
ON THE FINSLER-METRIZABILITIES OF SPRAY MANIFOLDS

by J. Szilasi and Sz. Vattamány

Abstract. In this essentially selfcontained paper first we establish an intrinsic ver-
sion and present a coordinate-free deduction of the so-called Rapcsák equations,
which provide, in the form of 2nd order PDE-s, necessary and sufficient conditions
for a Finsler structure to be projectively related to a spray. From another viewpoint,
the Rapcsák equations are the conditions for the Finsler-metrizability of a spray in
a broad sense. Second , we give a reformulation in terms of 0-homogeneous Hilbert
1-forms of both this and another metrizability problem, called Finsler-metrizability
in a natural sense. (The latter is just a Finslerian version of the classical inverse
problem of the calculus of variations.) Finally , in our main theorem we provide a
reduction of the Rapcsák equations to a 1st order PDE with an algebraic condition.
— The preparatory parts of the paper are devoted to a careful elaboration of the
necessary technical tools, while in an Appendix the computational background is
summarized.

Introduction

Two sprays on a manifold are projectively equivalent if the sets of their geodesics,
as geometric arcs in the sense of [2], 8.1.4, are the same. A more formal and detailed
definition may be stated as follows: two sprays S1 and S2 on a manifold M are
called projectively equivalent, if for any geodesic c1 : I1 ⊂ R → M of S1 there
exists a parameter transformation θ : I2 → I1 (which may be choosen to be strictly
increasing) such that c2 := c1 ◦ θ is a geodesic of S2 — and vice versa. (Later we
are going to present a more efficient formulation of this idea.) Having defined the
concept of projective equvivalence of sprays, and keeping in mind that any Finsler
manifold has a canonical spray, we can also speak of the projective equivalence of a
spray manifold and a Finsler manifold, and of that of two Finsler manifolds (which
have, of course, a common carrier manifold). A spray manifold (M, S) is said to
be Finsler-metrizable in a broad sense or — following Shen’s terminology [27] —
projectively Finsler , if there exists a Finsler-Lagrangian L : TM → R such that
the Finsler manifold (M, L) is projectively equivalent to (M, S). If, in particular,
the canonical spray of (M, L) coincides with the given spray S, then we say that
(M, S) is Finsler-metrizable in a natural sense or that S is a Finsler-variational
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spray. The latter concept is a faithful analogue of the variationality of a spray (or
a semispray) used in the classical inverse problem of the calculus of variations ([9],
[15], [16], [18]).

The following problems naturally arise:

(1) Find criteria for the Finsler-metrizability of a spray both in a broad sense and
in a natural sense.

(2) Search for an “algorithm” to decide whether or not a given spray is projectively
Finsler /Finsler-variational.

In this paper we would like to contribute to a better geometrical understanding
of problem (1), hoping that our results (combined e.g. with the technique applied
in [15] and [16]) will serve as a good starting point for the attack on the much
harder problem (2). As for problem (1), the key ingredients will be the funda-
mental equations of projective equivalence. These provide equivalent (and, in our
presentation, intrinsically formulated) second order partial differential equations
for the Finsler-Lagrangian to be determined. Their coordinate version was discov-
ered by A. Rapcsák in the early sixties (see [23], [24], [25], [26] and, for a recent
account, [27]), hence we also call them Rapcsák’s equations . (Let us remark that
their present form, as well as problem (2), have already been announced by the first
author in [1], p. 186.)

The main theorem of this paper (baptized alternative theorem) gives a charac-
terization of projectively Finsler spray manifolds through the existence of a (0, 2)
tensor field on the tangent manifold, satisfying some, partly quite complicated, alge-
braic conditions. It seems to us that this result is a (perhaps not so distant) relative
of M. Crampin’s stimulating intrinsic reformulation of the Helmholtz conditions
from the classical inverse problem of the calculus of variations in [6]. Nevertheless,
the real significance of our alternative theorem lies in the fact that it reduces the
problem of Finsler-metrizabilty in a broad sense to a first order partial differential
equation.

In view of the importance of the field we have tried to make the paper as self-
explanatory as is consistent with a reasonable length. Technically we need tools
from tangent bundle differential geometry and from the Frölicher-Nijenhuis calculus
of vector-valued differential forms. In addition we apply Berwald-type covariant
differentiation induced by a horizontal endomorphism, or in particular, a spray.
Therefore in Section 1 we give a brief resumé of background material mainly at a
conceptual level, while in an Appendix we collect those rules for calculation and
those formulas which we refer to throughout the paper. (A few of our formulas
may be new, but “easy to prove”.) As for the sources, the reader is referred to
the monographs [11], [20], [31], the epoch-making papers [12], [13], [14] and the
excellent survey article [19]; moreover, our earlier works [28], [29], [30] may also be
useful. Section 2 is devoted partly to a sketchy review of Berwald-type connections.
(Some formulas can also be found in the Appendix.) However, the main point of
this section is the derivation of two important auxiliary results (2.7, 2.8), which are
crucial in the deduction of the main theorem. Section 3 has a similar character. It
seemed to us unavoidable to deal with the different types of Lagrangians in some
depth, because e.g. such a fundamental notion as a Finsler structure is burdened
with an abundance of confusing slight differences in different publications. The
most important observations of this section are Propositions 3.3 and 3.9; the latter
is the key to obtaining Rapcsák equations in an illuminating way.
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After these prepartions, which certainly have interest also in their own right, the
main results, including the alternative theorem, are derived in Section 4 , which is
the core of the paper.

1. Some preliminaries

1.1. Conventions. (1) Throughout this paper the letter M will stand for a con-
nected, second countable, n-dimensional smooth manifold (n ≥ 2). C∞(M) de-
notes the ring of the real-valued smooth functions on M , X(M) and T r

s (M) are
the C∞(M)-modules of vector fields and (r, s) tensor fields on M , respectively. We

denote by Ωk(M) the space of differential k-forms on M , Ω(M) :=
n
⊕

k=0
Ωk(M) is

the exterior algebra of the manifold M . The distinguished derivations of the exte-
rior algebra, the exterior differentiation, the Lie differentiation (with respect to a
vector field X on M) and the substitution operator (induced by X) are denoted by
d, LX and iX , respectively.

