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Abstract
By a Mo�or {Vanstone metric we mean a pseudo-Riemannian metric

which is de�ned in the pull-back bundle of a tangent bundle over itself
and which satis�es some additional conditions. In this context, we say that
a metric covariant derivative is `good' if it is associated to an Ehresmann
connection determined by the metric alone. Every Ehresmann connection
determines a metric covariant derivative, the so-called Miron's derivative,
in a natural manner. The main result of this paper is the following: an
Ehresmann connection of a certain type is associated to Miron's deriva-
tive arising from it if and only if it satis�es a mixed system of a partial
di�erential equation and two algebraic equations. We also determine all
the solutions of that system.
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1 Introduction

A (generalized) metric on a manifold is a symmetric, non-degenerate, type (0,2)
tensor in the pull-back bundle of the tangent bundle over itself. This type of
metrics has obviously a velocity-dependent character. For technical reasons, we
shall assume that they are de�ned only on the open submanifold of non-zero
tangent vectors rather than on the whole tangent manifold. A Mo�or {Vanstone
metric is a homogeneous metric whose absolute energy is a (pseudo-)Finslerian
energy function. This special class of generalized metrics was introduced by
the Hungarian Finslerist A. Mo�or and the theoretical physicist J. I. Horv�ath in
1955 [4]. The next year A. Mo�or, and a few years later, in 1962, the excellent
Canadian geometer J. R. Vanstone enriched the subject with further important
contributions [10, 13]. We note that in [4] the new class of metrics also ob-
tained an interesting application to Yukawa's bilocal �eld theory { an aspect
which deserves serious attention. Generalized metrics proved to be useful also
in relativistic optics [9].

A covariant derivative operator in our pull-back bundle is metric if the co-
variant di�erential of the metric tensor with respect to it vanishes. In 1987,
M. Matsumoto, the leading Finslerist of the last decades, drew up the follow-
ing important heuristic principle: `Through the author's several experiences, he
became convinced that there should exist the best Finsler connection for every
theory of Finsler spaces' [6]. In this paper, we try to extend Matsumoto's prin-
ciple to the world of Mo�or {Vanstone metrics, and to �nd the `best' metric
derivative, or, at least, some `good' metric derivatives for one of their special
classes.

If an Ehresmann connection is speci�ed over the manifold, there is a unique
metric covariant derivative in the pull-back bundle whose vertical torsion van-
ishes and whose horizontal torsion coincides with the torsion of the given Ehres-
mann connection. We call this covariant derivative Miron's derivative arising
from the Ehresmann connection [8, 11]. A covariant derivative is associated to
an Ehresmann connection if the kernel of its de
ection is the horizontal sub-
space of the Ehresmann connection at each point of the tangent manifold. All
the notable covariant derivatives in Finsler geometry enjoy this property, even
the non-metric ones. Thus, by the `goodness' of a metric derivative we shall
informally mean that it is associated to an Ehresmann connection determined
by the metric alone. In the case of Mo�or {Vanstone metrics, we have a natural
Ehresmann connection: the Barthel connection HE arising from the absolute
energy E of the metric. However, Miron's derivative constructed from HE is
not `good' in the sense above. Thus, to obtain `good' metric derivatives for this
class of metrics, we have to search more suitable Ehresmann connections than
HE .

The new Ehresmann connection H is completely determined by its di�erence
tensor P from HE , therefore we shall look for P rather than directly for H.
We shall also assume that the absolute energy E is a �rst integral of the H-
horizontal vector �elds and that the semispray associated to H coincides with
the canonical spray belonging to the Finsler energy E. All these (geometrically
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natural) conditions, together with the `goodness' of Miron's derivative arising
from H, will yield a mixed system of a partial di�erential equation and two
algebraic equations for P . This system will be linear, thus we may determine
its solutions as the sum of the general solution of the homogeneous part and a
particular solution. We shall �nd the general solution of the homogeneous part
by decomposing it into the sum of a symmetric and a skew-symmetric term.
In establishing our partial di�erential equation, the unpublished manuscript [5]
was as inspiring as helpful for us, in spite of the fact that it contains some
mistakes.

