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1. Introduction

A part of calculus of growing importance for current research can be

classified as ‘calculus of direction dependent objects’. It seems to me that

the most convenient and economical setting for their study is the pull-back

of the tangent bundle of a base manifold over the natural projection
◦
τ

of the slit tangent bundle. Then our direction dependent objects can be

interpreted as tensors along
◦
τ . A comprehensive calculus for this kind of

objects was elaborated by E. Mart́ınez, J. Cariñena and W. Sarlet in the

early 1990’s;15,16 see also Chapter 2/E of Ref. 21. I think, for most pur-

poses a simplified version of this calculus, with the Berwald derivative in

the focus, is already sufficient. Berwald’s derivative is a covariant deriva-

tive operator in our pull-back bundle, built up from a canonical vertical

part and a horizontal part depending on an Ehresmann connection. In the

most important applications, e.g., in the presence of a Finsler function, an

Ehresmann connection can ‘naturally’ be constructed from the structure.

In this article I give a bold outline of a calculus based mainly on a

Berwald derivative, with special emphasis on the fundamental geometric
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objects which may be constructed in terms of the Berwald derivative. To

present some non trivial applications, I discuss the following

Metrizability problem: Under what necessary and sufficient conditions

has a spray common geodesics (as unparametrized curves) with a Finsler

function?

It will turn out that this question leads naturally to an analytic version

of Hilbert’s fourth problem.

2. Basic constructions and conventions

Notations. Our base manifold M will be an n-dimensional (n ≥ 2), con-

nected, paracompact smooth manifold. C∞(M) stands for the ring of real-

valued smooth functions on M .

TpM is the tangent space to M at the point p ∈ M , TM is the 2n-

dimensional tangent manifold of M , and
◦

TM is the open submanifold of

the non-zero tangent vectors to M . τ and
◦
τ denote the natural projections

of TM and
◦

TM onto M , resp. The tangent bundle of M is the triplet

(TM, τ,M), denoted also simply by τ or, less consequently, by TM . Sim-

ilarly, (
◦

TM,
◦
τ,M) is the slit tangent bundle of M . The shorthand for the

tangent bundle of TM and
◦

TM will be TTM and T
◦

TM , respectively. The

vertical lift of a function f ∈ C∞(M) is f v := f ◦ τ ∈ C∞(TM); the

complete lift f c ∈ C∞(TM) of f is defined by f c(v) := v(f), v ∈ TM .

If ϕ : M → N is a smooth map, then ϕ∗ will denote the smooth map of

TM into TN induced by ϕ, the tangent map (or derivative) of ϕ.

Vector fields. A rough vector field on M is a map X : M → TM which

satisfies τ ◦X = 1M . If, in addition, X is smooth, then it is a vector field

on M . The C∞(M)-module of vector fields on M is denoted by X(M). If

X ∈ X(M), iX and LX denote the substitution operator induced by X

and the Lie derivative with respect to X , respectively. The operator of the

exterior derivative will be denoted by d on every manifold.

To make the text typographically more transparent, capitals X,Y, Z, . . .

will stand for vector fields on the base manifold, while vector fields on TM

will usually (but not exclusively) be denoted by Greek letters ξ, η, ζ, . . . .

Given a vector field X on M , there is a unique vector field Xc on TM

such that Xcf c = (Xf)c for all f ∈ C∞(M). Xc is called the complete lift

of X .

By a rough second-order vector field over M we mean a rough vector

field S on TM such that τ∗ ◦ S is the identity on TM . S is said to be a
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semispray or a second-order vector field over M if it is smooth on
◦

TM or

on TM , respectively.

Basic setup. The majority of our objects will live on the pull-back of

the tangent bundle of M over its projection τ or over
◦
τ . These are vector

bundles over TM and
◦

TM whose total manifolds are the fibre products

TM ×M TM and
◦

TM ×M TM , and which will be denoted by π and
◦
π,

respectively. For the C∞(TM)-module of sections of π we use the notation

Γ(π). Any section in Γ(π) is of the form

X̃ : v ∈ TM 7−→ X̃(v) = (v,X(v)) ∈ TM ×M TM,

where X : TM → TM is a smooth map such that τ ◦X = τ . In particular,

we have the canonical section δ given by δ(v) := (v, v), v ∈ TM .