(2) π : TM → M is the tangent bundle of M , T M is the (open) set of the nonzero
tangent vectors. We will remain in the smooth category, but the smoothness of
some objects given on the tangent bundle will be assured only over T M . (This
is a characteristic feature of Finsler geometry.) X

v(TM) is the module of vertical
vector fields on TM , i.e. of vector fields π-equivalent to the zero vector field on M .
C denotes the Liouville vector field [3].

(3) A vector k-form on M is a k-linear (over C∞(M)) skew-symmetric map
[X(M)]k → X(M) (k ∈ N

∗); the C∞(M)-module of vector k-forms is denoted

by Ψk(M). Ψ◦(M) := X(M), Ψ1(M) = T 1
1 (M); Ψ(M) :=

n
⊕

k=0
Ψk(M). We are

going to use the Frölicher-Nijenhuis calculus of vector forms and graded derivations
attached to them. All the necessary practical information about this apparatus is
summarized in 5.2 and 5.3; for a systematic treatment we refer to [12] and [20].

1.2. A local basis principle. (1) The complete and the vertical lift of a vector
field X on M is denoted by Xc and Xv respectively. Xc is defined by (5.1.2a),
while Xv is uniquely determined by (5.1.3a). It can readily be seen that

if (Xi)
n
i=1 is a local basis for the C∞(M)-module X(M), then (Xv

i , Xc
i )n

i=1 is
a local basis for the C∞(TM)-module X(TM).

It is therefore sufficient, in order to determine a tensor field on TM , to specify its
action on the vertical and the complete lifts of vector fields on M [8].

(2) We shall apply the “local basis principle” formulated in (1) as a conditioned
reflex. As a first, very important example, we define a (1, 1) tensor field on TM by

(1.2.1a,b) JXv := 0, JXc := Xv (X ∈ X(M)).

J is called the vertical endomorphism of TTM .

(3) A useful further example: the vertical lift of a 1-form α ∈ Ω1(M) is the 1-form
αv ∈ Ω1(TM) given by

(1.2.2a,b) αv(Xv) := 0, αv(Xc) :=
[
α(X)

]v
(X ∈ X(M)).
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More generally, the vertical lift of a k-form β ∈ Ωk(M) (k ≥ 1) is defined by

iXvβv := 0, βv(Xc
1 , . . . , X

c
k) :=

[
β(X1, . . . , Xk)

]v

(X , Xi (1 ≤ i ≤ k) are vector fields on M).

1.3. Definitions. (1) A function f ∈ C∞(T M), a vector field X ∈ X(T M), a
differential form α ∈ Ω(T M) and a vector form A ∈ Ψ(T M) are called homogeneous
of degree r (briefly r-homogeneous ; r ∈ Z) if the relations

Cf = rf, [C, X ] = (r − 1)X, LCα = rα, [C, A] = (r − 1)A

hold, respectively.

(2) A C1 vector field S : TM → TTM , smooth on T M , is said to be a semispray
on M if it satisfies the condition JS = C. A 2-homogeneous semispray is called a
spray. A manifold endowed with a spray will be mentioned as a spray manifold.

(3) A differential form α ∈ Ω(TM) is said to be semibasic if for any vector field
X on TM , iJXα = 0. A vector form A ∈ Ψ(TM) with this property is called
semibasic if J ◦ A = 0. The notion of semibasic tensors is analogous.

(4) Suppose that α ∈ Ω(TM) and A ∈ Ψ(TM) are semibasic forms of degree not
less than 1. If S is any semispray on M , then α◦ := iSα and A◦ := iSA are called
the potential of α and A, respectively.

1.4. Remarks. (1) Owing to the local basis principle 1.2, the semibasic forms are
completely determined by their action on the complete lifts.

(2) Since the difference of two semisprays a vertical vector field, the potentials
are well-defined. It is also clear that α◦ and A◦ remain semibasic.

1.5. Lemma. If α ∈ Ωk+1(TM) is an r-homogeneous semibasic form, then its
potential is (r + 1)-homogeneous.

Proof. By Remark 1.4(2), in forming α◦ we may take a spray S. Then, for any
vector fields X1, . . . , Xk on M , we obtain:

[LC (iSα)] (Xc
1 , . . . , X

c
k)

(5.2.1)
= C [iSα(Xc

1 , . . . , Xc
k)]

−

k∑

i=1

iSα(Xc
1 , . . . , [C, Xc

i ], . . . , Xc
k)

(5.1.5b)
= C

[
α(S, Xc

1 , . . . , Xc
k)

]

(5.2.1)
= (LCα) (S, Xc

1 , . . . , X
c
k) + α

(
[C, S], Xc

1 , . . . , X
c
k

)
= (rα)(S, Xc

1 , . . . , Xc
k)

+ α(S, Xc
1 , . . . , Xc

k) = (r + 1) (iSα) (Xc
1 , . . . , Xc

k).

This means by 1.4(1) that LCα◦ = (r + 1)α◦. �

1.6. Proposition. Let α ∈ Ωk(TM) be an r-homogeneous semibasic form, and
suppose that k + r 6= 0. Then

(1.6.1) α =
1

k + r

[
(dJα)

◦
+ dJα◦

]
.

If, in particular, α is dJ -closed, i.e. dJα = 0, then

(1.6.2) α =
1

k + r
dJα◦.

A proof can be found e.g. in [11].
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1.7. Horizontal endomorphisms ([13], [21], [28], 5.4). (1) A vector 1-form
h ∈ Ψ1(TM), smooth — in general — only on T M , is said to be a horizontal
endomorphism on M if it is a projector (i.e., h2 = h), and Kerh = X

v(TM). If h

is 1-homogeneous (in the sense of 1.3), then we speak of a homogeneous horizontal
endomorphism. X

h(TM) := Imh is the module of (h−) horizontal vector fields on
TM .

(2) Let h be a horizontal endomorphism on M . The mapping

(1.7.1) X ∈ X(M) 7→ Xh := hXc ∈ X
h(TM)

is called the horizontal lifting by h. If (Xi)
n
i=1 is a local basis for X(M), then

(Xv
i , Xh

i )n
i=1 is a local basis for the C∞(TM)-module X(TM); this observation will

also be used automatically (c.f. 1.2).

