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A NEW LOOK AT FINSLER CONNECTIONS AND SPECIAL FINSLER
MANIFOLDS

J�OZSEF SZILASI AND CSABA VINCZE

Abstract. Continuing Grifone's pioneering work, we present a systematic treatment of
some distinguished Finsler connections and some special Finsler manifolds, built on three
pillars: the theory of horizontal endomorphisms, the calculus of vector-valued forms and a
\tangent bundle version" of the method of moving frames.
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Introduction

The forthcoming investigations are partly based onGrifone's theory of nonlinear connec-
tions (whose role is played in our presentation by the so-called horizontal endomorphisms)
and the coordinate-free, \intrinsic" calculus of the vector-valued di�erential forms established
by A. Fr�olicher and A. Nijenhuis. The main purpose of the present work is to insert
the theory of Finsler connections and the foundations of special Finsler manifolds in the new
approach to Finsler geometry built on the above two pillars. The �rst, epoch-making steps in
this direction were done by J. Grifone himself, our work can be considered as a systematic
continuation of the program initiated by him. Technically, we enlarged and { at the same
time { simpli�ed the apparatus by using the tools of tangent bundle di�erential geometry.
This means �rst of all the consistent use of a special frame �eld, constituted by vertically and
completely (or vertically and horizontally) lifted vector �elds. Thus the third pillar of our
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approach is the method of moving frames. It has a decisive superiority in calculations over
coordinate methods: the formulation of the concepts and results becomes perfectly transpar-
ent, and the proofs have a purely intrinsic character. Nevertheless, coordinate-calculations
will not be avoided completely. In Section 6 we felt that an indication of the connections to
the traditional theory will be useful, while in Section 7 the nature of the problem forced us
to use a suitable coordinate-system.
The paper is organized as follows: In the �rst two sections we present a quite detailed

exposition of the conceptual and calculative background to make the paper self-contained
as far as possible. In Section 3 basic facts on Finsler manifolds can be found. An important
novelty is a generalization and a careful investigation of the so-called second Cartan tensor.
It plays a crucial role in the theory of Finsler connections, as well as in the tensorial charac-
terization of some special Finsler manifolds. Section 4 is devoted to an invariant, axiomatic
description of three distinguished Finsler connections: the Berwald, the Cartan, and the
Chern {Rund connection. We hope that our approach helps in better understanding the role
of the di�erent axioms, and also opens a path for further, essential generalizations. In Sec-
tion 5 we derive some important (partly well-known) relations between the curvature data
of the di�erent Finsler connections, these will be indispensable for a tensorial description
of the special Finsler manifolds studied in the last two sections. Section 6 concentrates on
the characterizations of Berwald manifolds; some of them (e.g. 6.5 and 6.7) are new, and all
of the proofs are original. We believe that the compact, elegant and e�cient formulations
presented here demonstrate the power of our approach. In the concluding Section 7 the key
observation is given in Proposition 7.2; this provides a very simple proof of the classical
characterization of locally Minkowski manifolds.

1. Notation and some basic facts

1.1. M is a connected, paracompact, smooth (i.e., C1) manifold of dimension n, where
n 2 N n f0; 1g. C1(M) is the ring of real-valued smooth functions on M , the C1(M)-
module of vector �elds on M is denoted by X(M).

1.2. 8k 2 f0; : : : ; ng : 
k(M) is the module of di�erential k-forms on M ; by convention

0(M) := C1(M). 
(M) := �n

i=0

k(M) is the graded algebra of di�erential forms with

multiplication given by the wedge product. To each vector �eld X 2 X(M) correspond two
derivations of 
(M): the substitution operator {X of degree �1, and the Lie derivative LX , of
degree 0. These are related to the operator d of the exterior derivative through H. Cartan's
magic formula

LX = [{X ; d] := {X � d+ d � {X :

1.3. A vector k-form on M is a skew-symmetric k-multilinear map [X(M)]k ! X(M) if
k 2 N n f0g, and a vector �eld on M , if k = 0. They constitute a C1(M)-module, denoted
by 	k(M). In particular, the elements of 	1(M) are just the (1; 1) tensor �elds on M .

1.4. The Fr�olicher - Nijenhuis bracket of a vector 1-form K 2 	1(M) and a vector �eld
Y 2 X(M) is the vector 1-form [K; Y ] de�ned by

[K; Y ](X) = [K(X); Y ]�K[X; Y ]; X 2 X(M):(1.4a)
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The Fr�olicher -Nijenhuis bracket of the vector 1-forms K;L 2 	(M) is the vector 2-form
[K;L] 2 	2(M), given by

[K;L](X; Y ) = [K(X); L(Y )] + [L(X); K(Y )] +K � L[X; Y ] +

+ L �K[X; Y ]�K[X;L(Y )]�K[L(X); Y ]�

� L[X;K(Y )]� L[K(X); Y ]; X; Y 2 X(M):

(1.4b)

In particular,

1

2
[K;K](X; Y ) = [K(X); K(Y )] +K2[X; Y ]�K[X;K(Y )]�K[K(X); Y ]:(1.4c)

NK :=
1

2
[K;K](1.4d)

is said to be the Nijenhuis torsion of K.

1.5. The adjoint operator K� : 
(M) ! 
(M); ! 7! K�! of a vector 1-form K 2 	1(M)
is de�ned by the value of K�! on k vector �elds X1; : : : ; Xk 2 X(M) through the formula

K�!(X1; : : : ; Xk) := !(K(X1); : : : ; K(Xk))(1.5)

if k 6= 0, and 8f 2 C1(M) : K�f := f .

1.6. � : TM !M is the tangent bundle ofM ; it is also denoted by �M . �0 : TM !M is the
subbundle of �M constituted by the nonzero tangent vectors toM . The kernel of the tangent
map T� (or T�0) is a canonical subbundle of �TM (or �TM), called the vertical subbundle
and denoted by � vTM (and � v

TM , resp.). The sections of the bundles �
v
TM and � v

TM are called
vertical vector �elds; the C1(TM)-modules of vertical vector �elds are denoted by Xv(TM)
and Xv(TM), respectively.

1.7. Tangent bundle geometry is dominated by two canonical objects: the Liouville vector
�eld C 2 Xv(TM), and the vertical endomorphism J 2 	1(TM). We shall frequently use
the following properties:

ImJ = Ker J = X
v(TM):(1.7a)

J2 = 0:(1.7b)

NJ :=
1

2
[J; J ] = 0:(1.7c)

[J; C] = J:(1.7d)

1.8. A di�erential form ! 2 
k(TM) (k 6= 0) is semibasic, if for each vector �eld X on TM ,
{JX! = 0. Analogously, a vector k-form K 2 	k(TM) is said to be semibasic, if

J �K = 0 and 8X 2 X(TM) : iJXK = 0:(1.8)

1.9. The vertical endomorphism J determines two derivations of 
(TM). The vertical
derivation {J is de�ned as follows:

8f 2 C1(TM) : {Jf = 0;(1.9a)

{J!(X1; : : : ; Xk) :=
kX
i=1

!(X1; : : : ; J(Xi); : : : ; Xk)(1.9b)

(! 2 
k(TM); Xi 2 X(TM); 1 � i � k):
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{J is a derivation of degree 0. The vertical di�erentiation dJ is the mapping

dJ := [{J ; d] := {J � d� d � {J ;(1.9c)

it is of degree 1. In particular, we get

8f 2 C1(TM) : dJf = {Jdf = J�df:(1.9d)

The following formulas are easy consequences of the de�nitions:

d � dJ = �dJ � d:(1.9e)

{C � dJ + dJ � {C = {J :(1.9f)

1.10. A semispray on the manifold M is a mapping

S : TM ! TTM; v 7! S(v) 2 TvTM;

satisfying the following conditions:

S is smooth on TM ;(1.10a)

JS = C:(1.10b)

The semispray S is called a spray, if

S is of class C1 on TM(1.10c)

and

[C; S] = S:(1.10d)

1.11. The vertical lift of a function f 2 C1(M) is f v := f � � 2 C1(TM), the complete
lift of f is the function

f c : TM ! R; v 7! f c(v) := df(v) = v(f):

Vector �elds on TM are determined by their action on f f c j f 2 C1(M) g (see [20]). Thus
for any vector �eld X 2 X(M) there exist vector �elds Xv; Xc 2 X(TM) such that

8f 2 C1(M) : Xvf c = Xf � � = (Xf)v;(1.11a)

8f 2 C1(M) : Xcf c = (Xf)c:(1.11b)

Xv and Xc are called the vertical and the complete lift of X, respectively.

1.12. Lemma. If S is a semispray on M , then

8Z 2 X(TM) : J [JZ; S] = JZ:(1.12)

For a proof, see [10], p. 295.

1.13. Lemma. For each vector �elds X; Y 2 X(M) we have

[Xv; Y v] = 0; [Xv; Y c] = [X; Y ]v; [Xc; Y c] = [X; Y ]c;(1.13a)

[C;Xv] = �Xv; [C;Xc] = 0;(1.13b)

JXc = Xv; [J;Xc] = 0:(1.13c)

1.14. Lemma (1st local basis property). If (Xi)
n
i=1 is a local basis for the module X(M),

then (Xv
i ; X

c
i )
n
i=1 is a local basis for X(TM).

1.15. Lemma. A vector �eld Y 2 X(TM) is
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(a) a vertical lift () JY = 0 and [J; Y ] = 0;

(b) a complete lift () JY 6= 0 and [J; Y ] = 0.