An important class of sections of π can be obtained from vector fields

on M : if X ∈ X(M), then the map

X̂ : v ∈ TM 7−→ X̂(v) := (v,X(τ(v))) ∈ TM ×M TM

is a section of π, called the lift of X into Γ(π) or a basic section of π. If

(X i)ni=1 is a local basis for X(M), then (X̂ i)ni=1 is a local basis for Γ(π);

this simple observation proves to be useful in calculations.

The module Γ(π) may naturally be identified with the C∞(TM)-module

X(τ) := {X : TM → TM | X is smooth, and τ ◦X = τ}
of vector fields along τ by the map X̃ ∈ Γ(π) 7−→ X ∈ X(τ). We shall

use this harmless identification tacitly, whenever it is convenient. Then the

identity map 1TM corresponds to the canonical section, while the maps

X ◦ τ (X ∈ X(M)) correspond to basic sections.

We may describe the C∞(
◦

TM)-module Γ(
◦
π) ∼= X(

◦
τ ) analogously. The

tensor algebras of the modules Γ(π) and Γ(
◦
π) will be denoted by T(π) and

T(
◦
π), respectively. It is natural again to interpret the elements of these ten-

sor algebras as ‘tensors along τ or
◦
τ ’, and throughout the paper, as a rule,

the term ‘tensor’ will be used in this sense. We note finally that Γ(π) will

be considered as a subalgebra of Γ(
◦
π).

Coordinates. In coordinate descriptions we shall specify a chart

(U, (ui)ni=1) on M and use the induced chart (τ−1(U), (xi, yi)ni=1) on TM ,

where xi := (ui)v, yi := (ui)c. These charts lead to the local bases
(

∂

∂ui

)n

i=1

,

(
∂

∂xi
,
∂

∂yi

)n

i=1

and

(
∂̂

∂ui

)n

i=1

(1)
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of X(M), X(TM) and X(
◦
τ ), respectively. Note that ∂

∂xi =
(
∂
∂ui

)c
.

Einstein’s convention on repeated indices will be used. If X = X i ∂
∂ui is

a vector field on U , then its lift into X(
◦
τ ) is locally given by

X̂ = (X i ◦ τ)
∂̂

∂ui
.

The coordinate expression of the canonical section is

δ ↾ τ−1(U) = yi
∂̂

∂ui
.

If S is a semispray over M , then in local coordinates

S ↾ τ−1(U) = yi
∂

∂xi
− 2Gi

∂

∂yi
(2)

for some smooth functions Gi on
◦
τ
−1

(U). These functions will be called the

semispray coefficients of S with respect to the chosen chart. We note that

the factor −2 in the coordinate expression of S proves to be convenient,

and is more or less traditional.

3. Some vertical calculus

Canonical objects. We recall that the fundamental exact sequence over

TM is the sequence of vector bundle maps

0 −→ TM ×M TM
i−→ TTM

j−→ TM ×M TM −→ 0, (3)

where j(w) := (v, τ∗(w)), if w ∈ TvTM , while i identifies the fibre

{v} × Tτ(v)M with the tangent space TvTτ(v)M for all v ∈ TM .

The bundle maps i and j induce C∞(TM)-homomorphisms between the

modules of sections, denoted by the same symbols. Thus we also have the

exact sequence

0 −→ X(τ)
i−→ X(TM)

j−→ X(τ) −→ 0 (4)

of module homomorphisms. i and j act on the local bases in (1) by

i

(
∂̂

∂ui

)
=

∂

∂yi
, j

(
∂

∂xi

)
=

∂̂

∂ui
, j

(
∂

∂yi

)
= 0; i ∈ {1, . . . , n}. (5)

Xv(TM) := iX(τ) is the module of vertical vector fields on TM , Xv := i(X̂)

is the vertical lift of the vector field X on M . We have a canonical vertical



May 13, 2008 15:45 WSPC - Proceedings Trim Size: 9in x 6in dga2007

Calculus along the tangent bundle projection and projective metrizability 543

vector field on TM , the Liouville vector field C := iδ. Its bracket with any

vertical lift Xv is given by

[C,Xv] = −Xv. (6)

From the local form of δ we obtain by (5) that C ↾ τ−1(U) = yi ∂
∂yi .