(3) v := 1X(TM)−h is the vertical projector belonging to the horizontal endomor-

phism h. t := [J, h] is the torsion vector 2-form or weak torsion of h, R := − 1
2 [h, h]

is the curvature vector 2-form or simply curvature of h. A horizontal endomorphism
is called torsion-free if its weak torsion vanishes. — Both t and R are semibasic
vector forms, so they are completely determined by the maps

τ : (X, Y ) ∈ X(M) × X(M) 7→ τ(X, Y )(1.7.2)

:= t(Xc, Y c) = [Xh, Y v] − [Y h, Xv] − [X, Y ]v

and

̺ : (X, Y ) ∈ X(M) × X(M) 7→ ̺(X, Y ) := R(Xc, Y c) = −v[Xh, Y h],(1.7.3)

respectively.

(4) If h is a horizontal endomorphism, and S̃ is a semispray on M , then S := hS̃

is also a semispray, which is called the semispray associated with h.

(5) Let h be a horizontal endomorphism with associated semispray S. Then

(1.7.4) F := h[S, h] − J

is an almost complex structure on TM (i.e., F ∈ Ψ1(TM) and F 2 = −1X(TM)),
called the almost complex structure induced by h.

1.8. Semisprays and horizontal endomorphisms. Our investigations consid-
erably depend on the following fundamental discoveries, due to M. Crampin [5],
[7] and J. Grifone [13].

(1) Any semispray S : TM → TTM generates in a canonical way a horizontal
endomorphism, given explicitly by the formula

(1.8) h =
1

2

(
1X(TM) + [J, S]

)
.

Then h is torsion-free, and its associated semispray is 1
2 (S+[C, S]). If, in particular,

S is a spray, then h is homogeneous, and its associated semispray is just the given
spray S.

(2) A horizontal endomorphism is generated by a semispray according to (1.8) if
and only if it is torsion-free.
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1.9. Definition ([29]). A horizontal endomorphism is called a Berwald endomor-
phism if it is generated by a spray.

1.10. Remark. In view of 1.8(1) any Berwald endomorphism is homogeneous and
torsion-free, but not vice versa.

2. Berwald-type connections

2.1. The operators D, DJ , Dh ([14], [28], [29]). (1) Any horizontal endomor-
phism h ∈ Ψ1(TM) gives rise to a rule of covariant differentiation

D : (X, Y ) ∈ X(TM) × X(TM) 7→ DXY ∈ X(TM)

as follows:

DJXJY := J [JX, Y ], DJXhY := FDJXJY = h[JX, Y ];(2.1.1a,b)

DhXJY := v[hX, JY ], DhXhY := FDhXJY = hF [hX, JY ](2.1.2a,b)

(F is given by (1.7.4)). Then (D, h) is automatically a Finsler connection in the
sense of [28], this special Finsler connection is called the Berwald-type connection
induced by h. If, in particular, h is a Berwald endomorphism, the we speak of a
Berwald connection.

(2) For subsequent applications it will be useful to introduce further differential
operators, namely

DJ , Dh : T r
s (TM) → T r

s+1(TM)

arising from D by the rules

iXDJA := DJXA, iXDhA := DhXA(2.1.3a,b)

(A ∈ T r
s (TM), X ∈ X(TM)).

2.2. Lemma (a J-Ricci formula). Let (D, h) be a Berwald-type connection on M .
If α ∈ Ω1(TM) is a semibasic 1-form, then for any vector fields X, Y , Z on TM

DJDJα(X, Y, Z) = DJDJα(Y, X, Z).

The proof is easy and is omitted.

2.3. The splitting of the curvature. If (D, h) is a Finsler connection, then
the classical curvature tensor field of D splits into three “partial curvatures”, the
so-called horizontal, mixed , and vertical curvature, denoted by R, P and Q, respec-
tively ([14], [21], [28]). In case of a Berwald-type connection Q vanishes, R can be
expressed with the help of the curvature vector 2-form R of h by the formula

(2.3.1) R(X, Y )Z = [J, R(X, Y )]Z (X, Y, Z ∈ X(TM)),

while the mixed curvature is determined by

(2.3.2) P(X, Y )Z =
[
[Xh, Y v], Zv

]
(X, Y, Z ∈ X(M)).

For details we refer to [30] and [32].
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2.4. Lemma. Let h be a torsion-free horizontal endomorphism, (D, h) the Berwald-
type connection induced by h, and R the curvature of h. Then

S

[
DhR(X, Y, Z)

]
= 0,

where the symbol S means cyclic permutation of the variables X, Y, Z ∈ X(TM)
and summation.

The proof is a straightforward calculation which we omit here, but see [30].

2.5. Corollary. Under the preceding condition,

(2.5) SR(X, Y )Z = 0 (X, Y, Z ∈ X(TM)).

Proof. Apply the algebraic Bianchi identity to the curvature tensor field of D, and
use 2.4. �

2.6. Lemma (an h-Ricci formula). Let h be a torsion-free horizontal endomor-
phism on M , and (D, h) the corresponding Berwald-type connection. Then, for any
1-form α on TM and vector fields X, Y , Z on M , we have

DhDhα(Xh, Y h, Zh) − DhDhα(Y h, Xh, Zh)(2.6)

= −(DJα)(FR(Xh, Y h), Zh) − α(FR(Xh, Y h)Zh).

Proof. Apply the classical Ricci formula (1.21) of [4]; split the curvature and the
torsion of D according to 3.2 of [29], finally take into account that the vanishing of
the weak torsion implies the coincidence of the torsion of D and the curvature of h

(see e.g. [29], Corollary 3.6). �

2.7. Proposition. Let h be a torsion-free horizontal endomorphism on M , and
(D, h) be Berwald-type connection induced by h. If α is a semibasic 1-form on TM ,
then dhα is also semibasic, and we have the following relations:

dhα = h∗dα;(2.7.1)

dhα(Xh, Y h) = (Dhα)(Xh, Y h) − (Dhα)(Y h, Xh) (X, Y ∈ X(M));(2.7.2)

DJα = β, where β(X, Y ) := dα(JX, Y ) (X, Y ∈ X(TM)).(2.7.3a,b)

Proof. (1) Since α is semibasic, dhα := ihdα − dihα = ihdα − dα.
It can easily be checked that pairs of form (Xv, Y v), (Xv, Y h), (Xh, Y v);
X, Y ∈ X(M) kill the 2-form ihdα − dα, thus dhα is semibasic.