1.16. Lemma. A vertical vector �eld Y 2 Xv(TM) is a vertical lift if and only if for each
vector �eld X on M [Xv; Y ] = 0:

Proof. We �rst remark that the vector 1-form [J; Y ] is semibasic. From this by Lemma 1.14
it follows that [J; Y ] is completely determined by its action on fXc j X 2 X(M) g.
Necessity. Assume Y 2 Xv(TM) is a vertical lift. Then by Lemma 1.15(a) [J; Y ] = 0. If
X 2 X(M), then [Xc; Y ] is vertical since

(Xc�
�
X and Y �

�
0) =) [Xc; Y ]�

�
0:

Now we conclude that

8X 2 X(M) : 0 = [J; Y ]Xc (1.4a)
= [J(Xc); Y ]� J [Xc; Y ]

(1.13c)
= [Xv; Y ]:

Su�ciency. Suppose that for each vector �eldX onM we have [Xv; Y ] = 0. Then [J; Y ]Xc =
[Xv; Y ] = 0, hence by Lemma 1.14 [J; Y ] = 0. This means by Lemma 1.15(a) that Y is a
vertical lift.

2. Horizontal endomorphisms and Finsler connections

2.1. In the sequel we shall introduce some important vector forms over TM . In conformity
with the demands of Finsler geometry, their smoothness will not be required or assured a
priori on the whole tangent manifold TM .

2.2. De�nitions.
(i) A vector 1-form h 2 	1(TM), smooth only on TM , is said to be a horizontal endomor-
phism on M , if it is a projector (i.e. h2 = h) and Ker h = Xv(TM).

(ii) Assume h 2 	1(TM) is a horizontal endomorphism. The mapping

X 2 X(M) 7! Xh := hXc 2 X(TM)(2.2a)

is called the horizontal lifting determined by h. The vector 1-form

H := [h; C] 2 	1(TM)(2.2b)

is said to be the tension of h. If H = 0, then h is called homogeneous. The vector 2-form

t := [J; h] 2 	2(TM)(2.2c)

is said to be the torsion of h. The curvature of the horizontal endomorphism h is the vector
2-form


 := �Nh = �
1

2
[h; h]:(2.2d)

2.3. Remark. We emphasize again the condition of di�erentiability about a horizontal
endomorphism is prescribed only on TM . As a consequence, the smoothness of the tension,
the torsion and the curvature is also guaranteed only over TM .
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2.4. Remark. The following relations are easy consequences of the de�nitions:

h � J = 0; J � h = J:(2.4a)

8X 2 X(M) : JXh = Xv:(2.4b)

8X; Y 2 X(M) : J [Xh; Y h] = [X; Y ]v:(2.4c)

2.5. Lemma and de�nition. Suppose that h is a horizontal endomorphism on M .
(a) If Xh(TM) := Imh, then X(TM) = Xv(TM)�Xh(TM) (direct sum). Xh(TM) is called
the module of horizontal vector �elds. v := 1X(TM) � h is also a projector, the vertical
projection on Xv(TM) along Xh(TM).

(b) (2nd local basis property.) If (Xi)
n
i=1 is a local basis of X(M), then

�
Xv
i ; X

h
i

�n
i=1

is a local
basis of X(TM).

Proof. Trivial.

2.6. Lemma. The curvature form 
 of a horizontal endomorphism h is a semibasic vector
2-form, consequently

8X; Y 2 X(TM) : 
(X; Y ) = 
(hX; hY ) = �v[hX; hY ];(2.6a)

8X; Y 2 X(M) : 
(Xh; Y h) = 
(Xc; Y c) = �v[Xh; Y h]:(2.6b)

Proof. Straightforward calculation.

2.7. Lemma. If h is a horizontal endomorphism on M , then there exists a unique almost
complex structure F (F 2 = �1X(TM)) on TM , smooth over TM , such that

F � J = h; F � h = �J:(2.7)

For a proof, see [10], p. 314.

2.8. The following formulas can be obtained easily:

J � F = v; F � v = h � F:(2.8a)

v � F = F � F � v = F � h � F = �J:(2.8b)

J [C; F ] = v � [C; h]:(2.8c)

2.9. De�nitions. Suppose that h is a horizontal endomorphism on M and consider the
almost complex structure F characterized by Lemma 2.7. Let, furthermore, D be a linear
connection on the manifold TM or TM . The pair (D; h) is said to be a Finsler connection
on M if it satis�es the following conditions:

Dh = 0 (D is reducible);(2.9a)

DF = 0 (D is almost complex ):(2.9b)

The mappings

Dh : (X; Y ) 2 X(TM)� X(TM) 7! Dh
XY := DhXY 2 X(TM);(2.9c)

Dv : (X; Y ) 2 X(TM)� X(TM) 7! Dv
XY := DvXY 2 X(TM)(2.9d)

are called the h-covariant and the v-covariant di�erentiation with respect to (D; h), respec-
tively. The h-deection of (D; h) is the mapping

h�(DC) : X 2 X(TM) 7! DC(hX) = DhXC;(2.9e)
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while the v-deection is v�(DC). The covariant di�erential DC is called the deection map.

2.10. Remark. Assume that (D; h) is a Finsler connection on M . Applying (2.9a) we get
immediately that

Y 2 Xv(TM) =) 8X 2 X(TM) : DXY 2 Xv(TM);(2.10a)

Y 2 Xh(TM) =) 8X 2 X(TM) : DXY 2 Xh(TM):(2.10b)

Owing to the condition (2.9b) it follows that D is completely determined by its action on
X(TM)� Xv(TM). Namely, for each vector �elds X; Y on TM ,

DvXhY = FDvXJY;(2.10c)

DhXhY = FDhXJY:(2.10d)

We show that D is almost tangent as well:

DJ = 0(2.10e)

To see this, let X; Y 2 X(TM) be arbitrary. If Y is vertical, then JY = 0, DXY 2 Xv(TM)
(by (2.10a)), hence JDXY = 0 and

DJ(Y;X) = DXJY � JDXY = 0:

Now suppose that Y is horizontal. Then hY = Y and

DJ(Y;X) = DXJY � JDXY
(2.7)
= �DXFhY + FhDXY

(2.10b)
=

= �DXFY + FDXY = �DF (Y;X)
(2.9b)
= 0:

2.11. Lemma and de�nition. Let (D; h) be a Finsler connection on M . Then the torsion
tensor �eld T of D is completely determined by the following mappings:

A (X; Y ) := hT(hX; hY ) { (h)h-torsion;(2.11a)

B (X; Y ) := hT(hX; vY ) { (h)hv-torsion;(2.11b)

R1(X; Y ) := vT(hX; hY ) { (v)h-torsion;(2.11c)

P1(X; Y ) := vT(hX; vY ) { (v)hv-torsion;(2.11d)

S1(X; Y ) := vT(vX; vY ) { (v)v-torsion:(2.11e)

2.12. Lemma and de�nition. If (D; h) is a Finsler connection on M , then curvature
tensor �eld K of D is uniquely determined by the following three mappings:

R(X; Y )Z := K (hX; hY )JZ { h-curvature;(2.12a)

P(X; Y )Z := K (hX; JY )JZ { hv-curvature;(2.12b)

Q(X; Y )Z := K (JX; JY )JZ { v-curvature:(2.12c)

2.13. Example 1: horizontal lift of a linear connection. Suppose that r is a linear
connection on the manifold M . It is well-known that r induces a homogeneous horizontal
structure h 2 	1(TM), which is smooth on the whole tangent manifold TM . In this case

8X; Y 2 X(M) :
�
rXY

�v
= [Xh; Y v]:
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It is also known (see e.g. [8]), that there exists a unique linear connection
h

r on the manifold
TM , characterized by the following rules of calculation:

h

rXvY v = 0;
h

rXhY v =
�
rXY

�v
= [Xh; Y v];

h

rXvY h = 0;
h

rXhY h =
�
rXY

�h
; X; Y 2 X(M):

(2.13)

h

r is called the horizontal lift of the linear connection r. Now it is easy to check that (
h

r; h)

satis�es the conditions (2.9a), (2.9b); therefore (
h

r; h) is a Finsler-connection on M .

2.14. Example 2: Berwald-type connections. Let a horizontal endomorphism h on the
manifold M be given. De�ne the mapping

�
D : X(TM)� X(TM)! X(TM); (X; Y ) 7!

�
DXY

as follows:
�
DJXJY := J [JX; Y ];(2.14a)
�
DhXJY := v[hX; JY ];(2.14b)
�
DJXhY := h[JX; Y ];(2.14c)
�
DhXhY := hF [hX; JY ](2.14d)

and
�
DXY :=

�
DvXvY +

�
DhXvY +

�
DvXhY +

�
DhXhY:

Then
�
D is obviously a linear connection on TM . It is easy to check that (

�
D; h) satis�es

(2.9a) and (2.9b). For example:

�
DF (vY; vX) =

�
DvXFvY � F

�
DvXvY

(2.8a),(2.14a)
=

=
�
DvXhFY � FJ [vX; FY ]

(2.14c),(2.7)
=

= h[vX; FY ]� h[vX; FY ] = 0:

Thus (
�
D; h) is a Finsler connection on M , the Finsler connection of Berwald-type induced

by h.