The type
(
1
1

)
tensor field J := i ◦ j will be called the vertical endomor-

phism of TTM . (Other terms, e.g., ‘the canonical almost tangent structure

on TM ’ are also frequently used.) Evidently J2 = J ◦ J = 0. In terms of

vertical and complete lifts

JXv = 0, JXc = Xv; X ∈ X(M). (7)

Thus, in particular, J
(

∂
∂yi

)
= J

(
∂
∂ui

)v
= 0, J

(
∂
∂xi

)
= J

(
∂
∂ui

)c
= ∂

∂yi

(i ∈ {1, . . . , n}).
We shall use the vertical differentiation dJ which associates the semiba-

sic 1-form dJf := df ◦ J to a smooth function f on TM . In induced coor-

dinates,

dJf ↾ τ−1(U) =
∂f

∂yi
dxi.

For a detailed treatment of vertical differentiation, see Ref. 8.

We define the Frölicher-Nijenhuis bracket [J, ξ] of J and a vector field

ξ on TM by [J, ξ] := −LξJ. Then for any vector field η on TM ,

[J, ξ]η = [Jη, ξ]− J[η, ξ].

Observe that if S is a semispray over M , then we have

JS = C or, equivalently, jS = δ. (8)

Conversely, condition τ∗ ◦S = 1TM in the definition of a semispray may be

replaced by (8).

If S is a semispray over M , then

J[Jξ, S] = Jξ, for all ξ ∈ X(TM) (9)

(Grifone identity). For a simple proof we refer to Ref. 22.

Vertical derivatives. Let X̃ be a section in X(τ). We define an operator

∇v

X̃
specifying its action on functions in C∞(TM) and sections in X(τ) as

follows:

∇v

X̃
f := (iX̃)f = (df ◦ i)(X̃), f ∈ C∞(TM); (10)

∇v

X̃
Ỹ := j[iX̃, η]; Ỹ = j(η) ∈ X(τ), η ∈ X(TM). (11)
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Then ∇v

X̃
Ỹ is well-defined: it is easy to check its independence of the choice

of η ∈ X(TM) satisfying j(η) = Ỹ . The map ∇v which assigns to each

pair (X̃, Ỹ ) of sections the section ∇v

X̃
Ỹ obeys the same formal rules as a

covariant derivative operator; the crucial derivation rule takes the form

∇v

X̃
fỸ = ((iX̃)f)Ỹ + f∇v

X̃
Ỹ = (∇v

X̃
f)Ỹ + f∇v

X̃
Ỹ , f ∈ C∞(TM).

The (canonical) v-covariant derivative ∇v

X̃
so obtained can be extended to

operate on an arbitrary tensor, the idea is to make sure that Leibniz’s rule

holds. Thus, for example, if Ã ∈ T
1
1(π), then for any 1-form α̃ and vector

field Ỹ along τ ,

∇v

X̃
Ã(α̃, Ỹ ) := (iX̃)Ã(α̃, Ỹ )− Ã(∇v

X̃
α̃, Ỹ )− Ã(α̃,∇v

X̃
Ỹ ),

where the 1-form ∇v

X̃
α̃ is given by (∇v

X̃
α̃)(Z̃) = iX̃(α̃(Z̃)) − α̃(∇v

X̃
Z̃),

Z̃ ∈ X(τ).

Finally, we define the (canonical) v-covariant differential of a type
(
k
l

)

tensor Ã as the type
(
k
l+1

)
tensor ∇vÃ, which ‘collects all the v-covariant

derivatives of Ã’. For example, if k = l = 1, then

∇vÃ(α̃, X̃, Ỹ ) := (∇v

X̃
Ã)(α̃, Ỹ ).

The v-covariant differential of the canonical section is the identity operator.

Indeed, using Grifone’s identity (9), for any section X̃ ∈ X(τ) we get

i(∇vδ)(X̃) = i∇v

X̃
δ

(11)
= J[iX̃, S] = iX̃,

whence our claim.

For any vector field X on M we have ∇vX̂ = 0. In fact, if Y ∈ X(M),

then ∇vX̂(Ŷ ) = ∇v

Ŷ
X̂ = j[Y v, Xc] = 0, since [Y v, Xc] is vertical. But any

section of π can locally be combined from basic sections, so it follows that

∇vX̂(Ỹ ) = 0 for all Ỹ ∈ X(τ).

Notice that the vertical differentiation dJ and the v-covariant differential

∇v are related on C∞(TM) by dJf = ∇vf ◦ j.
To conclude our brief overview on the ‘vertical part’ of the tensor cal-

culus in Γ(π), we define the v-exterior differential dvα̃ of a k-form α̃ along

τ by

dvα̃ := (k + 1)Alt∇vα̃, (12)

where Alt is the operator of alternation. Then dv has the expected property

dv ◦ dv = 0. For details, we refer to Ref. 21.
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4. Horizontal extension of the vertical calculus

Ehresmann connections. In order to differentiate our tensors not only in

vertical directions, we need some further structure in general. This further

structure will be an Ehresmann connection in what follows. Since the term

has various meanings in differential geometry, we have to fix our usage

precisely. By an Ehresmann connection on TM we mean a map

H : TM ×M TM → TTM

satisfying the following four conditions:

Ehr 1. H is fibre-preserving and fibrewise linear.

