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Abstract

By a Moér — Vanstone metric we mean a pseudo-Riemannian metric
which is defined in the pull-back bundle of a tangent bundle over itself
and which satisfies some additional conditions. In this context, we say that
a metric covariant derivative is ‘good’ if it is associated to an Ehresmann
connection determined by the metric alone. Every Ehresmann connection
determines a metric covariant derivative, the so-called Miron’s derivative,
in a natural manner. The main result of this paper is the following: an
Ehresmann connection of a certain type is associated to Miron’s deriva-
tive arising from it if and only if it satisfies a mixed system of a partial
differential equation and two algebraic equations. We also determine all
the solutions of that system.
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1 Introduction

A (generalized) metric on a manifold is a symmetric, non-degenerate, type (0,2)
tensor in the pull-back bundle of the tangent bundle over itself. This type of
metrics has obviously a velocity-dependent character. For technical reasons, we
shall assume that they are defined only on the open submanifold of non-zero
tangent vectors rather than on the whole tangent manifold. A Modr - Vanstone
metric is a homogeneous metric whose absolute energy is a (pseudo-)Finslerian
energy function. This special class of generalized metrics was introduced by
the Hungarian Finslerist A. Moér and the theoretical physicist J. I. Horvédth in
1955 [4]. The next year A. Modr, and a few years later, in 1962, the excellent
Canadian geometer J. R. Vanstone enriched the subject with further important
contributions [10, 13]. We note that in [4] the new class of metrics also ob-
tained an interesting application to Yukawa’s bilocal field theory — an aspect
which deserves serious attention. Generalized metrics proved to be useful also
in relativistic optics [9].

A covariant derivative operator in our pull-back bundle is metric if the co-
variant differential of the metric tensor with respect to it vanishes. In 1987,
M. Matsumoto, the leading Finslerist of the last decades, drew up the follow-
ing important heuristic principle: ‘Through the author’s several experiences, he
became convinced that there should exist the best Finsler connection for every
theory of Finsler spaces’ [6]. In this paper, we try to extend Matsumoto’s prin-
ciple to the world of Modr—Vanstone metrics, and to find the ‘best’ metric
derivative, or, at least, some ‘good’ metric derivatives for one of their special
classes.

If an Ehresmann connection is specified over the manifold, there is a unique
metric covariant derivative in the pull-back bundle whose vertical torsion van-
ishes and whose horizontal torsion coincides with the torsion of the given Ehres-
mann connection. We call this covariant derivative Miron’s derivative arising
from the Ehresmann connection [8, 11]. A covariant derivative is associated to
an Ehresmann connection if the kernel of its deflection is the horizontal sub-
space of the Ehresmann connection at each point of the tangent manifold. All
the notable covariant derivatives in Finsler geometry enjoy this property, even
the non-metric ones. Thus, by the ‘goodness’ of a metric derivative we shall
informally mean that it is associated to an Ehresmann connection determined
by the metric alone. In the case of Moér— Vanstone metrics, we have a natural
Ehresmann connection: the Barthel connection Hp arising from the absolute
energy E of the metric. However, Miron’s derivative constructed from Hpg is
not ‘good’ in the sense above. Thus, to obtain ‘good’ metric derivatives for this
class of metrics, we have to search more suitable Ehresmann connections than
Hg.

The new Ehresmann connection H is completely determined by its difference
tensor P from Hpg, therefore we shall look for P rather than directly for H.
We shall also assume that the absolute energy F is a first integral of the H-
horizontal vector fields and that the semispray associated to H coincides with
the canonical spray belonging to the Finsler energy E. All these (geometrically



natural) conditions, together with the ‘goodness’ of Miron’s derivative arising
from H, will yield a mixed system of a partial differential equation and two
algebraic equations for P. This system will be linear, thus we may determine
its solutions as the sum of the general solution of the homogeneous part and a
particular solution. We shall find the general solution of the homogeneous part
by decomposing it into the sum of a symmetric and a skew-symmetric term.
In establishing our partial differential equation, the unpublished manuscript [5]
was as inspiring as helpful for us, in spite of the fact that it contains some
mistakes.

2 Basic setup

2.1. Throughout this paper M denotes an n-dimensional smooth manifold
whose topology is Hausdorff, 2nd countable and connected. The R-algebra of
smooth real-valued functions on M is denoted by C'*°(M). The 2n-dimensional

tangent manifold of M is TM, and T'M stands for the open submanifold of
non-zero tangent vectors to M.