(2) For any vector fields X , Y on M , (ihdα − dα)(Xh, Y h) = ihdα(Xh, Y h) −
dα(Xh, Y h) = dα(Xh, Y h) = h∗dα(Xh, Y h); this and (1) imply (2.7.1).

(3) Since on the one hand dhα(Xh, Y h)
(2.7.1)

= dα(Xh, Y h) = Xhα(Y h)

− Y hα(Xh)− α([Xh, Y h])
(5.4.5b)

= Xhα(Y h)− Y hα(Xh)− α([X, Y ]h), on the other

hand Dhα(Xh, Y h) = (DXhα) (Y h) = Xhα(Y h) − α
(
DXhY h

) (5.5.2b)
= Xhα(Y h) −

α
(
F [Xh, Y v]

)
, and h is torsion-free, we obtain: Dhα(Xh, Y h) − Dhα(Y h, Xh) =



8 BY J. SZILASI AND SZ. VATTAMÁNY

Xhα(Y h) − Y hα(Xh) − α
(
F ([Xh, Y v] − [Y h, Xv])

)
= Xhα(Y h) − Y hα(Xh) −

α(F [X, Y ]v)
(5.4.4c)

= dhα(Xh, Y h), whence (2.7.2).

(4) From (2.7.3b) it is clear that the 2-tensor β is semibasic. So we have only
to check that for any vector fields X , Y on M , (DJα)(Xh, Y h) = β(Xh, Y h). But
this is immediate:

(DJα) (Xh, Y h) = (DXvα) (Y h) = Xvα(Y h) − α
(
DXvY h

) (5.5.1b)
= Xvα(Y h),

while β(Xh, Y h) = dα(Xv, Y h) = Xvα(Y h). �

2.8. Proposition. Keeping the hypothesis of 2.7, suppose that α is dJ -closed.
Then we have

(2.8) S
X,Y,Z∈X(M)

[
Dhdhα(Xh, Y h, Zh) + β(Xh, FR(Y h, Zh))

]
= 0.

Proof. (1) Under the condition dJα = 0 the tensor β is symmetric. Indeed, for

any vector fields X , Y on M , β(Xh, Y h) − β(Y h, Xh)
(2.7.3a)

= DJα(Xh, Y h) −

DJα(Y h, Xh) = Xvα(Y h) − Y vα(Xh) = dα(Xv, Y h) + dα(Xh, Y v)
= iJdα(Xh, Y h) = dJα(Xh, Y h) = 0.

(2) S

[
Dhdhα(Xh, Y h, Zh)

] (2.7.2)
= (DhDhα)(Xh, Y h, Zh)−

(DhDhα)(Xh, Zh, Y h) + (DhDhα)(Y h, Zh, Xh) − (DhDhα)(Y h, Xh, Zh)+

(DhDhα)(Zh, Xh, Y h) − (DhDhα)(Zh, Y h, Xh)
(2.6)
=

−S

[
(DJα)(FR(Xh, Y h), Zh)

]
− S α(FR(Xh, Y h)Zh)

(2.7.3a), (2.5)
=

−Sβ(X, FR(Y, Z)). �

3. Hilbert 1-forms and Lagrangians

3.1. Hilbert 1-forms. (1) A 1-form λ on TM is said to be a Hilbert 1-form (other
terms: Poincaré or Poincaré-Cartan 1-form), if it is semibasic and dJ -closed, i.e.,
if iJλ = 0 and dJλ = 0.

(2) It follows immediately form 1.6 that any 0-homogeneous Hilbert 1-form λ is
“dJ -exact”, namely λ = dJλ◦.

(3) The vertical lift of a 1-form is a trivial example of a Hilbert 1-form.

3.2. Lemma. If λ is a 0-homogeneous Hilbert 1-form, then the 1-form (dλ)◦ is
semibasic.

Proof. Take a spray S on M and consider the Berwald endomorphism h generated
by S. — For any vector field X on M , (dλ)◦(Xv) = (iSdλ)(Xv) = dλ(S, Xv) =

−Xvλ(S)−λ([S, Xv])=−Xvλ◦+λ(h[Xv, S])
(5.4.7a)

= −Xvλ◦+λ(Xh)
3.1(2)
= −Xvλ◦+

dJλ◦(Xh) = −Xvλ◦ + Xvλ◦ = 0. �
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3.3. Proposition. Suppose that (M, S) is a spray manifold, and let (D, h) be the
Berwald connection determined by S. If λ is a 0-homogeneous Hilbert 1-form on
TM , then

(3.3) dhλ = DJ iSdλ − DSDJλ.

Proof. (1) dhλ is semibasic by 2.7, and an easy calculation shows that the 2-forms
DJ iSdλ, DSDJλ are also semibasic. Thus to verify (3.3) it is enough to check that
the 2-form DSDJλ − DJ iSdλ + dhλ kills the pairs of form (Xh, Y h), where X , Y

are vector fields on M .

(2) Using the representation λ = dJλ◦, it follows that λ(Xh) = Xvλ(S).

(3) DSDJλ(Xh, Y h)
(5.5.6c)

= S[DJλ(Xh, Y h)] − DJλ(FvXc, Y h)−

DJλ(Xh, FvY c)
(5.5.1a,b)

= S(Xvλ(Y h)) − vXcλ(Y h) + λ(DvXcY h) − Xvλ(FvY c) +

λ(DXvFvY c)
(5.5.3a,b)

= S(Xvλ(Y h)) − Xcλ(Y h) + Xhλ(Y h) − Xvλ(FvY c)+
λ([X, Y ]h) − λ(F [Xv, Y h]).

(4) DJ iSdλ(Xh, Y h) = (DXviSdλ)(Y h)
(5.5.1b)

= Xv[dλ(S, Y h)]
(2)
= Xv(Sλ(Y h)) −

[Xv, Y h]λ(S) − Y hλ(Xh) − Xvλ(FvY c).

