is the Dombrowski map belonging to # then
VX, YEZ(B): aoR(X™" Y = —Ko[X?, Y1,

that is the diagram
E 2D, yE

[xn, Y"]j Ja
TE—X . E

commules.
PROOF. On the one hand
KoR(X" Y*) = Ko(h[X* Y*][X* Y*]) = —Ko[X"; Y,
on the other hand
KoR(X" Y™ = aovoR(X", Y*) = ao R(X*, YM),

because of R(X", YHeZ(E). O

Now we suppose that 5 satisfies the so-called homogeneity condition {11y,
Definition 2). In this case 2# induces a V: Sec > AY(B, &) linear connection. It is
well-known that the curvature form of V is the mapping _

R: Z(B)X%Z(B) -~ End Secé¢,
- (X, Y) > R(X, Y) = VxoVy~VyoVy —Vix y1,
where End Sec ¢ is the module of the C=(B)-linear maps Sec & > Sec & (see {4],

Vol. IT). What is the relation between the curvature tensor field R and the curvature
form R? The answer to this very natural question is given in the

THEOREM 1. VX, YEZ'(B), 6€Sec &: aoR(X*Y, Y"oa=R(X, Y)(6), so we have
the following commutative diagram:

B E
R(x, Y){a)j lR(xh. ")
¥
E & VE
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Proo¥. Choosing a trivializing neighbourhood UcB, we again work in the
coordinate system (x%, ). It induces a framing e,: U~E (see [11], Section 5),
so each section 6: B—E can be written locally in the form a%e,. A straightforward
(lengthy) calculation shows that over U

(VXOVY“VI’OVX—V[X, Y])O" = Xiyjﬁ?fmﬂ'ﬂea,
where o _
B i 0 0 0% ATy .
X:Xﬁ’ Y=YJW’ iig = azjiﬁ_' % + IG5 —T5T,

and in the last expression the functions I'fy are defined by I ?ﬁ::-g% (see [11],
Th. 1). On the other hand,

iyi 31“‘!.3. ar?ﬁ - a
_R(Xh? Y}') = (X YJOTE)yﬂ [B—I;ORMWOR'I”(F{JO?I)(F}ﬁGﬂ)—

7,
oy*
The value of this vector field at the point o(x)ex—1(U ) is

RX", YN [o(x)] = X'Vigh (;.:)ﬁ*;;-,g (x) [3?;&-] ( )e Ty E,

~{([s0m) (I on)]

consequently
%) [R(X", Y [0 ()]} = XiY/oh () Re;5 (%) [aa(x) [aiy“] ( )] =

=X "Yjﬁ?jﬁ (x)o? (x)e,(x).
This is exactly a coordinate statement of the conclusion of the Theorem. []

COROLLARY. In the linear case X, Y€Z(B), o€Secé: Ko[X" Y"og=
=—[R(X, T)](0). :

This last relation is the immediate generalization of the above mentioned for-
mula of Dombrowski’s paper. '

4. Integrability of horizontal maps. Now we turn to the study of the integ-
rability of a horizontal map 4. The next result summarizes the situation.

THEOREM 2. For a horizontal map K. w*(1p)—>1¢ the following are equivalent:
(1) o is integrable. |
(2) The curvature tensor field of # vanishes, that is VZ, V€ #(E): R(Z, V)=0.
(3) The component functions R%; of R wanish. |
(4) The horizontal projection h is integrable.
(5) Do[h, A]=0.
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(6) The vertical projection v is integrable.
() 5, 5]=0.
(8) do[d, 8]=0.
9) [B, P1=0.
(10) The almost produbt structure P is integrable.
ProOOF. (a) We begin with the following technical remarks:
[, Bl =[5,%), Imh=Kerd = Sec Im .
Indeed, [#, #]=[1—h, 1-h=[1, 11—[k, 11—[1, A1+]h, B]. Here '[1, 1]=0, as it
immediately follows from the definition of the operation [ , |, while VZ,, Z:€Z(E):
5, 1(Zy, Zo) = 12y, Zol+[Z4, BZa—hZy, ZA—k1Zy, Zo— 20, BZd—
—h[Z,, Z)+hIZ,, Z,)+RIZ,, Zo] = 0= [h, 1] = 0.

Similarly [1, A]=0, thus [, 5]=[A, A]. The second assertion is clear.
(b) We show: (Q)e()e(0)<(8). Let Z,, Z,6 F(E). From the definition of
the curvature we have: '

[ﬁzls HZE] = '—R(le Z2)_5[Zla Z2] +E[ﬁzla Z2]+E[le ;;Zz]

On the right hand side — R(Z,, Z,)€¢%y(F), while the other terms belong to
Zg(E):=Sec Im o because of (a). It implies that [AZ,, AZ,)c X x(E)<> R(Z;, Z;)=0
proving the equivalence (2)<(1). From this the implication (1)=>(5) also follows.
If — conversely — o[k, i]=0, then (applying (a) again) Im[f, AlcKer§=
=Im A=Z5(E) hence

%[ﬁ, W2y, Z) = 12y, KZJ+RIZ,, Z:—~ bz, Zd—h[Z,, hZJeSec Im # =

= [hZ,, hZ,)€Sec Im ¢,

that is (1) holds. The equivalence (5)<(8) is obvious from [&, i]=[5, §].

(c) We verily that the assertions (3), (4), (6), (7), (9) and (10) are equivalent
to (2). Let us first observe that in case of the endomorphisms k, v, PEEnd 7z the
subbundles S (1;) mentioned in Definition 2 are the following:

h: S =Imh=Ims#, SO)=Imv="V,
v: S()=Ve, SO)=Ims#; P:S(1)=ImH#, S(—1)=V,.

Here, of course, the subbundle ¥; is an involutive distribution, so we easily get the
equivalences (2)«>(4), (2)=(6), (2)«(10). The equivalence (2)«<(3) is evident,
(2)«(7) follows from (a). Finally — applying also (a) —

[P, Pl = [2h—1, 2h—1] = 4{f, Al—2[1, A—2[F, 1)+[1, 1] = —8R,
this establishes the equivalence of (2) and (9).

REMARK. From the proof we find that R=—1/8[P, P]. In a more special
situation this was proved also by Stere Ianus [6].
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