2 Basic setup

2.1. Throughout this paper M denotes an n-dimensional smooth manifold
whose topology is Hausdor�, 2nd countable and connected. The R-algebra of
smooth real-valued functions on M is denoted by C∞(M). The 2n-dimensional

tangent manifold of M is TM , and
◦
TM stands for the open submanifold of

non-zero tangent vectors to M .

2.2. The tangent bundle of M is τ : TM → M , while ◦
τ :

◦
TM → M is the

deleted bundle for τ . The tangent bundle of the latter is τ◦
TM

: T
◦
TM →

◦
TM .

◦
τ∗τ is the pull-back of τ over

◦
τ . The total space of this vector bundle is the

�bre product
◦
TM×M TM , the base manifold is

◦
TM , and the �bre over v ∈

◦
TM

is {v} × T◦
τ(v)M

∼= T◦
τ(v)M . X

(◦
τ
)
denotes the C∞

( ◦
TM

)
-module of (smooth)

sections of ◦τ∗τ , and its typical elements are denoted by ~X, ~Y . . . . These sections
are also mentioned as vector �elds along

◦
τ . The canonical section δ of ◦τ∗τ

duplicates the elements of
◦
TM , i.e.,

δ : v ∈
◦
TM 7→ δ(v) := (v, v) ∈

◦
TM ×M TM.

Every vector �eld X on M induces a vector �eld X̂ along ◦
τ by `parallel propa-

gation', i.e., by the rule

v ∈
◦
TM 7→ X̂(v) :=

(
v,X

(◦
τ(v)

))
∈
◦
TM ×M TM.

X̂ is called a basic vector �eld along ◦
τ . The set of basic vector �elds generates

the module X
(◦
τ
)
.

2.3. The basic short exact sequence is the sequence

0→
◦
TM ×M TM

i→ T
◦
TM

j→
◦
TM ×M TM → 0,

where i identi�es the �bre {v}×T◦
τ(v)M of ◦τ∗τ with the tangent space TvT◦

τ(v)M

for all v ∈
◦
TM , and j =

(
τ◦
TM

,
◦
τ∗

)
(◦τ∗ denotes the di�erential of ◦τ). The
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(strong) bundle maps i, j induce the C∞
( ◦
TM

)
-homomorphisms

~X ∈ X
(◦
τ
)
7→ i ~X := i ◦ ~X ∈ X

( ◦
TM

)
, ξ ∈ X

( ◦
TM

)
7→ jξ := j ◦ ξ ∈ X

(◦
τ
)
,

which will also be denoted by i and j, respectively. For any vector �eld X on
M , Xv := iX̂ is the vertical lift of X. With the help of i and j it is possible to
de�ne two additional canonical objects, the Liouville vector �eld C := iδ and
the vertical endomorphism J := i ◦ j. A second-order vector �eld or a semispray

over M is a vector �eld χ on
◦
TM such that Jχ = C (or equivalently, jχ = δ).

If, in addition, [C,χ] = χ, i.e. χ is positively homogeneous of degree 2, then χ
is called a spray.

2.4. For a given vector �eld ~X along ◦
τ a `covariant-like' di�erential operator,

the (canonical) v-covariant derivative ∇v
~X can be constructed as follows. Let ∇v

~XF :=
(
i ~X

)
F, if F ∈ C∞

( ◦
TM

)
;

∇v
~X
~Y := j

[
i ~X, η

]
, if ~Y ∈ X

(◦
τ
)
, and η ∈ X

( ◦
TM

)
such that jη = ~Y .

Then ∇v
~X
~Y is well-de�ned, and ∇v

~X may be uniquely extended to be a ten-
sor derivation of the tensor algebra of X

(◦
τ
)
. For any tensor A along ◦

τ the
v-covariant di�erential ∇vA collects in the usual manner all the v-covariant
derivatives of A. In particular, if F :

◦
TM → R is a smooth function, then the

second v-covariant di�erential gF := ∇v∇vF is a symmetric, type (0,2) tensor
along ◦

τ , called the Hessian of F .