2.15. Proposition. Suppose that (
�
D; h) is a Finsler connection of Berwald-type on M .

Then the h-curvature
�
R , the hv-curvature

�
P and the v-curvature

�
Q of

�
D are semibasic and

8X; Y; Z 2 X(M) :
�
R(Xc; Y c)Zc = [J;
(Xc; Y c)]Zh;(2.15a)

8X; Y; Z 2 X(M) :
�
P(Xc; Y c)Zc =

�
P(Xh; Y h)Zh =

�
[Xh; Y v]; Zv

�
;(2.15b)

�
Q = 0:(2.15c)
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Proof. It is obvious from (2.12a){(2.12c) that
�
R ,

�
P and

�
Q are indeed semibasic. Hence, in

view of Lemma 1.14 and Lemma 2.5(b), they are completely determined by their action on
the triplets of form

(Xc; Y c; Zc) or (Xh; Y h; Zh); X; Y; Z 2 X(M):

(a)Taking into account that for any vector �elds X; Y; Z 2 X(M),

[Xh; Y v],
�
Xh; [Y h; Zv]

�
, : : : are vertical; h[Xh; Y h] = [X; Y ]h,

JXh = JXc = Xv (see (2.4b) and (1.13c)), J � F = v (from (2.8a));

and applying the rules of calculation (2.14a), (2.14b) and the Jacobi identity for the Lie
bracket of vector �elds, we obtain:

�
R(Xc; Y c)Zc :=

�
K (hXc; hY c)JZc =

�
K (Xh; Y h)Zv =

�
DXh

�
DY hZv �

�
�
DY h

�
DXhZv �

�
D[Xh;Y h]Z

v =
�
DXh[Y h; Zv]�

�
DY h [Xh; Zv]�

�
�
D[X;Y ]hZ

v �
�
Dv[Xh;Y h]Z

v = v
�
Xh; [Y h; Zv]

�
�

� v
�
Y h; [Xh; Zv]

�
�
�
[X; Y ]h; Zv

�
� J

�
v[Xh; Y h]; Zh

�
=

=
�
Xh; [Y h; Zv]

�
�
�
Y h; [Xh; Zv]

�
�
�
[X; Y ]h; Zv

�
�

� J
�
v[Xh; Y h]; Zh

�
= �

�
Y h; [Zv; Xh]

�
�
�
Zv; [Xh; Y h]

�
+

+
�
Y h; [Zv; Xh]

�
�
�
[X; Y ]h; Zv

�
� J

�
v[Xh; Y h]; Zh

�
=

= �
�
Zv; [X; Y ]h

�
�
�
Zv; v[Xh; Y h]

�
+
�
Zv; [X; Y ]h

�
�

� J
�
v[Xh; Y h]; Zh

�
= �

�
JZh; v[Xh; Y h]

�
+ J

�
Zh; v[Xh; Y h]

�
=

= �
�
J; v[Xh; Y h]

�
Zh (2.6b)

= [J;
(Xc; Y c)]Zh:

Since
�
R is semibasic, this proves (2.15a).

(b) Computing and arguing as before, we �nd that
�
P(Xc; Y c)Zc :=

�
K (hXc; JY c)JZc =

�
DhXc

�
DJY cJZc �

�
DJY c

�
DhXcJZc �

�
�
D[Xh;Y v]JZ

c =
�
DhXcJ [Y v; Zh]�

�
DJY cv[Xh; Zv]�

�
�
DJF [Xh;Y v]JZ

c = �
�
DJY cJF [Xh; Zv]� J

�
[Xh; Y v]; Zc

�
=

= �J
�
Y v; F [Xh; Zv]

�
� J

�
[Xh; Y v]; Zc

�
:

Since by (1.13c) [J; Zc] = 0, we can write

0 = [J; Zc][Xh; Y v] =
�
J [Xh; Y v]; Zc

�
� J

�
[Xh; Y v]; Zc

�
=

= �J
�
[Xh; Y v]; Zc

�
;

and so
�
P(Xc; Y c)Zc = J

�
F [Xh; Zv]; Y v

�
:

Now applying Lemma 1.15(a), we obtain that

0 = [J; Y v]F [Xh; Zv] =
�
JF [Xh; Zv]; Y v

�
� J

�
F [Xh; Zv]; Y v

�
;
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and thus

J
�
F [Xh; Zv]; Y v

�
=
�
[Xh; Zv]; Y v

�
= �

�
[Zv; Y v]; Xh

�
�

�
�
[Y v; Xh]; Zv

�
=
�
[Xh; Y v]; Zv

�
;

hence our assertion.
(c) A quick and easy calculation yields the relation (2.15c) and we omit it.

2.16. We recall that if h is a horizontal endomorphism on M ,then there always exists a
semispray on M , which is horizontal with respect to h. To see this, consider an arbitrary

semispray S 0 on M . If S = hS 0, then JS = J(hS 0)
(2.4a)
= JS 0 = C and hence S is a semispray.

Since hS = h2S 0 = hS 0 = S, S is horizontal with respect to h. It is also clear that S does
not depend on the choice of S 0.
The spray S constructed in this way is called the semispray associated with h (c.f. [10],

p.306).

2.17. Proposition. Suppose that h is a homogeneous horizontal endomorphism on M and

let (
�
D; h) be the Berwald-type Finsler connection induced by h. If S is a semispray on M ,

then

8X; Y 2 X(TM) :
�
R(X; Y )S = 
(X; Y ):(2.17)

Proof. Since
�
R and 
 are semibasic, it is enough to check that

8X; Y 2 X(M) :
�
R(Xh; Y h)S = 
(Xh; Y h):(2.17a)

We can also assume that S is the semispray associated with h. Then hS = S and (2.15a)
yields the relation

�
R(Xh; Y h)S = [J;
(Xh; Y h)]S = [C;
(Xh; Y h)]� J [S;
(Xh; Y h)]

(2.6b),(2.8a)
=

�
v[Xh; Y h]; C

�
+ J

�
JF
(Xh; Y h); S

�
lemma 1.12

=
�
v[Xh; Y h]; C

�
+ 
(Xh; Y h):

It remains only to show that the �rst term on the right hand side vanishes. In view of the
homogeneity,

[v; C] = 0 and [Xh; C] = 0;

thus, in particular,

0 = [v; C][Xh; Y h] =
�
v[Xh; Y h]; C

�
� v

�
[Xh; Y h]; C

�
:

Finally, using the Jacobi identity and the homogeneity of h over again, we obtain that

0 =
�
[Xh; Y h]; C

�
+
�
[Y h; C]; Xh

�
+
�
[C;Xh]; Y h

�
=
�
[Xh; Y h]; C

�
which completes the proof.

2.18. Corollary. Hypothesis as in Proposition 2.17. Then
�
R = 0 () 
 = 0:

Proof. If 
 vanishes, then
�
R also vanishes by 2.15(a). Conversely, it follows from (2.17) that

�
R = 0 =) 
 = 0.
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3. Finsler manifolds. The Cartan tensors

3.1. De�nitions. Let a function E : TM ! R be given. The pair (M;E), or simply M , is
said to be a Finsler manifold, if the following conditions are satis�ed:

8a 2 TM : E(a) > 0; E(0) = 0.(3.1a)

E is of class C1 on TM and smooth over TM .(3.1b)

CE = 2E; i.e. E is homogeneous of degree 2.(3.1c)

The fundamental form ! := ddJE 2 
2(TM) is nondegenerate.(3.1d)

The function E is called the energy function of the Finsler manifold. A horizontal endo-
morphism on M is said to be conservative if dhE = 0.

3.2. Metrics. Assume (M;E) is a Finsler manifold with fundamental form !.
(a) The mapping

�g : Xv(TM)� Xv(TM)! C1(TM); (JX; JY ) 7! �g(JX; JY ) := !(JX; Y )(3.2a)

is a well-de�ned, nondegenerate, symmetric bilinear form which is said to be the Riemann{
Finsler metric of (M;E). The Finsler manifold is called positive de�nite if �g is positive
de�nite.
(b) Suppose that h is a horizontal endomorphism on M , v = 1� h. Then

g : X(TM)� X(TM)! C1(TM);

(X; Y ) 7! g(X; Y ) := �g(JX; JY ) + �g(vX; vY )
(3.2b)

is a pseudo-Riemannian metric on TM , called the prolongation of �g along h.

3.3. Remark. It follows at once from (3.2b) that

8X; Y 2 X(TM) : g(hX; JY ) = 0:(3.3a)

3.4. Lemma. Hypothesis as in 3.2. (b).

g(C;C) = �g(C;C) = 2E:(3.4a)

8X; Y 2 X(M) : g(Xv; Y v) = �g(Xv; Y v) = Xv(Y vE):(3.4b)

Proof. (a) Let S be an arbitrary semispray on M . Then

g(C;C) := �g(JC; JC) + �g(vC; vC) = �g(C;C) = �g(JS; JS) =

(3.2a)
= !(C; S) = ({C!)(S)

(3.1d)
= {CddJE(S) =

(1.9e)
= �{CdJdE(S)

(1.9f)
= (dJ {CdE � {JdE)(S) =

(3.1c)
= (2dJE � {JdE)(S)

(1.9d)
= ({JdE)(S) =

= (dE)(C) = CE
(3.1c)
= 2E:

(b)

g(Xv; Y v) = �g(Xv; Y v)
(1.13c)
= �g(JXc; JY c)

(3.2a)
= !(Xv; Y c) =

(3.1d)
= d(dJE)(X

v; Y c) = Xv
�
dJE(Y

c)
�
� Y c

�
dJE(X

v)
�
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� dJE[X
v; Y c]

(1.9d)
= Xv

�
dE(JY c)

�
� Y c

�
dE(JXv)

�
� dE(J [Xv; Y c])

(1.13a,c)
= Xv

�
dE(Y v)

�
= Xv(Y vE):

3.5. The Cartan tensors. Let a Finsler manifold (M;E) be given. Suppose that h is a
horizontal endomorphism on M and let g be the prolongation of �g along h.
(i) There exists a unique tensor

C : X(TM)� X(TM)! X(TM)

such that J � C = 0 and

8X; Y; Z 2 X(TM) : g(C(X; Y ); JZ) =
1

2
(LJXJ

�g) (Y; Z):(3.5a)

The tensor C, as well as its lowered tensor C[ de�ned by

8X; Y; Z 2 X(TM) : C[(X; Y; Z) := g(C(X; Y ); JZ);(3.5b)

is called the �rst Cartan tensor of the Finsler manifold.
(ii) Analogously, we introduce a tensor

C 0 : X(TM)� X(TM)! X(TM)

by the conditions J � C 0 = 0 and

8X; Y; Z 2 X(TM) : g(C 0(X; Y ); JZ) =
1

2
(LhXg) (JY; JZ):(3.5c)

Then C 0 is well-de�ned; it is called the second Cartan tensor of the Finsler manifold, belong-
ing to the horizontal endomorphism h. We use the same terminology also for the lowered
tensor C 0[.

3.6. Remark. C and C 0 are clearly semibasic. We shall see soon that C is independent of
the choice of the horizontal endomorphism h, it depends on the energy function alone (i.e.,
on the Finsler structure). On the other hand, the second Cartan tensor C 0 strongly depends
on the horizontal endomorphism!