Ehr 2. j ◦H = 1TM×MTM .

Ehr 3. H is smooth over
◦

TM ×M TM .

Ehr 4. If σ : p ∈ M 7−→ σ(p) := 0p ∈ TpM is the zero section of τ , then

H (σ(p), v) := (σ∗)p(v) for all p ∈M , v ∈ TpM .

Thus, roughly speaking, an Ehresmann connection is a right splitting of the

fundamental exact sequence (3). If we specify an Ehresmann connection H

on TM , there is a unique left splitting of (3) ‘complementary’ to H , i.e.,

a fibre-preserving fibrewise linear map V : TTM → TM ×M TM , smooth

on T
◦

TM , such that

V ◦ i = 1TM×MTM and Ker(V ) = Im(H ).

V is called the vertical map associated to H . The maps

h := H ◦ j, v := i ◦ V and F := H ◦ V − i ◦ j

are bundle endomorphisms of TTM , called the horizontal projector, the

vertical projector and the almost complex structure associated to H , re-

spectively. h and v are indeed complementary projection operators (h2 = h,

v2 = v, h ◦ v = v ◦ h = 0), while F2 = −1TTM .

An Ehresmann connection, as well as its associated maps, induce mod-

ule homomorphisms at the level of sections, denoted by the same letters.

Xh(
◦

TM) := H (X(
◦
τ )) is the module of horizontal vector fields on

◦

TM . The

horizontal lift of a vector field X on M to TM is Xh := H (X̂) = hXc.

In particular, the horizontal lifts of the coordinate vector fields ∂
∂uj can be

represented in the form

(
∂

∂uj

)h

=
∂

∂xj
−N i

j

∂

∂yi
, j ∈ {1, . . . , n}. (13)
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The functions N i
j , defined on τ−1(U) and smooth on

◦
τ
−1

(U), are called the

Christoffel symbols of H with respect to the chosen chart; the minus sign

in (13) is quite traditional.

The Berwald derivative. Let an Ehresmann connection H be given on

TM , and let X̃ be a section of
◦
π. Following the scheme of construction of

∇v

X̃
, we define a differential operator ∇h

X̃
, prescribing its action

on functions by ∇h

X̃
f := (H X̃)f = (df ◦H )(X̃), f ∈ C∞(

◦

TM);

on sections by ∇h

X̃
Ỹ := V [H X̃, iỸ ], Ỹ ∈ X(

◦
τ),

(14)

and extending it to the whole tensor algebra T(
◦
π) in such a way that ∇h

X̃

satisfies the derivation property. Finally, we define the ∇h-differential of

a tensor formally in the same way as in the vertical case. The operator

∇h so obtained will be called the h-Berwald derivative determined by the

Ehresmann connection H .

Putting together the canonical v-covariant derivative and the h-Berwald

derivative, we get an all-important covariant derivative operator in
◦
π, called

the Berwald derivative associated to (or determined by) H . Explicitly,

for any vector field ξ on
◦

TM and section Ỹ in X(
◦
τ),

∇ξỸ := ∇v
V ξỸ +∇h

jξỸ = j[vξ,H Ỹ ] + V [hξ, iỸ ]. (15)

Then, in particular,

∇iX̃ Ỹ = ∇v

X̃
Ỹ , ∇

H X̃ Ỹ = ∇h

X̃
Ỹ ; X̃, Ỹ ∈ X(

◦
τ ); (16)

∇Xv Ŷ = 0, i∇Xh Ŷ = [Xh, Y v]; X,Y ∈ X(M). (17)

From the last relation and (13) we obtain

i∇
( ∂

∂uj )
h

∂̂

∂uk
=
∂N i

j

∂yk
∂

∂yi
(j, k ∈ {1, . . . , n});

the functions N i
jk :=

∂Ni
j

∂yk are the Christoffel symbols of the Berwald deriva-

tive determined by H .