2.5. By an Ehresmann connection (or a nonlinear connection) H on
◦
TM we

mean a right splitting of the basic short exact sequence, i.e. a strong bundle map
H :

◦
TM ×M TM → T

◦
TM such that j ◦ H = 1◦

TM×M TM
. The type (1,1) tensor

�eld h := H ◦ j on
◦
TM is the horizontal projector belonging to H, and v :=

1
T
◦
TM

−h is the complementary vertical projector. If V : T
◦
TM →

◦
TM ×M TM

is a left splitting of the basic exact sequence such that KerV = ImH, then V
is called the vertical map associated to H. The bundle maps H and V induce
C∞

( ◦
TM

)
-homomorphisms at the level of sections by the rules

~X ∈ X
(◦
τ
)
7→ H ~X := H ◦ ~X ∈ X

( ◦
TM

)
, ξ ∈ X

( ◦
TM

)
7→ Vξ := V ◦ ξ ∈ X

(◦
τ
)
.

For any vector �eld X on M , Xh := HX̂ is the horizontal lift of X (with respect
to H). If χ is a semispray over M , then there is a unique Ehresmann connection

Hχ :
◦
TM ×M TM → T

◦
TM such that

HχX̂ =
1
2
(Xc + [Xv, χ]) for all X ∈ X(M),
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where Xc is the complete lift of X. This Ehresmann connection is said to be
the Crampin {Grifone connection arising from χ [1, 3].

2.6. Suppose

D : X
( ◦
TM

)
× X

(◦
τ
)
→ X

(◦
τ
)
,

(
ξ, ~Y

)
7→ Dξ

~Y

is a covariant derivative operator in the vector bundle ◦
τ∗τ . By the vertical

torsion of D we mean the tensor Q along ◦
τ given by

Q
(
~X, ~Y

)
:= Di ~X

~Y −Di ~Y
~X − i−1

[
i ~X, i ~Y

]
.

In the presence of an Ehresmann connection H, the horizontal torsion T of D

is the type (1,2) tensor along ◦
τ such that

T
(
~X, ~Y

)
:= DH ~X

~Y −DH ~Y
~X − j

[
H ~X,H ~Y

]
.

By the de
ection of D we mean the covariant di�erential µ := Dδ of the canon-
ical section. The type (1,1) tensor �eld

~µ := µ ◦ i : ~X ∈ X
(◦
τ
)
7→ ~µ ~X = Di ~Xδ ∈ X

(◦
τ
)

along ◦
τ is the v-de
ection of D. The covariant derivative D is called regular if

~µ is (pointwise) invertible, and strongly regular if ~µ = 1
X(◦τ). If an Ehresmann

connection H is also speci�ed, we can introduce the h-de
ection

µh := µ ◦ H : ~X ∈ X
(◦
τ
)
7→ µh ~X = DH ~Xδ ∈ X

(◦
τ
)
=:

(
Dhδ

) ~X.

The covariant derivative D is said to be associated to H if ImH = Kerµ, and
strongly associated to H if its de
ection is just the vertical map V determined by
H, i.e. µ = V. It follows immediately that D is associated to H if and only if it
is regular and its h-de
ection vanishes, and it is strongly associated to H if and
only if it is strongly regular and its h-de
ection vanishes. If H :

◦
TM ×M TM →

T
◦
TM is an Ehresmann connection, then the rules

∇H ~X
~Y := V

[
H ~X, i ~Y

]
, ∇i ~X

~Y := ∇v
~X
~Y ; ~X, ~Y ∈ X

(◦
τ
)

de�ne a covariant derivative operator in ◦τ∗τ , called Berwald's derivative induced
by H. The h-de
ection ∇hδ =: t of Berwald's derivative is called the tension of
H. By the torsion of H we mean the horizontal torsion of ∇.