2.2. The tangent bundle of M is 7 : TM — M, while 7 JO“M — M is the
deleted bundle for 7. The tangent bundle of the latter is e TTM — TM.

757 is the pull-back of T over 7. The total space of this vector bundle is the
fibre product %M X pr T M, the base manifold is ZO“M, and the fibre over v € %M
is {v} x Tp M =Ty M. %(7) denotes the C> (%M)—module of (smooth)
sections of 7*7, and its typical elements are denoted by X, Y ... . These sections
are also mentioned as wvector fields along 7. The canonical section & of 7*7

duplicates the elements of T'M, i.e.,
d:veTM— §v):=(v,v) € TM xp TM.

Every vector field X on M induces a vector field X along T by ‘parallel propa-
gation’; i.e., by the rule

veTM — X(v) := (v,X(?(v))) € TM 1 TM.

X is called a basic vector field along 7. The set of basic vector fields generates
the module X (7).

2.3. The basic short exact sequence is the sequence
0 — TM xp TM 5 TTM 3 TM %3 TM — 0,

where i identifies the fibre {v} x Tg(q M of 7*7 with the tangent space Tng(U)M

)

for all v € %M, and j = (T%M,T*> (3* denotes the differential of ;) The



(strong) bundle maps i, j induce the C>° (TM ) -homomorphisms

X ex(7) - ix ;:ioXex(%M), gex(%M) —jE=jot e x(7),

which will also be denoted by i and j, respectively. For any vector field X on
M, XV := iX is the vertical lift of X. With the help of i and j it is possible to
define two additional canonical objects, the Liouville vector field C' := i§ and
the vertical endomorphism J :=1io0j. A second-order vector field or a semispray

over M is a vector field x on TM such that Jy = C (or equivalently, jx = 9).
If, in addition, [C, x] = ¥, i-e. x is positively homogeneous of degree 2, then y
is called a spray.

2.4. For a given vector field X along 7 a ‘covariant-like’ differential operator,
the (canonical) v-covariant derivative V% can be constructed as follows. Let

VLF = (IX) F, itFeC> (JO“M);
V“X)N/ =] {if(,n} . ifY e %(70'), and n € X(%M) such that jn =Y.

Then V”XY is well-defined, and VU)"( may be uniquely extended to be a ten-

sor derivation of the tensor algebra of x(?) For any tensor A along 7 the

v-covariant differential VVA collects in the usual manner all the v-covariant
[e]

derivatives of A. In particular, if F' : TM — R is a smooth function, then the

second v-covariant differential gp := VYVVF is a symmetric, type (0,2) tensor

along ?’, called the Hessian of F.

2.5. By an Ehresmann connection (or a nonlinear connection) H on TM we
mean a right splitting of the basic short exact sequence, i.e. a strong bundle map

H:TM xp TM — TTM such that joH =1, . The type (1,1) tensor
TMx p TM

field h := H oj on TM is the horizontal projector belonging to H, and v :=
IT%M — h is the complementary vertical projector. It V : TTM — TM Xy TM

is a left splitting of the basic exact sequence such that KerV = ImH, then V
is called the wvertical map associated to H. The bundle maps H and V induce

Cc*= (TM ) -homomorphisms at the level of sections by the rules

X ex(7) —»HX =HoX eX(TM), € x(TM) = VE=Vog e X(7).

For any vector field X on M, X" := HX is the horizontal lift of X (with respect
to H). If x is a semispray over M, then there is a unique Ehresmann connection

Hy : TM xp TM — TTM such that

- 1
H X = §(XC +[X",x]) forall X € X(M),



where X¢ is the complete lift of X. This Ehresmann connection is said to be
the Crampin — Grifone connection arising from y [1, 3].

2.6. Suppose
D:x(TM) x x(7) = x(7), (€.¥) — DV

is a covariant derivative operator in the vector bundle T By the wertical
torsion of D we mean the tensor Q along 7 given by

Q(X, V)= Dig¥ - Dy X —i* [iX,i7].

In the presence of an Ehresmann connection H, the horizontal torsion T of D
is the type (1,2) tensor along 7 such that

T(X,7) = DyxV = Dys X —j [HE MY

By the deflection of D we mean the covariant differential p := D¢ of the canon-
ical section. The type (1,1) tensor field

ﬁ;:uoi:XGf{(?’)HﬁX:DiS{éE:{(;)

along 7 is the v-deflection of D. The covariant derivative D is called regular if
i is (pointwise) invertible, and strongly regular if i = 1 NER If an Ehresmann

connection H is also specified, we can introduce the h-deflection
p = oM X € X(7) = p'X = Dy 36 € X(7) = (D"6) X.