(5) In view of (3), (4) and (3) from the proof of 2.7 we obtain:
(DSDJλ − DJ iSdλ + dhλ)(Xh, Y h) = [S, Xv]λ(Y h) − Xcλ(Y h) + 2Xhλ(Y h) +

JF [Xv, Y h]λ(S) − λ(F [Xv, Y h])
(5.4.7a)

= JF [Xv, Y h]λ(S) − λ(F [Xv, Y h]) =

dJ iSλ(F [Xv, Y h]) − λ(F [Xv, Y h])
3.1(2)
= 0. �

3.4. Definitions. (1) A continuous function L : TM → R will be mentioned as
a Lagrange function or Langrangian, if it is smooth on T M , and L(a) = 0 if and
only if a = 0. The energy function of the Lagrangian L (briefly the energy) is
the function E := 1

2L2. A Lagrangian L is called regular , if the 2-form ddJL is
symplectic.

(2) A Lagrangian L : TM → R is said to be a Finsler-Lagrangian, or a Finsler
structure on M , if L is 1-homogeneous, and the fundamental 2-form ω := ddJE =
1
2ddJL2 is symplectic.

(3) A manifold endowed with a Finsler structure is called a Finsler manifold . A
horizontal endomorphism h on a Finsler manifold with energy E is conservative if
dhE = 0.

3.5. Remark. If L is a Lagrangian, then dJL is obviously a Hilbert 1-form.

3.6. Some basic facts. Let (M, L) be a Finsler manifold with the energy
E := 1

2L2 and the fundamental 2-form ω := ddJE.

(1) The Hilbert 1-form dJL is 0-homogeneous . — The verification is immediate:

LCdJL
(5.3.10b)

= dJLCL − d[J,C]L
(5.3.5a)

= dJL − dJL = 0.

(2) iCddJL = 0. — Indeed, iCddJL = iCddJL+d[dJL(C)] = iCddJL+diCdJL =

LC(dJL)
(1)
= 0. This means that C belongs to the null-space of ddJL, therefore ddJL

is not symplectic (c.f. [3], 1.41).



10 BY J. SZILASI AND SZ. VATTAMÁNY

(3) iCddJE = dJE. — This is an easy consequence of (2).

(4) Nondegeneracy of the fundamental 2-form guarantees that for any 1-form
α ∈ Ω1(T M) there exists a unique vector field α# (read: α sharp) on T M such
that iα#ω = α. Thus we obtain an isomorphism from Ω1(T M) onto X(T M), called
the sharp operator with respect to ω.

(5) Any Finsler manifold is a spray manifold in a natural manner. — Indeed, if
S := −(dE)# over T M and S(0) = 0, then S is a spray on M , called the canonical
spray of (M, L).

(6) On any Finsler manifold there exists a unique conservative Berwald endo-
morphism generated by the canonical spray according to (1.8). — This is the
fundamental lemma of Finsler geometry due to J. Grifone [13]. The horizon-
tal endomorphism in question we call the Barthel endomorphism of the Finsler
manifold.

3.7. Lemma. If (M, L) is a Finsler manifold and S is its canonical spray, then
iSddJL = 0.

Proof. Take a vector field X on M , and let Xh be its horizontal lift by the
Barthel endomorphism h. — On the one hand, iSddJL(Xv) = ddJL(S, Xv) =

−XvdJL(S) − dJL([S, Xv]) = −XvL − J [S, Xv]L
(5.1.6)

= −XvL + XvL = 0. On

the other hand, iSddJL(Xh) = SXvL − XhL − J [S, Xh]L
(5.4.7b)

= SXvL − XcL =

[S, Xv]L + XvSL−XcL
(5.4.7a)

= −2XhL + XvSL = −2dhL(Xh) + Xv[dhL(S)] = 0,
since h is conservative. �

3.8. Proposition (the fundamental relation). Let (M, S) be a spray manifold and
L̄ a Finsler-structure on M . Then, over T M , the canonical spray S̄ arising from
L̄ can be represented in the form

(3.8) S̄ = S −
SL̄

L̄
C − L̄(iSddJ L̄)#,

where the sharp operator is taken with respect to the fundamental 2-form of (M, L̄).

Proof. Consider the energy Ē :=
1

2
L̄2 of (M, L̄). Then

iSddJ Ē = iSd(L̄dJ L̄) = iS(dL̄ ∧ dJ L̄ + L̄ddJ L̄) = (SL̄)dJ L̄ − dL̄(CL̄)

+ L̄iSddJ L̄ =
SL̄

L̄
dJ Ē − dĒ + L̄iSddJ L̄

3.6(3),(4),(5)
=

SL̄

L̄
iCddJ Ē

+ iS̄ddJ Ē + L̄i(iSddJ L̄)#ddJ Ē = i
S̄+ SL̄

L̄
C+L̄(iSddJ L̄)#ddJ Ē,

whence (3.8). �

4. Projective equivalence and Finsler-metrizability
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4.1. Projective equivalence of sprays. We recall (cf. [10], [33] and the Intro-
duction) that two sprays S and S̄ on a manifold M are called projectively equivalent
if there exists a smooth function f : T M → R such that S̄ = S + fC. Then f is
1-homogeneous eo ipso. On the other hand, if S is a spray on M and f ∈ C∞(T M)
is a 1-homogeneous function, then S̄ := S+fC is a spray again; the transition from
S to S̄ is mentioned as a projective change of the spray S. In these cases we also
speak of the projective equivalence of the spray manifolds (M, S) and (M, S̄).

4.2. Definitions. (1) Two Finsler manifolds (with common base manifold) are
said to be projectively equivalent if they are projectively equivalent as spray mani-
folds.

(2) A spray manifold (M, S) is projectively equivalent to a Finsler manifold
(M, L̄) if S is projectively equivalent to the canonical spray of (M, L̄). In this
case (M, S) is called Finsler-metrizable in a broad sense or projectively Finsler.

(3) A spray manifold (M, S) is said to be Finsler-metrizable in a natural sense if
there exists a Finsler-Lagrangian on M , whose canonical spray is the given spray S.
Then we also say that S is Finsler-variational.

4.3. Theorem. Let (M, S) be a spray manifold with Berwald connection (D, h)
induced by S. If L̄ is a Finsler-Lagrangian on M , then the following are equivalent:

(M, S) is projectively equivalent to (M, L̄).(1)

iSddJ L̄ = 0.(2)

dhdJ L̄ = 0.(3)

DhdJ L̄(X, Y ) = DhdJ L̄(Y, X) (X, Y ∈ X(T M)).(4)

Proof. Let S̄ be the canonical spray of (M, L̄).