3 Generalized metrics and Miron's construction

3.1. By a generalized metric (also called a generalized Finsler or a generalized
Lagrange metric), brie
y a metric we mean a pseudo-Riemannian metric in
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the pull-back bundle ◦
τ∗τ , i.e., a smooth assignment of non-degenerate scalar

products gv to the �bres T◦
τ(v)M , v ∈

◦
TM . The 1-form

ϑg : ~X ∈ X
(◦
τ
)
7→ ϑg

~X := g
(
~X, δ

)
∈ C∞

( ◦
TM

)
along ◦

τ is the Lagrange 1-form associated to g. The smooth function E :=
1
2g(δ, δ) on

◦
TM is called the absolute energy of g. If the Hessian gE = ∇v∇vE

is non-degenerate, we say that the metric g is energy-regular. If ∇v
δg = 0, then

g is called homogeneous. If a metric is energy-regular and homogeneous, then
we speak of a Mo�or {Vanstone metric.

3.2. By a Finsler energy on
◦
TM we mean a smooth function E :

◦
TM → R which

is positively homogeneous of degree 2 and has the property that gE = ∇v∇vE
is non-degenerate, i.e. it is a metric in the sense above. Then we say that gE is
a Finsler metric on

◦
TM . (Our concept of a Finsler energy is more general than

the usual one since the positiveness of E is not required. It is a nice problem
to prove that if E is positive everywhere, then the metric tensor gE is positive
de�nite.) The absolute energy of gE is just the given Finsler energy E, and
gE is homogeneous. Thus any Finsler metric is a Mo�or {Vanstone metric. The
converse is, of course, de�nitely false in general. The canonical spray χ for the
Finsler energy E is determined via the Lagrange equation

iχd(dE ◦ J) = −dE.

By the Crampin {Grifone construction, χ induces an Ehresmann connection
HE , called the Barthel connection of the Finsler manifold (M,E). The Berwald

derivative arising from HE will be denoted by
E

∇.

3.3. The (covariant) Cartan tensor of g is the v-covariant di�erential C[ := ∇vg

of the metric. The type (1,2) tensor C along ◦
τ determined by

g
(
C

(
~X, ~Y

)
, ~Z

)
= C[

(
~X, ~Y , ~Z

)
; ~X, ~Y , ~Z ∈ X

(◦
τ
)

i.e., by a raising operation, is also called the Cartan tensor of g. If g is a Finsler
metric, then C[ is totally symmetric. In general, it is symmetric only in its last
two variables, and this is one of the main sources of the di�culties one has to
face studying generalized metrics. Notice that g is homogeneous if and only if
C

(
δ, ~X

)
= 0 for all ~X ∈ X

(◦
τ
)
.

3.4 De�nition. Let g be a metric in
◦
τ∗τ . We say that g is weakly normal if

C[

(
~X, δ, δ

)
= 0 for all ~X ∈ X

(◦
τ
)
.

This class can be characterized as follows [7].
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3.5 Proposition. A metric g is weakly normal if and only if ϑg = ∇vE. The
absolute energy of a weakly normal metric is positive-homogeneous of degree 2.

3.6. Let a metric g in ◦
τ∗τ and an Ehresmann connection H over M be given.

There is a unique metric covariant derivative D in ◦
τ∗τ with vanishing vertical

torsion such that the horizontal torsion of D coincides with the torsion of H.
With the help of Berwald's derivative ∇ induced by H, D may be constructed
as follows:

(1) We introduce the h-Cartan tensor Ch of g (with respect to H) by means
of the relation g

(
Ch

(
~X, ~Y

)
, ~Z

)
:= (∇H ~Xg)

(
~Y , ~Z

)
.

(2) Using Christo�el's trick, we de�ne two new tensors
◦
C and

◦
Ch along ◦

τ :

g
(◦
C

(
~X, ~Y

)
, ~Z

)
:= g

(
C

(
~X, ~Y

)
, ~Z

)
+ g

(
C

(
~Y , ~Z

)
, ~X

)
− g

(
C

(
~Z, ~X

)
, ~Y

)
,

g
(◦
Ch

(
~X, ~Y

)
, ~Z

)
:= g

(
Ch

(
~X, ~Y

)
, ~Z

)
+ g

(
Ch

(
~Y , ~Z

)
, ~X

)
− g

(
Ch

(
~Z, ~X

)
, ~Y

)
.