3.7. Lemma. Let (M;E) be a Finsler manifold and (
�
D; h) a Berwald-type Finsler connec-

tion on M . Then for each vector �elds X; Y; Z on M ,

2C[(X
c; Y c; Zc) =

�
�
DXvg

�
(Y v; Zv) = Xv[Y v(ZvE)];(3.7a)

2C 0[(X
c; Y c; Zc) =

�
�
DXhg

�
(Y v; Zv) =

�
Y v; [Xh; Zv]

�
E +(3.7b)

+ Y v[Zv(XhE)]

(C 0 is the second Cartan tensor belonging to h).

Proof. (a) On the one hand

2C[(X
c; Y c; Zc)

(3.5b)
= 2g(C(Xc; Y c); Zv) = (LXvJ�g) (Y c; Zc) =

= Xvg(Y v; Zv)
(3.4b)
= Xv[Y v(ZvE)];
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since J [Xv; Y c] = J [X; Y ]v = 0, J [Xv; Zc] = 0; on the other hand�
�
DXvg

�
(Y v; Zv) = Xvg(Y v; Zv)� g(

�
DXvY v; Zv)� g(Y v;

�
DXvZv) =

= Xvg(Y v; Zv);

since e.g.
�
DXvY v =

�
DJXcJY c (2.14a)

= J [Xv; Y c] = 0: Thus (3.7a) is proved.
(b) Computing as before, we �nd that

2C 0[(X
c; Y c; Zc) =

�
�
DXhg

�
(Y v; Zv) = Xhg(Y v; Zv)� g([Xh; Y v]; Zv)�

� g(Y v; [Xh; Zv])
(3.4b)
= Xh[Y v(ZvE)]� [Xh; Y v](ZvE)�

� g([Xh; Zv]; Y v) = Y v[Xh(ZvE)]� [Xh; Zv](Y vE) =

= Y v([Xh; Zv]E + Zv(XhE))� [Xh; Zv](Y vE) =

=
�
Y v; [Xh; Zv]

�
E + Y v[Zv(XhE)]:

3.8. Corollary. The �rst Cartan tensor is symmetric, the lowered �rst Cartan tensor is
totally symmetric.

Proof. We infer this immediately from (3.7a): since the Lie bracket of vertically lifted vector
�elds vanishes, Xv[Y v(ZvE)] does not depend on the order of the vector �elds.

3.9. Lemma. If S is an arbitrary semispray, then {SC = {SC[ = 0.

Proof. Due to symmetry, it is enough to check that for each vector �elds X; Y on M we have
C[(S;X; Y ) = 0. From (3.7a)

2C[(S;X
c; Y c) =

�
�
DJSg

�
(Xv; Y v) = Cg(Xv; Y v)� g(

�
DCX

v; Y v)�

�g(Xv;
�
DCY

v) = C[Xv(Y vE)];

since e.g.
�
DCX

v =
�
DJSJX

c (2.14a)
= J [C;Xc]

(1.13b)
= 0

We next show that C[Xv(Y vE)] vanishes. Use for a moment the abbreviation ~E := Y vE.
Then

C[Xv(Y vE)] = C(Xv ~E) = [C;Xv] ~E +XvC ~E
(1.13b)
= �Xv ~E +XvC ~E

= �Xv(Y vE) +Xv[C(Y vE)] = �Xv(Y vE) +

+Xv ([C; Y v]E + Y v(CE))
(1.13b),(3.1c)

=

= �Xv(Y vE) +Xv(�Y vE + 2Y vE) = 0;

which ends the proof.

3.10. Proposition. Let (M;E) be a Finsler manifold. If h is a conservative, torsion-free
horizontal endomorphism then the lowered second Cartan tensor is totally symmetric.
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Proof. Since h is conservative, for each vector �eld X on M ,

0 = (dhE)(X
c)

(1.9d)
= (ihdE)(X

c) = (dE)Xh = XhE;

so it follows from (3.7b) that

8X; Y; Z 2 X(M) : 2C 0[(X
c; Y c; Zc) =

�
Y v; [Xh; Zv]

�
E:

We easily see from De�nition (2.2c) of the torsion

8X; Y 2 X(M) : t(Xc; Y c) = [Xh; Y v]� [Y h; Xv]� [X; Y ]v:(3.10)

Now, using the Jacobi identity and the condition t = 0, we obtain

0 =
�
Y v; [Xh; Zv]

�
+
�
Xh; [Zv; Y v]

�
+
�
Zv; [Y v; Xh]

� (1.13a)
=

=
�
Y v; [Xh; Zv]

�
+
�
Zv; [Y v; Xh]

�
=
�
Y v; [Xh; Zv]

�
+

+
�
Zv;�[Y h; Xv]

�
+
�
Zv;�[X; Y ]v

�
=
�
Y v; [Xh; Zv]

�
�
�
Zv; [Y h; Xv]

�
;

therefore
�
Y v; [Xh; Zv]

�
=
�
Zv; [Y h; Xv]

�
. This means that

C 0[(X
c; Y c; Zc) = C 0[(Y

c; Zc; Xc):

The other symmetries of C 0[ can be shown in the same manner.

4. Notable Finsler connections

4.1. Lemma and de�nition. On any Finsler manifold (M;E) there is a spray
S : TM ! TTM , uniquely determined on TM by the relation

{S! = �dE(4.1)

and prolonged to a C1-mapping of TM such that S � TM n TM = 0. The spray S is called
the canonical spray of the Finsler manifold.

For a proof, see [10], p.323 and [7], p.60.

4.2. Theorem (Fundamental lemma of Finsler geometry). Let (M;E) be a Finsler mani-
fold. There exists a unique horizontal endomorphism h on M ,called the Barthel endomor-
phism, such that

h is conservative (i.e., dhE = 0),(a)

h is homogeneous (i.e., H = [h; C] = 0),(b)

h is torsion-free (i.e., t = [J; h] = 0).(c)

Explicitly,

h =
1

2
(1 + [J; S]) ;

where S is the canonical spray.

The result is due to J. Grifone [10].
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4.3. Theorem. Let (M;E) be a Finsler manifold and let h be a horizontal endomorphism

on M . There exists a unique Finsler connection (
�
D; h) on M such that

the (v)hv-torsion
�
P
1

of
�
D vanishes;(4.3a)

the (h)hv-torsion
�
B of

�
D vanishes.(4.3b)

This Finsler connection is of Berwald-type, so the covariant derivatives with respect to
�
D

can be calculated by (2.14a){(2.14d). If (
�
D; h) satis�es the further conditions

h is conservative;(4.3c)

the h-deection h�DC vanishes,(4.3d)

the (h)h-torsion
�
A of

�
D vanishes,(4.3e)

then h is just the Barthel endomorphism of the Finsler manifold.

4.4. Remark. The Finsler connection determined by (4.3a){(4.3e) is said to be the Berwald
connection of the Finsler manifold. The axioms presented here were at �rst formulated by
T. Okada [15], with a slight di�erence. The novelty of our approach consists in drawing
a distinction between the roles of the �rst group (4.3a){(4.3b) and of the second group
(4.3c){(4.3e) of axioms. For an intrinsic proof of the theorem, see [17].

4.5. Theorem and de�nition. Let (M;E) be a Finsler manifold and suppose that h is
a conservative torsion-free horizontal endomorphism on M . Let g be the prolongation of
�g along h and C 0 the second Cartan tensor belonging to h. There exists a unique Finsler
connection (D; h) on M such that

D is metrical (i.e. Dg=0);(4.5a)

the (v)v-torsion S1 of D vanishes;(4.5b)

the (h)h-torsion A of D vanishes.(4.5c)

The covariant derivatives with respect to D can be explicitly calculated by the following for-
mulas: for each vector �elds X; Y on TM ,

DJXJY = J [JX; Y ] + C(X; Y ) =
�
DJXJY + C(X; Y );(4.5d)

DhXJY = v[hX; JY ] + C 0(X; Y ) =
�
DhXJY + C 0(X; Y );(4.5e)

DJXhY = h[JX; Y ] + FC(X; Y ) =
�
DJXhY + FC(X; Y );(4.5f)

DhXhY = hF [hX; JY ] + FC 0(X; Y ) =
�
DhXhY + FC 0(X; Y ):(4.5g)

Then

h�DC =
1

2
H

where H is the tension of h (2.2b). Therefore, if in addition to (4.5a){(4.5c)

h�DC = 0(4.5h)
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is also satis�ed, then h is the Barthel endomorphism of the Finsler manifold. In this case
(D; h) is called the (classical) Cartan connection of the Finsler manifold (M;E).

Proof. The idea of the existence proof is immediate. We start from a conservative, torsion-
free horizontal endomorphism h (whose existence is clearly guaranteed) and build the second
Cartan tensor C 0 belonging to h. Then we de�ne a rule of covariant di�erentation by the
formulas (4.5d){(4.5g). It can be checked by a straightforward calculation that the pair
(D; h) obtained in this way is indeed a Finsler connection, and the axioms (4.5a){(4.5c) are
satis�ed.
In our subsequent considerations we are going to prove the unicity statement. Assume

(D; h) is a Finsler connection on M , satisfying (4.5a){(4.5c). We show that the rules of
calculation (4.5d){(4.5g) are valid.
1st step. Applying the \Christo�el process", we derive (4.5d). We can restrict ourselves

to vertically lifted vector �elds. From condition (4.5a), for any vector �elds X; Y; Z 2 X(M),

Xvg(Y v; Zv) = g(DXvY v; Zv) + g(Y v; DXvZv);

Y vg(Zv; Xv) = g(DY vZv; Xv) + g(Zv; DY vXv);

�Zvg(Xv; Y v) = �g(DZvXv; Y v)� g(Xv; DZvY v):

Since from (4.5b) DXvY v � DY vXv = [Xv; Y v] = 0 and so on, adding the above three
equations we get the relation

g(2DXvY v; Zv) = Xvg(Y v; Zv) + Y vg(Zv; Xv)� Zvg(Xv; Y v) =

(3.4b),(3.7a),3.8
= 2C[(X

c; Y c; Zc) = 2g(C(Xc; Y c); Zv):

Hence

DXvY v = C(Xc; Y c) = C(hXc + vXc; hY c + vY c) = C(Xh; Y h);

from which (4.5d) easily follows. In view of (2.10c) this implies (4.5f).
2nd step. Now we apply the Christo�el process to the h-covariant derivatives of g. Then

(4.5a) yields the relations8><
>:

Xhg(Y v; Zv) = g(DXhY v; Zv) + g(Y v; DXhZv)

Y hg(Zv; Xv) = g(DY hZv; Xv) + g(Zv; DY hXv);

�Zhg(Xv; Y v) = �g(DZhXv; Y v)� g(Xv; DZhY v)

(a)

(X; Y; Z 2 X(M)). From condition (4.5c), i.e., from the vanishing of the (h)h-torsion we
conclude that e.g.