(1) =⇒ (2). In view of the assumption S̄ can be written in the form S̄ = S +fC

(f ∈ C∞(T M)). Thus iSddJ L̄ = iS̄ddJ L̄ − fiCddJ L̄
3.7,3.6(2)

= 0.

(2) =⇒ (1). This is clear by (3.8).

(2) =⇒ (3). We first notice that dh ◦LC −LC ◦dh = [dh,LC ]
(5.3.10b)

= d[h,C] = 0.

Thus LCdhdJ L̄ = dhLCdJ L̄
3.6(1)
= 0, which means that dhdJ L̄ is a 0-homogeneous

2-form. Hence, applying (1.6.1), it can be represented in the form

(∗) dhdJ L̄ =
1

2

[
(dJdhdJ L̄)◦ + dJ(dhdJ L̄)◦

]
.

By the vanishing of the weak torsion of h

dJ ◦ dh + dh ◦ dJ = [dJ , dh] =: d[J,h] = 0,

therefore

dJdhdJ L̄ = −dhd2
J L̄

(5.3.7)
= 0.

In view of 3.6(1) and 3.2, iSddJ L̄ is a semibasic 1-form. Hence

(dhdJ L̄)◦ = iSdhdJ L̄
(2.7.1)

= iSh∗ddJ L̄ = iSddJ L̄
(2)
= 0.

We find that both terms on the right hand side of (∗) vanish. Thus dhdJ L̄ = 0.

(3) =⇒ (2). iSddj L̄
3.2,3.6(1)

= iSh∗ddJ L̄
(2.7.1)

= iSdhdJ L̄
(3)
= 0.

(3) ⇐⇒ (4). Immediate from (2.7.2). �
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4.4. Remark. We call the equivalent equations (2)–(4) in 4.3 the fundamental or
the Rapcsák equations of projective equivalence.

4.5. Lemma. Let α be a 1-form on M . If α̃ := (αv)◦, then dJ α̃ = αv.

Proof. Let (D, h) be a Berwald connection on M induced by the spray S. For any
vector fields X , Y on M ,

(DJαv)(Xh, Y h) = (DXvαv)(Y h) = Xvαv(Y h) − αv(DXvY h)

(5.5.1b)
= Xvαv(Y h) = Xvαv(Y c)

(1.2.2b)
= Xv[α(Y )]v

(5.1.3b)
= 0.

Thus we get

0 = (DJαv)(Xh, S) = (DXvαv)(S) = Xvαv(S) − αv(DXvS)

(5.5.6a)
= Xvα̃ − αv(Xh) = Xvα̃ − αv(Xc) = dJ α̃(Xc) − αv(Xc),

as claimed. �

4.6. An application. Let (M, L) be a Finsler manifold, α a 1-form on M , and
let us consider the function α̃ defined in 4.5. If the function L̄ := L + α̃ is also a
Finsler-Lagrangian, then we speak of a Randers-change of the Finsler structure L.
In view of 4.3(2), (M, L̄) is projectively equivalent to (M, L) if and only if

iS(dα)v = iSdαv 4.5
= iSddJ α̃

3.7
= iSddJ (L + α̃) = iSddJ L̄ = 0.

An immediate calculation shows that (dα)v is a 0-homogeneous, dJ -closed semiba-
sic 2-from on TM . Hence, by (1.6.2), (dα)v = 1

2dJ

[
iS(dα)v

]
. — From these

observations we infer the following result: a Randers-change L̄ := L + α̃ yields a
Finsler manifold projectively equivalent to (M, L) if and only if α is a closed 1-
form on M . By means of the classical tensor calculus, this was originally proved
by M. Hashiguchi and Y. Ichijyō [17].

4.7. Corollary. Let (M, S) be a spray manifold and h the Berwald endomor-
phism generated by S. (M, S) is projectively Finsler if and only if there exists a
0-homogeneous, dh-closed Hilbert 1-form λ on TM such that λ◦ is nowhere zero on
T M , and the 2-form ddJ (λ◦)2 is symplectic.

Proof. The necessity of the condition is obvious: if a Finsler manifold (M, L̄) is
projectively equivalent to (M, S), then by the Rapcsák equation 4.3(3) the Hilbert
1-form dJ L̄ has all the required properties. — To verify the sufficiency, let L̄ := λ◦.
Then L̄ is a Finsler-Lagrangian, because it is 1-homogeneous by 1.5 and ddJ L̄2 is
symplectic by assumption. It remains to check that L̄ satisfies 4.3(3). Using our
previous results, this is quite immediate:

iSddJ L̄ = iSddJλ◦
(1.6.2)

= iSdλ
3.2
= h∗iSdλ = iSh∗dλ

(2.7.1)
= iSdhλ = 0,

since λ is dh-closed. �
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4.8. Corollary. Let (M, S) be a spray manifold with Berwald connection (D, h)
induced by S. S is Finsler-variational if and only if there exists a 0-homogeneous
Hilbert 1-form λ on TM satisfying the conditions

(4.8a–c) Dhλ = 0, λ◦(a) = 0 ⇐⇒ a = 0, ddJ (λ◦)2 is symplectic.

Proof. (1) Assume that (M, L̄) is a Finsler manifold with canonical spray S. Then
the Barthel endomorphism h̄ arising from L̄ is just the Berwald endomorphism h.
Since λ := dJ L̄ is a 0-homogeneous Hilbert 1-form satisfying (4.8c), our only task
is to check (4.8a). — For any vector fields X , Y on M ,

(Dhλ)(Xh, Y h) = (DhdJ L̄)(Xh, Y h) = (DXhdJ L̄)(Y h) = Xh(Y vL̄)

− dJ L̄(F [Xh, Y v]) = Xh(Y vL̄) − [Xh, Y v]L̄ = Y v(XhL̄)

= Y v
(
dhL̄(Xh)

)
= Y v

(
dh̄L̄(Xh)

)
= 0

since h̄ is conservative. Thus (4.8a) holds.

(2) Conversely, let λ be a 0-homogeneous Hilbert 1-form on TM , satisfying
(4.8a–c). Then, as we have already learnt, L̄ := λ◦ is a Finsler-Lagrangian. We
show that the canonical spray of the Finsler manifold (M, L̄) is just the given
spray S, i.e. iSddJ L̄2 = −dL̄2, or equivalently,

(∗)
(
iSdL̄

)
λ + L̄iSdλ = 0.