(3) If

Di ~X
~Y := ∇i ~X

~Y +
1
2
◦
C

(
~X, ~Y

)
, DH ~X

~Y := ∇H ~X
~Y +

1
2
◦
Ch

(
~X, ~Y

)
,

then D is the desired covariant derivative.
We call the metric derivative so obtained Miron's derivative arising from

H. In the case of a Finsler metric and its Barthel connection this construction
leads to Cartan's covariant derivative [11, 12]. In the general case, however, our
initial data g and H are not related at all, thus it can hardly be expected that
D is associated to H.

4 The main results

4.1. In this section, g will be a weakly normal Mo�or {Vanstone metric, χ the

canonical spray of the Finsler energy E, HE the Barthel connection, and
E

∇
Berwald's covariant derivative arising from HE . Other data of HE will be
distinguished from those of an arbitrary Ehresmann connection by a subscript
E. The symbol ] will denote the sharp operator with respect to g.

4.2 Proposition. Given a type (1,1) tensor �eld P along
◦
τ , suppose that H :=

HE − i ◦ P is an Ehresmann connection such that Hδ = χ and ImH ⊂ Ker dE.
Then Miron's derivative D arising from H is strongly associated to H if and
only if

g
(
(∇v

δP )
(
~X
)

, ~Y
)
+ g

(
~X, (∇v

δP )
(
~Y
))

= −
(E

∇χg
) (

~X, ~Y
)

for any ~X, ~Y ∈ X
(◦
τ
)
.
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Proof. Let ∇ be Berwald's derivative arising from H. In 2.6 we noted that
D is associated to H if and only if it is strongly regular and its h-de
ection
vanishes. In the �rst step, we show that D is automatically strongly regular. If
~X, ~Y ∈ X

(◦
τ
)
, we have

~µ ~X = Di ~Xδ = ∇i ~Xδ +
1
2
◦
C

(
~X, δ

)
,

g
(◦
C

(
~X, δ

)
, ~Y

)
= g

(
C

(
~X, δ

)
, ~Y

)
+ g

(
C

(
δ, ~Y

)
, ~X

)
− g

(
C

(
~Y , ~X

)
, δ

)
= g

(
C

(
~X, ~Y

)
, δ

)
+ (∇v

δg)
(
~Y , ~X

)
− g

(
C

(
~X, ~Y

)
, δ

)
= 0,

thus ~µ is indeed the identity map. In the second step we show that the h-
de
ection of D with respect to H vanishes if and only if the equation in the
proposition holds. Since g is non-degenerate, it is enough to consider the ex-
pression g

(
DXhδ, Ŷ

)
:

2g
(
DXhδ, Ŷ

)
= 2g

(
∇Xhδ, Ŷ

)
+ g

(◦
Ch

(
X̂, δ

)
, Ŷ

)
= 2g

(
tX̂, Ŷ

)
+ g

(
Ch

(
X̂, δ

)
, Ŷ

)
+ g

(
Ch

(
δ, Ŷ

)
, X̂

)
− g

(
Ch

(
Ŷ , X̂

)
, δ

)
= 2g

(
tX̂, Ŷ

)
+ (∇Xhg)

(
Ŷ , δ

)
+ (∇χg)

(
X̂, Ŷ

)
− (∇Y hg)

(
X̂, δ

)
= 2g

(
tX̂, Ŷ

)
+ Xhg

(
Ŷ , δ

)
− g

(
∇Xh Ŷ , δ

)
− g

(
Ŷ ,∇Xhδ

)
+ χg

(
X̂, Ŷ

)
− g

(
∇χX̂, Ŷ

)
− g

(
X̂,∇χŶ

)
− Y hg

(
X̂, δ

)
+ g

(
∇Y hX̂, δ

)
+ g

(
X̂,∇Y hδ

)
.