DXhY h �DY hXh = h[Xh; Y h] = [X; Y ]h = h[X; Y ]c;

hence

FDXhY h � FDY hXh = Fh[X; Y ]c
(2.7),(1.13c)

= �[X; Y ]v:

So, taking into account (2.10d), we obtain the relations8><
>:

DXhY v �DY hXv = [X; Y ]v;

DY hZv �DZhY v = [Y; Z]v;

�DZhXv +DXhZv = �[Z;X]v:

(b)
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Adding now both sides of (a) and using (b), it follows that

g(2DXhY v; Zv) = Xhg(Y v; Zv) + Y hg(Zv; Xv)� Zhg(Xv; Y v) +

+ g([X; Y ]v; Zv)� g([Y; Z]v; Xv) + g([Z;X]v; Y v):
(c)

3rd step. We apply the Christo�el process to the tensor C 0 belonging to h. For any vector
�elds X; Y; Z 2 X(M), we get:

2g(C 0(Xh; Y h); Zv) = Xhg(Y v; Zv)� g([Xh; Y v]; Zv)� g(Y v; [Xh; Zv]);

2g(C 0(Y h; Zh); Xv) = Y hg(Zv; Xv)� g([Y h; Zv]; Xv)� g(Zv; [Y h; Xv]);

�2g(C 0(Zh; Xh); Y v) = �Zhg(Xv; Y v) + g([Zh; Xv]; Y v) + g(Xv; [Zh; Y v]):

Adding these three equations, in view of the symmetry of C 0 (assured by Proposition 3.10)
we obtain:

g(2C 0(Xh; Y h); Zv) = Xhg(Y v; Zv) + Y hg(Zv; Xv)� Zhg(Xv; Y v)�

� g([Xh; Y v] + [Y h; Xv]; Zv) + g([Zh; Xv]� [Xh; Zv]; Y v) +

+ g([Zh; Y v]� [Y h; Zv]; Xv):

(d)

From (c) and (d) it follows that

g(2DXhY v; Zv) = g(2C 0(Xh; Y h); Zv) +

+ g([Xh; Y v] + [Y h; Xv] + [X; Y ]v; Zv) +

+ g([Xh; Zv]� [Zh; Xv]� [X;Z]v; Y v) +

+ g([Y h; Zv]� [Zh; Y v]� [Y; Z]v; Xv):

(e)

Since h is torsion-free, the last two terms on the right hand side of (e) vanish (c.f. (3.10)),
while in the second term

[Xh; Y v] + [Y h; Xv] + [X; Y ]v = 2[Xh; Y v]:

Hence

g(2DXhY v; Zv) = g(2C 0(Xh; Y h) + 2[Xh; Y v]; Zv);

which yields the formula

DXhY v = [Xh; Y v] + C 0(Xh; Y h):

This proves (4.5e) and, by (2.10d), (4.5g). We have thus established the unicity assertion.
4th step. We show that

h�DC =
1

2
H:

Let X and Y be arbitrary vector �elds on M . Then h�DC(Xh) = DC(Xh) = DXhC and

g(DXhC; Y v) = g(DXhJS; Y v)
(4.5e)
= g

�
[Xh; C]; Y v

�
+

+ g(C 0(Xh; S); Y v)
(3.5c)
= g

�
[Xh; C]; Y v

�
+ 1

2
Xhg(C; Y v)�

� 1
2
g
�
[Xh; C]; Y v

�
� 1

2
g
�
[Xh; Y v]; C

�
= 1

2
g
�
[Xh; C]; Y v

�
+

+ 1
2

�
Xh(Y vE)� [Xh; Y v]E

�
= 1

2
g
�
[Xh; C]; Y v

�
+ 1

2
Y v(XhE) =
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dhE=0
= g

�
1
2
[Xh; C]; Y v

�
;

from which follows that
1

2
[Xh; C] = DXhC:

This means that 1
2
H(Xh) = h�DC(Xh), proving our assertion.

4.6. Remarks.
(a) Observe that axioms (4.5a) and (4.5h) imply for any Finsler connection (D; h) that h is
a conservative horizontal endomorphism. Indeed, for each vector �eld X on M ,

0
(4.5a)
= (DXhg) (C;C) = Xhg(C;C)� 2g(DXhC;C) =

(3.4a)
= 2XhE � 2g(DXhC;C)

(4.5h)
= 2XhE = 2(dhE)(X

h);

which means that dhE = 0.
(b) Axioms to characterize the classical Cartan connection were �rst formulated byM. Mat-

sumoto; for an instructive historical remark see [14], p.112.

4.7. Corollary. Let (M;E) be a Finsler manifold and h the Barthel endomorphism. If C 0

is the second Cartan tensor belonging to h, then {SC
0 = 0, for any semispray S.

Proof. We consider the classical Cartan connection (D; h). Then for each vector �eld
X 2 X(TM):

0
(4.5h)
= DhXC = DhXJS

(4.5e)
= v[hX;C] + C 0(X;S) =

= H(hX) + C 0(X;S) = 2(h�DC)(hX) + C 0(X;S)
(4.5h)
= C 0(X;S):

4.8. Lemma. Let (M;E) be a Finsler manifold, (D; h) the classical Cartan connection and
S the canonical spray. Then DSC = �C 0 (C 0 is the second Cartan tensor belonging to h).

For a proof see [11], pp. 331{332.

4.9. Theorem and de�nition. Let (M;E) be a Finsler manifold and h a conservative
torsion-free horizontal endomorphism on M . Assume g is the prolongation of �g along h and
C 0 is the second Cartan tensor belonging to h. There exists a unique Finsler connection

(
R

D; h) on M such that

J�
R

D = J�
�
D;(4.9a)

R

D is h-metrical, i.e. 8X 2 X(TM):
R

DhXg = 0;(4.9b)

the (h)h-torsion of
R

D vanishes.(4.9c)

The covariant derivatives with respect to
R

D can be calculated by the following formulas: for
each vector �elds X, Y on TM ,

R

DJXJY = J [JX; Y ] =
�
DJXJY ;(4.9d)
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R

DhXJY = v[hX; JY ] + C 0(X; Y ) = DhXJY ;(4.9e)

R

DJXhY = h[JX; Y ] =
�
DJXhY ;(4.9f)

R

DhXhY = hF [hX; JY ] + FC 0(X; Y ) = DhXhY:(4.9g)

Then

h�
R

DC =
1

2
H:

Therefore, if in addition to (4.5a){(4.5c)

h�
R

DC = 0(4.9h)

is also satis�ed, then h is the Barthel endomorphism of the Finsler manifold. In this case

(
R

D; h) is called the (classical) Rund (or the Chern {Rund) connection.

The proof of this theorem is completely analogous to that of Theorem 4.5.

4.10. Remark. The classical Chern {Rund connection was �rst constructed by S. S. Chern
in 1948, using a local coframe �eld. Three years laterH. Rund also discovered an important,
seemingly di�erent Finsler connection. Almost �fty years had passed until M. Anastasiei

[2] realized that both constructions result the same Finsler connection.

4.11. Remark. Using vertically and horizontally lifted vector �elds, the rules of calculation

for covariant derivatives take a somewhat simpler form. Namely, if eD stands for
�
D, D or

R

D,
we get the following table:

Berwald (
�
D) Cartan (D) Rund (

R

D)eDXvY v 0 C(Xh; Y h) 0eDXhY v [Xh; Y v] [Xh; Y v] + C 0(Xh; Y h) [Xh; Y v] + C 0(Xh; Y h)eDXvY h 0 FC(Xh; Y h) 0eDXhY h F [Xh; Y v] F [Xh; Y v] + FC 0(Xh; Y h) F [Xh; Y v] + FC 0(Xh; Y h)

5. Basic curvature identities

5.1. Convention. Throughout this section (M;E) is a Finsler manifold and h is the Barthel

endomorphism onM .
�
D, D and

R

D denote the Berwald, the (classical) Cartan and the Rund
connection, respectively.