The covariant derivative D is said to be associated to H if Im’H = Ker y, and
strongly associated to H if its deflection is just the vertical map V determined by
H, i.e. p = V. It follows immediately that D is associated to H if and only if it
is regular and its h-deflection vanishes, and it is strongly associated to H if and

only if it is strongly regular and its h-deflection vanishes. If H : TM Xy TM —

TTM is an Ehresmann connection, then the rules

ViV =V [H)N(,iff} VgV i=VLY; X,V ex(?)
define a covariant derivative operator in 70'*7', called Berwald’s derivative induced
by H. The h-deflection V"8 =: t of Berwald’s derivative is called the tension of
‘H. By the torsion of H we mean the horizontal torsion of V.

3 Generalized metrics and Miron’s construction

3.1. By a generalized metric (also called a generalized Finsler or a generalized
Lagrange metric), briefly a metric we mean a pseudo-Riemannian metric in



the pull-back bundle 70'*7', i.e., a smooth assignment of non-degenerate scalar

products g, to the fibres To M, veTM. The 1-form

)
Uy : X € X(7) = 0,X i= g (X,6) e = (TM)

along 7 is the Lagrange 1-form associated to g. The smooth function E :=

$9(8,0) on TM is called the absolute energy of g. If the Hessian gg = V'V'E
is non-degenerate, we say that the metric g is energy-regular. If Vig = 0, then
g is called homogeneous. If a metric is energy-regular and homogeneous, then
we speak of a Moér— Vanstone metric.

[e] o
3.2. By a Finsler energy on T'M we mean a smooth function F : TM — R which
is positively homogeneous of degree 2 and has the property that gp = V'V'E
is non-degenerate, i.e. it is a metric in the sense above. Then we say that gg is

[e]

a Finsler metric on TM. (Our concept of a Finsler energy is more general than
the usual one since the positiveness of F is not required. It is a nice problem
to prove that if E is positive everywhere, then the metric tensor gg is positive
definite.) The absolute energy of gg is just the given Finsler energy E, and
ge is homogeneous. Thus any Finsler metric is a Moo6r — Vanstone metric. The
converse is, of course, definitely false in general. The canonical spray x for the
Finsler energy F is determined via the Lagrange equation

iyd(dE o J) = —dE.

By the Crampin—Grifone construction, y induces an Ehresmann connection
Hp, called the Barthel connection of the Finsler manifold (M, E). The Berwald

E
derivative arising from Hpg will be denoted by V.

3.3. The (covariant) Cartan tensor of g is the v-covariant differential C, := V¥g
of the metric. The type (1,2) tensor C along 7 determined by

g(c(X7).2)=c (X.7.2); X¥V.2ex(?)

i.e., by a raising operation, is also called the Cartan tensor of g. If g is a Finsler
metric, then C, is totally symmetric. In general, it is symmetric only in its last
two variables, and this is one of the main sources of the difficulties one has to
face studying generalized metrics. Notice that ¢ is homogeneous if and only if

¢ (5,X) =0forall X € X(?),

3.4 Definition. Let g be a metric in 1. We say that g is weakly normal if
C, (X(S 5) =0 for all X € X(7).

This class can be characterized as follows [7].



3.5 Proposition. A metric g is weakly normal if and only if ¥, = V'E. The
absolute energy of a weakly normal metric is positive-homogeneous of degree 2.

3.6. Let a metric g in 7*7 and an Ehresmann connection H over M be given.
There is a unique metric covariant derivative D in 7*7 with vanishing vertical
torsion such that the horizontal torsion of D coincides with the torsion of H.
With the help of Berwald’s derivative V induced by H, D may be constructed
as follows:

(1) We introduce the h-Cartan tensor C" of g (with respect to ) by means

of the relation g (Ch (X Y) Z) (Vuz9) (Y, Z)
(2) Using Christoffel’s trick, we define two new tensors C and C" along .

o(¢(%

g(c (%), 2) =g(c"(X9).2) +g(c"(V.2).%) —g(c"(2.%).7).
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DigV = VigV + 5C (X.7), Dyg¥ 1= V5V + 5" (X7,

then D is the desired covariant derivative.