Since g is weakly normal, by 3.5 we have ϑg = ∇vE. This implies that
g

(
X̂, δ

)
= ϑgX̂ = XvE for all X ∈ X(M), thus we get

2g
(
DXhδ, Ŷ

)
= 2g

(
tX̂, Ŷ

)
+ XhY vE − i

(
∇Xh Ŷ

)
E − g

(
Ŷ , tX̂

)
+

(E

∇χg
) (

X̂, Ŷ
)
+ g

(E

∇χX̂, Ŷ
)
+ g

(
X̂,

E

∇χŶ
)
− g

(
∇χX̂, Ŷ

)
− g

(
X̂,∇χŶ

)
− Y hXvE + i

(
∇Y hX̂

)
E + g

(
X̂, tŶ

)
= g

(
tX̂, Ŷ

)
+ g

(
X̂, tŶ

)
+ XhY vE −

[
Xh, Y v

]
E +

(E

∇χg
) (

X̂, Ŷ
)

+ g
(E

∇χX̂ −∇χX̂, Ŷ
)
+ g

(
X̂,

E

∇χŶ −∇χŶ
)
− Y hXvE +

[
Y h, Xv

]
E,

where we also used the de�nition of the Berwald derivative ∇. Finally, taking
into account that χ = HEδ = Hδ, that the relation HE−H = i◦P is equivalent
to V − VE = P ◦ j, and that j[χ,Xv] = X̂, j[χ, Y v] = Ŷ (see e.g. [11, p. 1349]),
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we obtain

2g
(
DXhδ, Ŷ

)
= g

(
tX̂, Ŷ

)
+ g

(
X̂, tŶ

)
+ Y vXhE

+ g
(
VE [χ,Xv]− V[χ,Xv], Ŷ

)
+ g

(
X̂,VE [χ, Y v]− V[χ, Y v]

)
+

(E

∇χg
) (

X̂, Ŷ
)
−XvY hE

= g
(
tX̂, Ŷ

)
+ g

(
X̂, tŶ

)
− g

(
P j[χ,Xv], Ŷ

)
− g

(
X̂, P j[χ, Y v]

)
+

(E

∇χg
) (

X̂, Ŷ
)

= g
(
PX̂, Ŷ

)
+ g

(
tX̂, Ŷ

)
+ g

(
X̂, P Ŷ

)
+ g

(
X̂, tŶ

)
+

(E

∇χg
) (

X̂, Ŷ
)

.

Hence it remains only to show that ∇v
δP = P + t. Since LCJ = −J , we have

iPX̂ + itX̂ = JHPX̂ −
[
C,Xh

]
= −(LCJ)HPX̂ −

[
C,XhE − iPX̂

]
= −

[
C, iPX̂

]
+ J

[
C,HPX̂

]
+

[
C, iPX̂

]
= i∇v

δ

(
PX̂

)
= i (∇v

δP )
(
X̂

)
,

thus proving our proposition.

4.3 Theorem. De�ne a type (1,1) tensor �eld P along
◦
τ by

(1) P ~X := −1
2

(
i ~X

E

∇χg
)]

+ Ps
~X + Pa

~X, ~X ∈ X
(◦
τ
)
,

where

(2) Ps is a symmetric, Pa is a skew-symmetric, type (1,1) tensor along
◦
τ ;

(3) Ps is homogeneous of degree 0, i.e. ∇v
δPs = 0;

(4) ImPs and ImPa are contained in the g-orthogonal complement of the
canonical section.

Then the Ehresmann connection H := HE − i ◦ P has the properties

(5) Hδ = χ (and hence H and χ have common geodesics);

(6) E is a �rst integral of the H-horizontal vector �elds (ImH ⊂ Ker dE);

and Miron's derivative D arising from H is strongly associated to H, i.e.,

(7) Dδ = V.