5.2. Proposition. Let
�
R , R and

R

R be the h-curvature of the Berwald, the Cartan and the
Rund connection, respectively. We have the following relations:

R(X; Y )Z =
�
R(X; Y )Z + (DhXC

0) (Y; Z)� (DhY C
0) (X;Z)�

� C 0(X;FC 0(Y; Z)) + C 0(Y; FC 0(X;Z)) +

+ C(F
(X; Y ); Z);

(5.2a)
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R

R(X; Y )Z = R(X; Y )Z � C(F
(X; Y ); Z) (X; Y; Z 2 X(TM)):(5.2b)

Proof. The �rst formula has been obtained by J. Grifone; see [11], pp.333{334. Since the ten-

sors R and
R

R are semibasic, it is enough to check (5.2b) for triplets of the form (Xc; Y c; Zc);

X; Y; Z 2 X(M). Taking into account that
R

Dh = Dh from (4.9e) and (4.9g) while
R

Dv =
�
Dv

from (4.9d) and (4.9g), we get:

R

R(Xc; Y c)Zc =
R

K (hXc; hY c)JZc =
R

DXh

R

DY hZv �
R

DY h

R

DXhZv �
R

D[Xh;Y h]Z
v =

= DXhDY hZv �DY hDXhZv �
R

Dh[Xh;Y h]Z
v �

R

Dv[Xh;Y h]Z
v =

= R(Xc ; Y c)Zc +Dv[Xh;Y h]Z
v �

R

Dv[Xh;Y h]Z
v =

= R(Xc ; Y c)Zc + C(F [Xh; Y h]; Zc) = R(Xc ; Y c)Zc + C(Fv[Xh; Y h]; Zc) +

+ C(Fh[Xh; Y h]; Zc)
(2.7),(2.6b)

= R(Xc ; Y c)Zc � C(F
(Xc; Y c); Zc):

5.3. Proposition. The hv-curvature tensors of the Cartan, the Berwald and the Rund con-
nection are related as follows:

P =
�
P(X; Y )Z + (DhXC) (hY; hZ)� (DJY C

0) (hX; hZ) +

+ C(FC 0(hX; hY ); hZ) + C(FC 0(hX; hZ); hY )�

� C 0(FC(hX; hY ); hZ)� C 0(FC(hY; hZ); hX):

(5.3a)

R

P(Xc; Y c)Zc =
�
P(Xc; Y c)Zc + [C 0(Xh; Zh); Y v]:(5.3b)

Proof. In the same manner as above, let us consider a triplet Xc; Y c; Zc;

P(Xc; Y c)Zc (2.12b)
= K (hXc ; JY c)JZc (1.13c),(2.2a)

= K (Xh ; Y v)Zv =(a)

= DXhDY vZv �DY vDXhZv �D[Xh;Y v]Z
v 4.11
= DXhC(Y h; Zh)�

�DY v([Xh; Zv] + C 0(Xh; Zh))�DJF [Xh;Y v]JZ
h =

= (DXhC) (Y h; Zh) + C(DXhY h; Zh) + C(Y h; DXhZh)�

�DY vJF [Xh; Zv]�DY vC 0(Xh; Zh)� J
�
[Xh; Y v]; Zh

�
�

� C(F [Xh; Y v]; Zh)
4.11
= (DXhC) (Y h; Zh) + C(F [Xh; Y v]; Zh) +

+ C(FC 0(Xh; Y h); Zh) + C(Y h; F [Xh; Zv]) + C(Y h; FC 0(Xh; Zh))�

� J
�
Y v; F [Xh; Zv]

�
� C(Y h; F [Xh; Zv])� (DY vC 0) (Xh; Zh)�

� C 0(FC(Y h; Xh); Zh)� C 0(Xh; FC(Y h; Zh))� C(F [Xh; Y v]; Zh) =

=
�
P(Xc; Y c)Zc + (DXhC) (Y h; Zh)� (DY vC 0) (Xh; Zh) +

+ C(FC 0(Xh; Y h); Zh) + C(FC 0(Xh; Zh); Y h)� C 0(FC(Xh; Y h); Zh)�

� C 0(FC(Y h; Zh); Xh);
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since from the proof of (2.15b) �J
�
Y v; F [Xh; Zv]

�
=

�
P(Xc; Y c)Zc. Thus (5.3a) is veri�ed.

(b) A similar reasoning, but a shorter calculation shows that

R

P(Xc; Y c)Zc =
R

K (Xh; Y v)Zv =
R

DXh

R

DY vZv �
R

DY v

R

DXhZv �
R

D[Xh;Y v]Z
v =

= �
R

DY v

�
[Xh; Zv] + C 0(Xh; Zh)

�
�

R

DJF [Xh;Y v]JZ
h =

= �
R

DJY hJF [Xh; Zv]�
R

DJY hJFC 0(Xh; Zh)� J
�
[Xh; Y v]; Zh

�
=

= �J
�
Y v; F [Xh; Zv]

�
� J [Y v; FC 0(Xh; Zh)] =

�
P(Xc; Y c)Zc + [C 0(Xh; Zh); Y v];

since

0
1.15
= [J; Y v]FC 0(Xh; Zh)

(2.8a)
= [C 0(Xh; Zh); Y v]� J [FC 0(Xh; Zh); Y v]:

Thus we obtain our second assertion.

5.4. Proposition.

(a) The v-curvature tensor of the Berwald and of the Rund connection vanishes, i.e.,
�
Q = 0

and
R

Q = 0.

(b) For the v-curvature tensor of the Cartan connection we have the expression

Q (X; Y )Z = C
�
FC(Z;X); Y

�
� C

�
X;FC(Y; Z)

�
(X; Y; Z 2 X(TM)):(5.4)

Proof. The �rst assertion can be veri�ed by an immediate calculation. Formula (5.4) was
derived by J. Grifone [11], we recall only the key observation, the identity

(DJXC) (Y; Z) = (DJY C) (X;Z) (X; Y; Z 2 X(TM)):

5.5. Example. Suppose that (M;E) is a positive de�nite two-dimensional Finsler manifold.
Let S be the canonical spray, h the Barthel endomorphism and F the almost complex
structure induced by h. Consider the prolongation g of the Riemann {Finsler metric along
h (3.2b). Let C0 :=

1p
2E
C be the normalized Liouville vector �eld; then g(C0; C0) = 1. The

vector �eld S0 :=
1p
2E
S = FC0 is g-orthogonal to C0, i.e.,

g(S0; C0) = g(hS0; vC0) = g(hS0; JFC0)
(3.3a)
= 0;

and g(S0; S0) = 1. Next, using the Gram{Schmidt process, we can construct|at least
locally| a g-orthonormal basis (C0; X0) of X

v(TM), where the vector �eld X0 is uniquely
determined up to sign. Using the almost complex structure once more, we arrive at a (local)
g-orthonormal basis

(C0; X0; FX0; S0)(5.5a)

for the module X(TM). The quadruple (5.5a) is called the Berwald frame of the Finsler mani-
fold after L. Berwald, see his posthumous paper [4]. As for the details of the coordinate-free
construction, we refer to [19].
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Now, since the �rst Cartan tensor C is semibasic, it follows by 3.9 that C is completely
determined by its value on the pair (FX0; FX0). Taking into account (5.4), we infer im-
mediately that in two dimensions the v-curvature of the Cartan connection vanishes. This
proposition was �rst proved by D. Laugwitz [12] with the machinery of classical tensor
calculus.

5.6. Remark. If n � 3, (M;E) is a positive-de�nite n-dimensional Finsler manifold, and
the energy function is symmetric (E(�v) = E(v) for any tangent vector v 2 TM), then the
vanishing of Q implies that (M;E) is a Riemannian manifold. This far from trivial result
(conjectured by D. Laugwitz [13]) was �rst proved by F. Brickell [5].

6. Berwald manifolds

6.1. Convention. Retaining the notations introduced above, in our following discussion
h will denote the Barthel endomorphism and C 0 the second Cartan tensor belonging to h,
unless otherwise stated.

6.2. To begin with, we recall an important classical result, �rst formulated and proved
intrinsically by J. G. Diaz; see [9].

6.3. Theorem and de�nition. Let (M;E) be a Finsler manifold. The following asser-
tions are equivalent:

(a) The h-curvature P of the Cartan connection vanishes.
(b) The second Cartan tensor C 0 vanishes.
(c) 8X; Y; Z 2 X(TM) : (DhXC) (Y; Z) = (DhY C) (X;Z):

(d) 8X; Y; Z 2 X(TM) :
�
P(X; Y )Z = � (DhXC) (Y; Z).

If one, and therefore all, of the conditions (a){(d) are satis�ed, then (M;E) is called a
Landsberg manifold.

6.4. Other characterizations.
(a) The property C 0 = 0 implies immediately (see e.g. 4.11) that in a Landsberg manifold

the h-covariant derivatives with respect to the Cartan, the Berwald and the Rund connection

coincide. Conversely, if Dh =
�
Dh or

�
Dh =

R

Dh, then C 0 = 0 and the Finsler manifold is a
Landsberg manifold.
(b) Now let us have a look at the (v)hv-torsion of the Cartan connection. For each vector

�elds X; Y on M ,

P1(Xh; Y v) := vT(Xh; Y v) = vDXhY v � vDY vXh � v[Xh; Y v] =

4.11
= v[Xh; Y v] + vC 0(Xh; Y h)� vFC(Xh; Y h)�

� v[Xh; Y v]
(2.8b)
= C 0(Xh; Y h) + JC(Xh; Y h) = C 0(Xh; Y h):

It follows that the vanishing of the (v)hv-torsion of the Cartan connection characterizes the
Landsberg manifolds.
(c) We infer immediately from (3.7b) that a Finsler manifold is a Landsberg manifold if

and only if the Berwald connection is h-metrical (i.e.,
�
Dhg = 0). In Matsumoto's monograph

[14] Landsberg manifolds are de�ned by this property.
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6.5. De�nition. A Finsler manifold (M;E) is said to be a Berwald manifold if there is a
linear connection r on M such that for each vector �elds X; Y on M ,

(rXY )
v = [Xh; Y v];

where the horizontal lifting is taken with respect to the Barthel endomorphism.

6.6. Remarks.
(a) The linear connection r in de�nition 6.5 is clearly unique, so it will be mentioned as

the linear connection of the Berwald manifold. One can see also at once that the horizontal
endomorphism induced by r is just the Barthel endomorphism. We immediately infer that
the Barthel endomorphism and the canonical spray of a Berwald manifold are smooth on
the whole tangent manifold TM . The converse is also true: if the canonical spray of the
Finsler manifold (M;E) is smooth on TM , then (M;E) is a Berwald manifold. For another
reasoning see [9].
(b) By a clever observation of Z. I. Szab�o the linear connection r of a positive de�nite

Berwald manifold is Riemann-metrizable: there always exists a Riemannian metric gM onM
whose Levi{Civita connection is r. This is the �rst step toward the classi�cation of positive
de�nite Berwald manifolds achieved by him in [16].