Here iSdL̄ = iSd(iSλ) = d(iSλ)(S) = S(λS)
(5.5.7b)

= S(λS)−λ(DSS) = (DSλ)(S) =

Dhλ(S, S)
(4.8a)
= 0. The 1-form iSdλ in (∗) is semibasic by 3.2, and iSdλ = iSdhλ

from the proof of 4.7. Since for any vector fields X , Y onM ,

dhλ(Xh, Y h)
(2.7.2)

= Dhλ(Xh, Y h) − Dhλ(Y h, Xh)
(4.8a)
= 0,

the term L̄iSdλ also vanishes in (∗). This concludes the proof. �

4.9. Theorem (the alternative theorem). (i) Let (M, S) be a spray manifold with
Berwald connection induced by S. If (M, S) is projectively equivalent to a Finsler
manifold (M, L̄), then the tensor field

(4.9.1) µ̄ : (X, Y ) ∈ X(TM) × X(TM) 7→ µ̄(X, Y ) := ddJ L̄(JX, Y )

has the properties

(4.9.1a,b) DSµ̄ = 0; S
X,Y,Z∈X(TM)

µ̄(X, FR(Y, Z)) = 0.

(ii) Conversely, let (M, L∗) be a Finsler manifold, and suppose that the tensor
field µ∗ formed from L∗ by the rule of (4.9.1) satisfies (4.9.2a,b). Then

(I) (M, S) is projectively equivalent to (M, L∗), or

(II) there exists, locally in general, a 1-form η on M such that — also locally
— (M, S) is projectively equivalent to the Finsler manifold (M, L∗ + η̃),
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η̃ := (ηv)◦.

Proof. (i) Since dJ L̄ is a 0-homogeneous Hilbert 1-form, µ̄ = DJdJ L̄ by (2.7.3a),
while (3.3) yields the relation dhdJ L̄ = DJ iSddJ L̄−DSµ̄. By the Rapcsák equations
4.3(2),(3) this implies DSµ̄ = 0. Similarly, (4.9.2b) is an immediate consequence of
(2.7.3a), (2.8) and 4.3(3).

(ii) If iSddJL∗ = 0, then we can stop by 4.3, so we have only to consider the case
iSddJL∗ 6= 0. To make our reasoning more transparent, we divide it into several
steps.

Step 1. We show that the 2-form DJ iSddJL∗ is a vertical lift, namely: there exists
a 2-form Λ on M , such that

(1) DJ iSddJL∗ = Λv.

Notice first that (3.3) and (4.9.2a) yield

(2) DJ iSddJL∗ = dhdJL∗.

This implies that DJ iSddJL∗ is skew-symmetric. Thus, taking into account 2.2, we
infer

DJDJ iSddJL∗ is symmetric in its first two variables(3)

and skew-symmetric in its second two variables.

Now we calculate. For any vector fields X , Y , Z on M ,

DJDJ iSddJL∗(Xh, Y h, Zh)
(2)
= DJdhDJL∗(Xh, Y h, Zh)

(5.5.1b)
= Xv

[
(dhdJL∗)(Y h, Zh)

] (2.7.1)
= Xv

[
(ddJL∗)(Y h, Zh)

]

= Xv
(
Y h(ZvL∗) − Zh(Y vL∗) − J [Y h, Zh]L∗

)

(5.4.5a)
= Xv

(
[Y h, Zv]L∗ + Zv(Y hL∗) − [Zh, Y v]L∗ − Y v(ZhL∗) − [Y, Z]vL∗

)

t=0
= Xv

(
Zv(Y hL∗)

)
− Xv

(
Y v(ZhL∗)

)
.

Using this result we obtain

(4) S
X,Y,Z∈X(M)

DJDJ iSddJL∗(Xh, Y h, Zh) = 0.

(3) and (4) imply that DJ(DJ iSddJL∗) = 0, from which (1) immediately follows.

Step 2. We claim that

(5) iSΛv = iSddJL∗.

Starting with the obvious relation DJΛv = 0, we have, for any vector fields X , Y

on M ,

0 = DJΛv(Xh, S, Y h) = (DXvΛv)(S, Y h)
(5.5.6a)

= XvΛv(S, Y h) − Λv(Xh, Y h)

= (DJ iSΛv − Λv)(Xh, Y h).
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Thus DJ iSΛv = DJ iSddJL∗, and hence

iSddJL∗ = iSΛv + αv, α ∈ Ω1(M).

But iSddJL∗ and iSΛv are both 1-homogeneous (see 1.5) while αv is 0-homogeneous,
so αv must vanish.

Step 3. We show that the 2-form Λv is closed . — By (2.8) and (4.9.2b),

0 = S
X,Y,Z∈X(M)

DhdhdJL∗(Xh, Y h, Zh)
(1),(2)

= S
X,Y,Z∈X(M)

(DhΛv)(Xh, Y h, Zh)

(5.5.2b)
= XhΛv(Y h, Zh) − Y hΛv(Xh, Zh) + ZhΛv(Xh, Y h)

− Λv(F ([Xh, Y v] − [Y h, Xv]), Zh) + Λv(F ([Xh, Zv] − [Zh, Xv]), Y h)

− Λv(F ([Y h, Zv] − [Zh, Y v]), Xh)
t=0, (5.4.4c)

= XhΛv(Y h, Zh)

− Y hΛv(Xh, Zh) + ZhΛv(Xh, Y h) − Λv([X, Y ]h, Zh)

+ Λv
(
[X, Z]h, Y h) − Λv([Y, Z]h, Xh).

Thus, since [X, Y ]h = [Xh, Y h] − v[Xh, Y h], etc., and Λv is semibasic, we obtain

0 = XhΛv(Y h, Zh) − Y hΛv(Xh, Zh) + ZhΛv(Xh, Y h) − Λv([Xh, Y h], Zh)

+ Λv([Xh, Zh], Y h) − Λv([Y h, Zh], Xh) = (dΛv)(Xh, Y h, Zh)

whence our claim.