Conversely, if H := HE − i ◦P is an Ehresmann connection with the properties
(5) and (6), and the Miron derivative arising from H is strongly associated to
H, then P is of the form (1), satisfying relations (2), (3) and (4).
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Proof. By the previous proposition, taking into account that HE also satis�es
(5) and (6), we have to solve the following mixed system of algebraic equations
and a partial di�erential equation for P :

Pδ = 0(i) (
iP ~X

)
E = 0

(
~X ∈ X

(◦
τ
))

(ii)

g
(
(∇v

δP )
(
~X
)

, ~Y
)
+ g

(
~X, (∇v

δP )
(
~Y
))

= −
(E

∇χg
) (

~X, ~Y
)

(iii) (
~X, ~Y ∈ X

(◦
τ
))

.

As the system is linear, we may search its general solution as the sum of the
general solution of the homogeneous part and a particular solution. First we
show that the tensor P de�ned by

~X ∈ X
(◦
τ
)
7→ P ~X := −1

2

(
i ~X

E

∇χg
)]

∈ X
(◦
τ
)

(roughly speaking, the �rst term of (1)) is a particular solution, i.e., it satis�es
(i){(iii). To verify relation (i), it is enough to check that g

(
Pδ, X̂

)
= 0 for all

X ∈ X(M):

− 2g
(
Pδ, X̂

)
= g

((
iδ

E

∇χg
)]

, X̂

)
=

(
iδ

E

∇χg
) (

X̂
)
=

(E

∇χg
) (

δ, X̂
)

= χg
(
δ, X̂

)
− g

(E

∇χδ, X̂
)
− g

(
δ,

E

∇χX̂
)

= χ
(
ϑgX̂

)
− g

(
VE [χ,C], X̂

)
− ϑg

(E

∇χX̂
)
= χXvE −

(
i
E

∇χX̂
)

E

= [χ,Xv]E − (vE [χ,Xv])E = (hE [χ,Xv])E = 0,

using in the last step that E is a �rst integral of the HE-horizontal vector �elds.
Thus relation (i) is indeed satis�ed. On the other hand,

i
(
iX̂

E

∇χg
)]

E = g

((
iX̂

E

∇χg
)]

, δ

)
=

(
iX̂

E

∇χg
)
(δ) =

(E

∇χg
) (

X̂, δ
)
= 0,

as before; this proves (ii). To verify that (iii) is satis�ed, �rst we show that

∇v
δ

(
iX̂

E

∇χg
)]

=
(
iX̂

E

∇χg
)]

, i.e., the vector �eld
(
iX̂

E

∇χg
)]

is positively homo-
geneous of degree 1. Using the de�nition ∇v

δg = 0 of the homogeneity of g, we
obtain

g

(
∇v

δ

(
iX̂

E

∇χg
)]

, Ŷ

)
= (iδ)g

((
iX̂

E

∇χg
)]

, Ŷ

)
− g

((
iX̂

E

∇χg
)]

,∇v
δ Ŷ

)
= C

(
iX̂

E

∇χg
) (

Ŷ
)
= C

(E

∇χg
) (

X̂, Ŷ
)
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= Cχg
(
X̂, Ŷ

)
− Cg

(E

∇χX̂, Ŷ
)
− Cg

(
X̂,

E

∇χŶ
)
.

Now we treat the three terms appearing on the right-hand side separately:

Cχg
(
X̂, Ŷ

)
= [C,χ]g

(
X̂, Ŷ

)
+ χCg

(
X̂, Ŷ

)
= [C,χ]g

(
X̂, Ŷ

)
= χg

(
X̂, Ŷ

)
,

Cg
(E

∇χX̂, Ŷ
)
= g

(
∇v

δ

E

∇χX̂, Ŷ
)
+ g

(E

∇χX̂,∇v
δ Ŷ

)
= g

(
j[C,HEVE [χ,Xv]], Ŷ

)
= g

(
j[C,HEVEXc]], Ŷ

)
= g

(
i−1([C,vEXc]− (LCJ)HEVEXc), Ŷ

)
= g

(
i−1 (

[C,Xc]− [C,XhE ]
)
+ VEXc, Ŷ

)
= g

(
VE [χ,Xv], Ŷ

)
= g

(E

∇χX̂, Ŷ
)

,

and similarly,

Cg
(
X̂,

E

∇χŶ
)
= g

(
X̂,

E

∇χŶ
)

.