6.7. Lemma. A Finsler manifold (M;E) is a Berwald manifold if and only if

8X; Y 2 X(M) : [Xh; Y v] is a vertical lift.(6.7)

Proof. The necessity of (6.7) is evident. To see the su�ciency, we consider the mapping

r : (X; Y ) 2 X(M)� X(M) 7! rXY 2 X(M); (rXY )
v := [Xh; Y v];

where the horizontal lifting is taken with respect to the Barthel endomorphism, of course.
Then r is well-de�ned and an easy calculation shows that it is a linear connection, indeed.

6.8. Lemma. Suppose that (M;E) is a Berwald manifold and let r be its linear connection.

Then the pair (
h

r; h), where
h

r is the horizontal lift of r and h is the Barthel endomorphism,
is just the Berwald connection.

Proof. We have already learnt from 6.6(a) and from 2.13 that (
h

r; h) is a Finsler connection.
Our only task is to check (4.3a) and (4.3b). But this is easy: for any vector �elds X; Y; Z on
M , we have

P1(Xh; Y v) = v

�
h

rXhY v �
h

rY vXh � [Xh; Y v]

�
(2.13)
= v

�
(rXY )

v � [Xh; Y v]
�
= 0;

B (Xh ; Y v) = h

�
h

rXhY v �
h

rY vXh � [Xh; Y v]

�
(2.13)
= 0:

6.9. A coordinate view. Let (U ; (ui)ni=1) be a chart on M . With the help of the induced
chart �

��1(U); (xi; yi)ni=1

�
; xi := ui � �;

yi : v 2 ��1(U) 7! yi(v) := v(ui) (1 � i � n)
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we review some important coordinate expressions. Einstein's summation convention will be
used.
(i) We get from (3.4b) that the components of the Riemann {Finsler metric �g are

�gij := �g
�

@
@yi
; @
@yj

�
= @2E

@yi@yj
:

(3.7a) implies that the components of the �rst Cartan tensors C[ and C are

(C[)ijk =
1
2
Cijk; C`ij =

1
2
C`
ij

where

Cijk :=
@3E

@yi@yj@yk
; C`

ij := �g`kCijk;
�
�g`k
�
:= (�g`k)

�1
:

The coordinate expression of the canonical spray S is

S � ��1(U) = yk @
@xk

� 2Gk @
@yk

;

where

Gk = �gjkGj; Gj :=
1
2

�
yk @2E

@xk@yj
� @E

@xj

�
:(6.9a)

The Barthel endomorphism can be represented in the form

h � X
�
��1(U)

�
=
�

@
@xi

�Gk
i

@
@yk

�

 dxi; Gk

i :=
@Gk

@yi
(1 � i; k � n):(6.9b)

The Berwald connection (
�
D; h) of (M;E) is completely determined by the functions

Gk
ij :=

@Gk
i

@yj
= @2Gk

@yi@yj
(1 � i; j; k � n):(6.9c)

The functions Gk
ij are called the connection parameters for the Berwald connection.

(ii) Traditionally Berwald manifolds are de�ned as follows: \the connection parameters
for the Berwald connection depend only on the position" , i.e. by the condition

Gk
ij` :=

@Gk
ij

@y`
= 0 (1 � i; j; k; ` � n):

Finsler manifolds with this property were called a�nely connected spaces by L. Berwald
himself, see [3]. Now we show that our de�nition is equivalent to the classical one. To
see this, let r be a linear connection on M , locally given by the functions � k

ij 2 C1(U)
(1 � i; j; k � n), such that

r @
@ui

@
@uj

= � k
ij

@
@uk

:

Then �
r @

@ui

@
@uj

�v

=
�
� k
ij � �

�
@
@yk

;h�
@
@ui

�h
;
�

@
@uj

�vi
=
h
h
�

@
@ui

�c
; @
@yj

i
(6.9b)
=

h
@
@xi

�Gk
i

@
@yk

; @
@yj

i
=

=
@Gk

i

@yj
@
@yk

(6.9c)
= Gk

ij
@
@yk

;

thus

8i; j 2 f1; : : : ; ng :

�
r @

@ui

@
@uj

�v

=
h�

@
@ui

�h
;
�

@
@uj

�vi
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() � k
ij � � = Gk

ij (1 � k � n)

() Gk
ij` = 0 (1 � k; ` � n):

(iii) Notice that the components of the hv-curvature tensor
�
P of the Berwald connection

are just the functions �Gk
ij` (hence the classical de�nition in (ii) has a tensorial character).

Indeed,

�
P
��

@
@ui

�h
;
�

@
@uj

�h� � @
@u`

�h (2.15b)
=

hh�
@
@ui

�h
;
�

@
@uj

�vi
;
�

@
@u`

�vi
=

=
h
Gk
ij

@
@yk

; @
@y`

i
= �

@Gk
ij

@y`
= �Gk

ij`:

It follows that a Finsler manifold is a Berwald manifold if and only if the hv-curvature of
the Berwald connection vanishes. We shall see soon how this follows intrinsically at once.

6.10. Proposition. The second Cartan tensor C 0 vanishes in any Berwald manifold, con-
sequently the Berwald manifolds are at the same time Landsberg manifolds.

Proof. We have already seen in the proof of 3.10 that for any vector �elds X; Y; Z on M ,

2C 0[(X
c; Y c; Zc) =

�
Y v; [Xh; Zv]

�
E

(due to the fact that h is homogeneous and conservative). Since (M;E) is a Berwald man-
ifold, [Xh; Zv] is a vertical lift by Lemma 6.7. Hence [Y v; [Xh; Zv]] = 0 by Lemma 1.16,
whence our conclusion.

6.11. Corollary. The Berwald connection of a Berwald manifold is h-metrical (i.e.,
�
Dhg = 0).

6.12. Theorem. Let (M;E) be a Finsler manifold. Then the following assertions are equiv-
alent:

(a) (M;E) is a Berwald manifold.

(b) The hv-curvature tensor
�
P of the Berwald connection vanishes.

(c) The hv-curvature tensor
R

P of the Rund connection vanishes.
(d) With respect to the Cartan connection, the h-covariant derivative of the �rst Cartan

tensor vanishes (i.e., DhC = 0).

Proof.
(a)() (b) This is an immediate consequence of (2.15b), Lemma 6.7 and Lemma 1.16.
(a) =) (c) We infer this at once from (5.3b), from Proposition 6.10 (C 0 = 0) and from the

equivalence (a)() (b).
(c) =) (a) To prove the implication, note �rst that

8X; Y 2 X(M) :
R

P(Xh; Y h)S = C 0(Xh; Y h);

where S is an arbitrary semispray. Indeed,

R

P(Xh; Y h)S =
R

K (Xh; Y v)C =
R

DXh

R

DY vC �
R

DY v

R

DXhC �
R

D[Xh;Y v ]C;
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where
R

DXhC = 0 by (4.9h), while

R

DXh

R

DY vC =
R

DXh

R

DJY hJS
(4.9d)
=

R

DXhJ [Y v; S]
(1.12)
=

R

DXhY v =

4.11
= [Xh; Y v] + C 0(Xh; Y h);

R

D[Xh;Y v]C =
R

DJF [Xh;Y v]JS
(4.9d)
= J

�
JF [Xh; Y v]; S

�
= [Xh; Y v];

thus we obtain the desired relation. We conclude that
R

P = 0 implies that C 0 = 0 and,

therefore, that
�
P = 0 (by (5.3b)); hence our assertion.

(a) =) (d) In view of the property C 0 = 0 it follows that in Berwald manifolds Dh =
�
Dh

(c.f. 6.4(a)). Therefore it is enough to check that

8X 2 X(M) :
�
DXhC = 0:

Let X; Y; Z; U 2 X(M) be arbitrary.
�
D is h-metrical by Corollary 6.11, so

0 =
� �
DXhg

��
C(Y h; Zh); Uv

�
= Xhg

�
C(Y h; Zh); Uv

�
� g

� �
DXhC(Y h; Zh); Uv

�
�

� g
�
C(Y h; Zh);

�
DXhUv

� (3.5a),4.11
= 1

2
Xh(LJY hJ�g)(Zh; Uh)�

� g
� �
DXhC(Y h; Zh); Uv

�
� 1

2

�
LJY hJ�g

�
(Zh; F [Xh; Uv])

and hence

2g
� �
DXhC(Y h; Zh); Uv

�
=

= Xh
�
Y vg(Zv; Uv)� g(J [Y v; Zh]; Uv)� g(Zv; J [Y v; Uh])

�
�

� Y vg(Zv; [Xh; Uv]) + g(J [Y v; Zh]; [Xh; Uv]) + g
�
Zv; J

�
Y v; F [Xh; Uv]

��
=

(1.7a)
= Xh

�
Y vg(Zv; Uv)

�
� Y vg(Zv; [Xh; Uv]);

taking into account that from the proof of 2.15(b)

J
�
Y v; F [Xh; Uv]

�
= �J

�
F [Xh; Uv]; Y v

�
= �

�
P(Xc; Y c)U c (a)() (b)

= 0:

Now we evaluate the term
�
DXhC. For each vector �elds Y; Z on M ,� �

DXhC
�
(Y h; Zh) =

�
DXhC(Y h; Zh)� C(

�
DXhY h; Zh)� C(Y h;

�
DXhZh) =

4.11
=

�
DXhC(Y h; Zh)� C(F [Xh; Y v]; Zh)� C(Y h; F [Xh; Zv]):

Applying the last two results, we obtain:

2g
�� �
DXhC

�
(Y h; Zh); Uv

�
= 2g

� �
DXhC(Y h; Zh); Uv

�
�

2g
�
C(F [Xh; Y v]; Zh); Uv

�
� 2g

�
C(Y h; F [Xh; Zv]); Uv

�
=

= Xh
�
Y vg(Zv; Uv)

�
� Y vg(Zv; [Xh; Uv])�

�
L[Xh;Y v]J

�g
�
(Zh; Uh)�

(LY vJ�g) (F [Xh; Zv]; Uh) = Xh
�
Y vg(Zv; Uv)

�
� Y vg(Zv; [Xh; Uv])�
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� [Xh; Y v]g(Zv; Uv) + g
�
J
�
[Xh; Y v]; Zh

�
; Uv

�
+ g

�
Zv; J

�
[Xh; Y v]; Uh

��
� Y vg([Xh; Zv]; Uv) + g

�
J
�
Y v; F [Xh; Zv]

�
; Uv

�
+

+ g([Xh; Zv]; J [Y v; Uh]) = �Y vg(Zv; [Xh; Uv]) + Y v
�
Xhg(Zv; Uv)

�
�

� Y vg([Xh; Zv]; Uv)� g
� �
P(Xc; Y c)Zc; Uv

�
= Y v

�
Xhg(Zv; Uv)

�
�

� Y vg([Xh; Zv]; Uv)� Y vg(Zv; [Xh; Uv])
4.11
= Y v

��
�
DXhg

�
(Zv; Uv)

�
= 0;

since
�
D is h-metrical. Hence

�
DhXC = 0.