We call the metric derivative so obtained Miron’s derivative arising from
‘H. In the case of a Finsler metric and its Barthel connection this construction
leads to Cartan’s covariant derivative [11, 12]. In the general case, however, our
initial data g and H are not related at all, thus it can hardly be expected that
D is associated to H.

4 The main results

4.1. In this section, g will be a weakly normal Moor— Vanstone metric, x the
E

canonical spray of the Finsler energy F, Hg the Barthel connection, and V
Berwald’s covariant derivative arising from Hpg. Other data of Hg will be
distinguished from those of an arbitrary Ehresmann connection by a subscript
E. The symbol § will denote the sharp operator with respect to g.

4.2 Proposition. Given a type (1,1) tensor field P along 7, suppose that H =
Hg —io P is an Ehresmann connection such that Hé = x and ImH C KerdFE.
Then Miron’s derivative D arising from H is strongly associated to H if and

only if
0 ((V5P) (X).7) +9 (X.v3P) (V) = (Vo) (X.7)

for any X,Y € X(;)



Proof. Let V be Berwald’s derivative arising from H. In 2.6 we noted that
D is associated to H if and only if it is strongly regular and its h-deflection
vanishes. In the first step, we show that D is automatically strongly regular. If

X,Y € %(?), we have

iX = D,g6=V,56 + %5 (%.9),

g(C(%.0).¥) =g (c(%.6).7)+g(c(5¥),X) - g(c(V.X).5)
=g(c(X.7).8) +(Vio) (V.X) =g (c(X.¥).5) =0,
thus & is indeed the identity map. In the second step we show that the h-

deflection of D with respect to H vanishes if and only if the equation in the
proposition holds. Since g is non-degenerate, it is enough to consider the ex-

pression g (th 0, }7) :

Since g is weakly normal, by 3.5 we have ¥, = VYE. This implies that
g (X,é) = ﬂgX = XVF for all X € X(M), thus we get

(tha Y) (tf(, ?) +XPYUE — i (vxh?) E—g (?, tf()
9)

+ (%

~g (X VXY) _YhXUE 4 (vyhX) E+g (X tff)

(£.9) +9 (VX.¥) 40 (X.9,7) — g (7,X.7)

A A E PN
=g (¢X,7) 49 (X.67) + XV E - [X" 7] B+ (Vyg) (X.7)
E . N . E .
+g (VXX ~ VX, Y) iy (X, A g VXY) —YhXVE + [Y" X] E,
where we also used the definition of the Berwald derivative V. Finally, taking

into account that x = Hgd = H9, that the relation HE H =10 P is equivalent
to V — Vg = Poj, and that j[x, X"] = X, oY’ =Y (see e.g. [11, p. 1349]),



we obtain
29 (th(s, ff) —g (tX, Y) tg (X,tff) FYUX'E
g (Vebo X = V6 XY ) + g (X, Velo Y] - Vi, v"])
+ (éxg) (XY) _X'YhE
—g (tf(,f/) +g (f(,tff)
g (Pibe X"1.Y) = g (X, Pibe. Y1) + (€x9> (x.7)
=g (PXY) 49 (1X.7) 49 (X.P7) + g (X.67) + (Vog) (£.7).
Hence it remains only to show that VYP = P + t. Since £c.J = —J, we have
iPX +itX = JHPX — [C, X"] = —(LoJYHPX — [C,XhE - iPX}
—_ [C, iP)A(} o [C, HPX] + [O, iPX] — iV (PX) —i(VLP) (X) ,
thus proving our proposition.

4.3 Theorem. Define a type (1,1) tensor field P along 7 by

T - S
(1) PX == (ixVyg) + P.X + PX, X € X(7),

where
(2) Ps is a symmetric, P, is a skew-symmetric, type (1,1) tensor along 7
(8) Ps is homogeneous of degree 0, i.e. V§Ps = 0;

(4) Im P; and Im P, are contained in the g-orthogonal complement of the
canonical section.

Then the Ehresmann connection H := Hg — 1o P has the properties
(5) Hé = x (and hence H and x have common geodesics);
(6) E is a first integral of the H-horizontal vector fields (Im H C Ker dE);
and Miron’s derivative D arising from H is strongly associated to 'H, i.e.,
(7) D6 =V.