Thus

g

(
∇v

δ

(
iX̂

E

∇χg
)]

, Ŷ

)
= χg

(
X̂, Ŷ

)
− g

(E

∇χX̂, Ŷ
)
− g

(
X̂,

E

∇χŶ
)

=
(E

∇χg
) (

X̂, Ŷ
)
=

(
iX̂

E

∇χg
) (

Ŷ
)
= g

((
iX̂

E

∇χg
)]

, Ŷ

)
,

which proves that
(
iX̂

E

∇χg
)]

is indeed positively homogeneous of degree 1.
Finally, substituting it into the left-hand side of (iii), we obtain

− 1
2
g

(
∇v

δ

(
iX̂

E

∇χg
)]

, Ŷ

)
− 1

2
g

(
X̂,∇v

δ

(
iŶ

E

∇χg
)]

)
= −1

2
g

((
iX̂

E

∇χg
)]

, Ŷ

)
− 1

2
g

(
X̂,

(
iŶ

E

∇χg
)]

)
= −1

2

(
iX̂

E

∇χg
) (

Ŷ
)
− 1

2

(
iŶ

E

∇χg
) (

X̂
)

= −1
2

(E

∇χg
) (

X̂, Ŷ
)
− 1

2

(E

∇χg
) (

Ŷ , X̂
)
= −

(E

∇χg
) (

X̂, Ŷ
)

,

thus (iii) is satis�ed as well. Now we turn to the solution of the homogeneous
part of our system. To make a clear distinction we denote the unknown tensor
�eld by Ph rather than P . Then the system takes the form

Phδ = 0(i) (
iPh

~X
)

E = 0
(
~X ∈ X

(◦
τ
))

(ii)

g
(
(∇v

δPh)
(
~X
)

, ~Y
)
+ g

(
~X, (∇v

δPh)
(
~Y
))

= 0
(
~X, ~Y ∈ X

(◦
τ
))

.(iii')
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Decomposing Ph into the sum of a symmetric part Ps and a skew-symmetric
part Pa, we obtain

0 = g
(
(∇v

δPs)X̂ + (∇v
δPa)X̂, Ŷ

)
+ g

(
X̂, (∇v

δPs)Ŷ + (∇v
δPa)Ŷ

)
= g

(
∇v

δ

(
PsX̂

)
+∇v

δ

(
PaX̂

)
, Ŷ

)
+ g

(
X̂,∇v

δ

(
PsŶ

)
+∇v

δ

(
PaŶ

))
= Cg

(
PsX̂, Ŷ

)
+ Cg

(
X̂, PsŶ

)
+ Cg

(
PaX̂, Ŷ

)
+ Cg

(
X̂, PaŶ

)
= 2Cg

(
PsX̂, Ŷ

)
= 2g

(
(∇v

δPs)X̂, Ŷ
)

,

thus (iii') holds if and only if Ps is homogeneous of degree 0. It remains to �nd
the conditions imposed by (i) and (ii) on Ps and Pa. Equation (i) implies

g
(
Phδ, ~X

)
= g

(
Psδ + Phδ, ~X

)
= g

(
δ, Ps

~X
)
−

(
δ, Ph

~X
)

= g
(
δ, (Ps − Ph)

(
~X
))

= 0,

whereas equation (ii) is equivalent to(
iPs

~X
)

E +
(
iPa

~X
)

E = ϑg

(
Ps

~X
)
+ ϑg

(
Pa

~X
)

= g
(
Ps

~X, δ
)
+ g

(
Pa

~X, δ
)
= g

(
(Ps + Pa)

(
~X
)

, δ
)
= 0,

thus (i) and (ii) holds if and only if both the sum and the di�erence of Ps and
Pa are contained in the orthogonal complement of δ. This concludes the proof
of the theorem.

We note that our result provides, in fact, a family of good metric derivatives,
since one has a considerable freedom in the choice of Ps and Pa in (1).
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