Step 4. Since Λv is closed and dΛv = (dΛ)v, Λ is also closed. Thus there exists, at
least locally, a 1-form η on M such that dη = Λ. Consider the function L̄ := L∗− η̃,
η̃ := (ηv)◦, defined on a region of TM . We show that L̄ satisfies 4.3(2). Notice first
that for any vector fields X , Y on M ,

ddJ η̃(Xc, Y c) = Xc(Y vη̃) − Y c(Xvη̃) − J [Xc, Y c]η̃
4.5,(5.1.4c),(1.2.1b)

= Xc(η(Y ))v

− Y c(η(X))v − (η([X, Y ]))v = [(dη)(X, Y )]v = [Λ(X, Y )]v = Λv(Xc, Y c).

Since ddJ η̃ is clearly semibasic, this means that ddJ η̃ = Λv. Thus

iSddJ L̄ = iSddJL∗ − iSddJ η̃ = iSddJL∗ − iSΛv (5)
= iSΛv − iSΛv = 0,

concluding the proof of (II). �

5. Appendix: a formulary

5.1. Lifts. Suppose that f is a smooth function, X and Y are vector fields on the manifold M .

fv := f ◦ π, fc := Sfv (S : TM → TTM is a semispray).(5.1.1a,b)

Xcfc := (Xf)c , Xcfv = (Xf)v .(5.1.2a,b)

Xvfc = (Xf)v, Xvfv = 0.(5.1.3a,b)

[Xv, Y v] = 0, [Xc, Y v] = [X, Y ]v, [Xc, Y c] = [X, Y ]c.(5.1.4a–c)

[C, Xv] = −Xv, [C, Xc] = 0.(5.1.5a,b)

J [Xv, S] = Xv.(5.1.6)
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5.2. Derivations and vector forms.

Let A ∈ T r
s (N) and D be tensor derivation on M ([22], p. 43).(5.2.1)

If θi (1 ≤ i ≤ r) are 1-formsXj (1 ≤ j ≤ s) are vector fields on M , then

(DA) (θ1, . . . , θr , X1, . . . , Xs) = D[A(θ1, . . . , θr , X1, . . . , Xs)]

−

rX
i=1

A(θ1, . . . , Dθi, . . . , θr , X1, . . . , Xs)

−

sX
j=1

A(θ1, . . . , θr, X1, . . . , DXj , . . . , Xs) (the product rule).

If D1 and D2 are graded derivations ([20], 8.1) of degrees r and(5.2.2)

s (r, s ∈ Z) respectively of Ω(M), then their graded commutator is

[D1, D2] := D1 ◦ D2 − (−1)rsD2 ◦ D1.

If K ∈ Ψk(M), then iK is a graded derivation of degree k − 1 of Ω(M);(5.2.3)

iK ↾ C∞(M) := 0, iKα := α ◦ K (α ∈ Ω1(M)).

dK := [iK , d] = iK ◦ d − (−1)k−1d ◦ iK (K ∈ Ψk(M)).(5.2.4)

dKf = iKdf = df ◦ K (K ∈ Ψk(M), f ∈ C∞(M)).(5.2.5)

d[K,L] := [dK , dL]; [K,L] is the Frölicher-Nijenhuis(5.2.6)

bracket of K ∈ Ψk(M) and L ∈ Ψℓ(M).

5.3. Formulas concerning vector 1-forms. Suppose that K and L are vector 1-forms; X, Y

and Xj (1 ≤ j ≤ ℓ) are vector fields on the manifold M .

iKα(X1, . . . , Xℓ) =
ℓX

j=1

α(X1, . . . , KXj, . . . , Xℓ) (α ∈ Ωℓ(M)).(5.3.1)

K∗α(X1, . . . , Xℓ) := α(K(X1), . . . , K(Xℓ)) (α ∈ Ωℓ(M)).(5.3.2)

If α ∈ Ω1(M), then iKα = K∗α.(5.3.3.)

[K,Y ]X = [KX,Y ] − K[X, Y ].(5.3.4)

[J, C] = J, [J, Xv] = 0, [J,Xc] = 0.(5.3.5a–c)

[K,L](X, Y ) = [KX,LY ] + [LX, KY ] + K ◦ L[X, Y ] + L ◦ K[X,Y ](5.3.6)

− K[LX,Y ] − K[X,LY ] − L[KX, Y ] − L[X, KY ].

[dJ , dJ ] = 2d2
J = 0 =⇒ [J, J ] = 0.(5.3.7)

[iX , iK ] = iKX , [iK ,LX ] = i[K,X].(5.3.8a,b)

[iK , iL] = iL◦K − iK◦L.(5.3.9)

[iX , dK ] = LKX + i[K,X], [dK ,LX ] = d[K,X].(5.3.10a,b)

[iK , dL] = dL◦K − i[K,L].(5.3.11)

5.4. Horizontal endomorphisms and lifts. Keeping the notations of 1.7, consider a horizontal
endomorphism h. Let X and Y be vector fields on M .

h ◦ J = 0, J ◦ h = J.(5.4.1a,b)

F ◦ J = h, J ◦ F = v.(5.4.2a,b)

F ◦ h = −J, F ◦ v = h ◦ F, v ◦ F = −J.(5.4.3a–c)
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JXh = Xv, FXh = −Xv, FXv = Xh.(5.4.4a–c)

J [Xh, Y h] = [X, Y ]v, h[Xh, Y h] = [X, Y ]h.(5.4.5a,b)

[J, vXc] = [h, Xv], if t = 0.(5.4.6)

If h is generated by a semispray S, then(5.4.7a,b)

Xh =
1

2
(Xc + [Xv, S]), J [Xh, S] = Xh − Xc.

5.5. Berwald-type connections. Let h be a horizontal endomorphism, (D, h) the correspond-
ing Berwald-type connection, X and Y vector fields on M .

DXvY v = 0, DXvY h = 0.(5.5.1a,b)

DXhY v = [Xh, Y v], DXhY h = F [Xh, Y v].(5.5.2a,b)

DXvFvY c = [X, Y ]h − F [X,v , Y h], DvXcY h = 0.(5.5.3a,b)

DJC = J.(5.5.4)

If h is homogeneous, then DhC = 0.(5.5.5)

If h is generated by the semispray S, then(5.5.6a–c)

DXvS = Xh, DSXv = Xc − Xh, DSXh = FvXc.

If h is generated by the spray S, i.e., (D, h) is the Berwald connection(5.5.7a,b)

of (M, S), then DXhS = 0, DSS = 0.
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