Conversely, if H := Hg —1io P is an Ehresmann connection with the properties
(5) and (6), and the Miron derivative arising from H is strongly associated to
H, then P is of the form (1), satisfying relations (2), (3) and (4).



Proof. By the previous proposition, taking into account that Hp also satisfies
(5) and (6), we have to solve the following mixed system of algebraic equations
and a partial differential equation for P:

As the system is linear, we may search its general solution as the sum of the
general solution of the homogeneous part and a particular solution. First we
show that the tensor P defined by

- o - 1/ E \t o
X e %(T) — PX = f§<z)-(vxg> € .'{(T)

(roughly speaking, the first term of (1)) is a particular solution, i.e., it satisfies
(i)—(iii). To verify relation (i), it is enough to check that g (P(S, X) = 0 for all
X e X(M):

~20 (P.X) =g ((i5%20)  X) = (i5929) (X) = (V) (5.5)
- Xg(a,f() _g (éxgs,f() _g (5,% )

=X (95X) = g (Vele.CLX) =9, (Vi X) =xX"E - (i%x)z) E
=[x, X"1E = (velx, X")E = (hp[x, X"])E =0,

B S,

using in the last step that F is a first integral of the H g-horizontal vector fields.
Thus relation (i) is indeed satisfied. On the other hand,

BN AN E 2 5
i(ix%.0) £ =0 ((15920)"0) = (1s9:9)0) = (Vu0) (£.6) =0
as before; this proves (ii). To verify that (iii) is satisfied, first we show that
E # E i E #
Vi (iXVXg) = (iXVXg) , i.e., the vector field (iXVXg) is positively homo-

geneous of degree 1. Using the definition Vjg = 0 of the homogeneity of g, we
obtain

1 (Ti(ix%20)" 7 ) = 600 ((159:0)" 7 ) =0 ((i5%00) 757)

- (i) (7) = () (1)
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= Oxg(£.7) ~ (VX7 — 09 (£, 9,7).
Now we treat the three terms appearing on the right-hand side separately:
CXQ(X}?)::lew(X}?>—%xcg(X}?)::lew<X}?>::xg(X,?),
Co(V X ¥) = g (ViV,X.7) 44 (V5. 937)
= g (0 HpVsl X".Y) = g (i(C. HeVEX)T)
= g (i (C.vEX] — (Lo HpVEX©).Y)
:g(fﬂ(KﬁXﬂgﬂCHXMﬂ)+VEX2§j
=g (VE[X,X“L?) =g <€XX7Y/) :
and similarly,
Co(%.9,7) =g (X.9,7).
Thus
(vg( VQg)ﬁY> o (X.7) - (v £7) - (X}%X?)
= (Fua) (509) = (1600) (7) =0 ((is8.0)" ).

E f

which proves that (z vag) is indeed positively homogeneous of degree 1.
Finally, substituting it into the left-hand side of (iii), we obtain

-1 <Va< €x9>ﬁ?);g (X,Vg(iygxg)ﬁ)
:_;g((zﬁxg)” Yf) ;g@( %)“)

=5 (%) (V) =3 (i ¥29) (%)

- L(8) (13) 38 (15) = () (),

thus (iii) is satisfied as well. Now we turn to the solution of the homogeneous
part of our system. To make a clear distinction we denote the unknown tensor
field by Py rather than P. Then the system takes the form

(i) Py =0
(ii) (inX)E=0 (Xex(?))
(i) ¢ ((vgph) (X) ,?) tg (X (V) (Y)) -0 (XY € x(?)) :

11



Decomposing Py, into the sum of a symmetric part Ps and a skew-symmetric
part P,, we obtain

=209(P.X. V) = 2 ((ViP)X. V).

thus (iii’) holds if and only if Ps is homogeneous of degree 0. It remains to find
the conditions imposed by (i) and (i) on Ps and P,. Equation (i) implies

g (Pha, X) —g (Ps(s + Pyo, X) —g (5, Psf() _ (5, th()
=g (6.(P.— P (X)) =0,
whereas equation (ii) is equivalent to
(iPSX) E+ (iPaf() E=1, (Ps)”() + 1, (Paf()
=g(P.X,0) +9(PX.0) =g((P+Pn) (X).0) =0,

thus (i) and (ii) holds if and only if both the sum and the difference of P, and
P, are contained in the orthogonal complement of §. This concludes the proof
of the theorem.

We note that our result provides, in fact, a family of good metric derivatives,
since one has a considerable freedom in the choice of Ps; and P, in (1).
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