(d) =) (a) Assume DhC = 0. Then for each vector �eld X on TM , DhXC = 0. In
particular, taking the canonical spray S, we obtain:

0 = DhSC = DSC
lemma 4.8

= �C 0:

The vanishing of C 0 implies by Theorem 6.3 that

8X; Y; Z 2 X(TM) :
�
P(X; Y )Z = � (DhXC) (Y; Z)

(d)
= 0;

so (M;E) is a Berwald manifold. With this we reach the end of the proof of 6.12.

7. Locally Minkowski manifolds

7.1. Proposition and de�nition. Let (M;E) be a Berwald manifold. Then the following
conditions are equivalent:

(a) 
 := �1
2
[h; h] = 0, (b) R = 0,

(c)
�
R = 0, (d)

R

R = 0.

If one, and therefore all, of these conditions are satis�ed, then (M;E) is called a locally
Minkowski manifold.

Proof.
(a)() (b) Since the second Cartan tensor C 0 vanishes in any Berwald manifold, formula

(5.2a) reduces to

8X; Y; Z 2 X(TM) : R(X; Y )Z =
�
R(X; Y )Z + C(F
(X; Y ); Z)(7.1)

in this case.We infer at once from (7.1) and 2.18 that (a) =) (b). Conversely, suppose that
R = 0 and let S be the canonical spray. Then for each vector �elds X; Y on TM ,

0
(7.1)
=

�
R(X; Y )S + C(F
(X; Y ); S)

3.9
=

�
R(X; Y )S

(2.17)
= 
(X; Y );

so (b) =) (a).

(b)() (c) We have just seen that R = 0 implies 
 = 0. Then, by (7.1),
�
R = 0; thus we

get the desired implication (b) =) (c). The converse is obvious from (7.1) and (2.17).
(b) () (d) If R = 0, then 
 = 0 by the equivalence (a) () (b) and we deduce from

(5.2b) that
R

R = 0. Thus (b) =) (d). Assume
R

R = 0. If S is the canonical spray again, then
from (5.2b)

8X; Y 2 X(TM) : 0 =
R

R(X; Y )S = R(X; Y )S � C(F
(X; Y ); S) =
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3.9
= R(X; Y )S

(7.1)
=

�
R(X; Y )S

(2.17)
= 
(X; Y );

so 
 = 0 and, therefore, R = 0.

7.2. Proposition. A Finsler manifold (M;E) is a locally Minkowski manifold if and only if

there exists a torsion-free, at linear connection r onM whose horizontal lift
h

r is h-metrical
with respect to the horizontal endomorphism arising from r.

Proof.
Necessity. Assume (M;E) is a locally Minkowski manifold. Then (M;E) is a Berwald

manifold as well; let r be its linear connection (in the sense of 6.6(a)). Then r is torsion-free

and, by Proposition 7.1, it is at. In view of Lemma 6.8, the horizontal lift
h

r of r is the
Berwald connection of (M;E), which is h-metrical by Corollary 6.11.
Su�ciency. Suppose that r is a torsion-free, at linear connection on M , satisfying the

condition

8X 2 X(TM) :
h

rhXg = 0:

Let h be the horizontal endomorphism arising from r. Clearly, the tension, the torsion and

the curvature of h vanish. We claim that the Finsler connection (
h

r; h) is of Berwald-type.
To show this, by Theorem 4.3 it is enough to check (4.3a) and (4.3b). For each vector �elds
X; Y 2 X(M),

P1(Xh; Y v) := vT(Xh; Y v) = v

�
h

rXhY v �
h

rY vXh � [Xh; Y v]

�
=

(2.13)
= [Xh; Y v]� [Xh; Y v] = 0;

B (Xh ; Y v) := hT(Xh; Y v) = 0;

hence our statement. Let S be the geodesic spray of r ([6], p. 173). Then hS = S and for
any vector �eld X on M

h

rXhS =
h

rhXhhS
(2.14d)
= hF [Xh; JS] = hF [Xh; C] = 0;

since the tension of h vanishes. Now we show that h is conservative. For each vector �eld
X on M , we have

0 =

�
h

rXhg

�
(S; S) = Xhg(S; S)� 2g

�
h

rXhS; S

�
= Xhg(S; S) =

(3.2b)
= Xh�g(JS; JS) = Xh�g(C;C)

(3.4a)
= 2XhE = 2dhE(X

c);

which gives the result. Finally we check that the (h)h-torsion A of
h

r vanishes. For any two
vector �elds X; Y on M ,

A (Xc ; Y c) = hT(hXc; hY c) = hT(Xh; Y h) = h

�
h

rXhY h �
h

rY hXh � [Xh; Y h]

�
=

(2.13)
= h

��
rXY

�h
�
�
rYX

�h
� [Xh; Y h]

�
=
�
rXY

�h
�
�
rYX

�h
� [X; Y ]h =
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=
�
rXY �rYX � [X; Y ]

�h
= 0;

since r is torsion-free. Now we infer from Theorem 4.3 that h is the Barthel endomorphism

and, therefore, (
h

r; h) is the Berwald connection. Hence (M;E) is a Berwald manifold
satisfying the condition 
 = �1

2
[h; h] = 0; i.e., (M;E) is a locally Minkowski manifold.

7.3. Locally a�ne structures. Recall that an atlas A = (U�; (u
i
�)

n
i=1)�2A of a manifold

M is said to be a locally a�ne structure on M if the transition functions

��� : p 2 U� \ U� 7! ���(p) :=
�
@ui�

@u
j
�
(p)
�
2 GL(Rn)

((�; �) 2 A� A)

are constant. If X; Y 2 X(U�), Y = Y i @
@ui�

and

r�
XY := X(Y i) @

@ui�
(� 2 A);

then the family (r�)�2A determines a well-de�ned linear connection r on M . We say that
r arises from the locally a�ne structure A. Clearly, the torsion tensor and the curvature
tensor of r vanish. Frobenius' classical theorem on integrable distributions assures that the
converse is also true. Namely, we have

7.4. Lemma. A linear connection on a manifold M which has zero curvature and torsion
arises from a locally a�ne structure on M .

This is proved e.g. in [6].

7.5. Theorem. A Finsler manifold (M;E) is a locally Minkowski manifold if and only if
there exists an atlas

�
U�; (u

i
�)

n
i=1

�
�2A on M such that in the induced atlas�

��1(U�); (x
i
�; y

i
�)

n
i=1

�
�2A

8� 2 A : @E
@xi�

= 0; 1 � i � n;

i.e. the energy function \does not depend on the position" over the induced charts.

Proof.
Necessity. Assume (M;E) is a locally Minkowski manifold. Then, in particular, (M;E)

is a Berwald manifold and the curvature tensor of its (torsion-free) linear connection r
vanishes by Proposition 7.2. Applying Lemma 7.4 it follows that r arises from a locally
a�ne structure A =

�
U�; (u

i
�)

n
i=1

�
�2A on M . Choose a chart

�
U ; (ui)ni=1

�
2 A (the lower

index � is omitted for simplicity). Then over U

r @
@ui

@
@uj

= 0; 1 � i; j � n:

Since the Berwald connection of (M;E) is just (
h

r; h) by Lemma 6.8 (h is the Barthel
endomorphism), we have on the one hand

�
D�

@
@ui

�h

�
@
@uj

�v
=

h

r�
@
@ui

�h

�
@
@uj

�v (2.13)
=

�
r @

@ui

@
@uj

�v

= 0 (1 � i; j � n):
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On the other hand, for each indices i; j 2 f1; : : : ; ng
�
D�

@
@ui

�h

�
@
@uj

�v 4.11
=
h�

@
@ui

�h
;
�

@
@uj

�vi 6.9(ii)
= Gk

ij
@
@yk

;

consequently

Gk
ij = 0; 1 � i; j; k � n:

Notice that the functions Gk
i (introduced in 6.9) are homogeneous of degree 1. Thus, by

Euler's theorem,

Gk
i = yj

@Gk
i

@yj
(6.9c)
= yjGk

ij = 0; 1 � i; k � n:

Hence �
@
@ui

�h
= @

@xi
; 1 � i � n:

Since the Barthel endomorphism is conservative, i.e. dhE = 0, we deduce

0 = dhE
�

@
@ui

�c
= dE

�
@
@ui

�h
= dE

�
@
@xi

�
= @E

@xi
; 1 � i � n:

It means that the atlas A has the desired property.
Su�ciency. Assume the condition holds. Again, choose a chart

�
U ; (ui)ni=1

�
2 A. Then

we have
@E
@xi

= 0; 1 � i � n:

Let h be the Barthel endomorphism. The coordinate expression of the property dhE = 0
reduces to the relation

Gk
i
@E
@yk

= 0; 1 � i � n:

Now from (6.9a) we deduce

Gk = 0; 1 � k � n:

Hence the functions Gk
i , G

k
ij and G

k
ijl also vanish over U . The vanishing of the functions Gk

ijl

means that
�
P = 0, therefore (M;E) is a Berwald manifold (6.9(iii)). Finally, the relations

Gk
i = 0; Gk

ij = 0; (1 � i; j; k � n)

imply that 
 = 0, and this ends the proof.
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