Geometric data. By the tension of an Ehresmann connection we mean

the h-Berwald differential of the canonical section, i.e., the type
(
1
1

)
tensor

t := ∇hδ. An Ehresmann connection is said to be homogeneous if its tension

vanishes. For any vector field X on M ,

it(X̂) = i∇Xhδ
(14)
= iV [Xh, C] = v[Xh, C] = [Xh, C],
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therefore for each j ∈ {1, . . . , n},

it

(
∂̂

∂uj

)
=

[(
∂

∂uj

)h

, C

]
(13)
=

[
∂

∂xj
−N i

j

∂

∂yi
, C

]
= (CN i

j −N i
j)

∂

∂yi
.

It follows that an Ehresmann connection is homogeneous, if and only if, its

Christoffel symbols are positive-homogeneous of degree 1.

The canonical surjection j in (3) may be interpreted as a
◦
π-valued 1-form

on
◦

TM , so we can form its covariant exterior derivative d∇j with respect

to the Berwald derivative associated to an Ehresmann connection H . By

the torsion of H we mean the type
(
1
2

)
tensor T defined by

T(X̃, Ỹ ) := d∇j(H X̃,H Ỹ ); X̃, Ỹ ∈ X(
◦
τ ).

Evaluating at basic sections X̂, Ŷ , we get the more suggestive formula

iT(X̂, Ŷ ) = [Xh, Y v]− [Y h, Xv]− [X,Y ]v.

h-exterior and v-Lie derivative. Having specified an Ehresmann con-

nection H , we may define the operator dh of the h-exterior derivative with

respect to H , prescribing its action

on functions by dhf(X̃) =∇h

X̃
f ; f ∈ C∞(

◦

TM), X̃ ∈ X(
◦
τ );

on basic 1-forms by dh(α ◦ τ) :=(dα) ◦ τ, α ∈ X∗(M).
(18)

Then dh is a graded derivation of the Grassmann algebra Ω(
◦
τ ) of differen-

tial forms along
◦
τ . It may be shown that if the torsion of the Ehresmann

connection vanishes, then for any k-form α̃ along
◦
τ we have

dhα̃ = (k + 1)Alt∇hα̃ (19)

(cf. (12)), and

dh ◦ dv + dv ◦ dh = 0. (20)

For a proof, see Ref. 21.

To complete our calculus summary, we define a kind of Lie derivative

L
v
ξ in T(

◦
π) (ξ ∈ X(

◦

TM)) by

L
v
ξf := ξ(f), if f ∈ C∞(

◦

TM);

L
v
ξỸ := V [ξ, iỸ ], if Ỹ ∈ X(

◦
τ )

(21)

where V is the vertical map associated to H .
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Then, in particular, for any vector fields X,Y on M ,

iLv
Xc Ŷ := iV [Xc, Y v] = v[Xc, Y v] = [Xc, Y v] = LXcY v,

so our generalization of the classical Lie derivative is reasonable. This is

also confirmed by the fact that the operators L
v, dv and the substitution

operator iX̃ (X̃ ∈ X(
◦
τ )) are related by

L
v

iX̃
= iX̃ ◦ dv + dv ◦ iX̃ , (22)

which is a just a mutation of H. Cartan’s magic formula.

Homogeneous tensors. Let k be an integer. A covariant or a
◦
π-valued

covariant tensor α̃ along
◦
τ is said to be homogeneous of degree k, briefly

k-homogeneous, if ∇C α̃ = kα.

Lemma 4.1. If α̃ is a 0-homogeneous 2-form along
◦
τ , then we have

α̃ =
1

2
(iδd

vα̃+ dviδα̃).

Proof. By ‘Cartan’s formula’ (22),

iδd
vα̃+ dviδα̃ = L

v
iδα̃ = L

v
C α̃.

For any vector fields X,Y on M ,

L
v
C α̃(X̂, Ŷ ) = Cα̃(X̂, Ŷ )− α̃(Lv

CX̂, Ŷ )− α̃(X̂,Lv
C Ŷ )

(21)
=

= Cα̃(X̂, Ŷ )− α̃(V [C,Xv], Ŷ )− α̃(X̂,V [C, Y v])
(6)
=

= Cα̃(X̂, Ŷ ) + 2α̃(X̂, Ŷ ) =

= (∇C α̃)(X̂, Ŷ ) + 2α̃(X̂, Ŷ ) = 2α̃(X̂, Ŷ ).

This proves our assertion.

5. Curvatures of an Ehresmann connection

Throughout this section we assume that an Ehresmann connection H is

specified on TM . ∇ is the Berwald derivative determined by H , d∇ is the

corresponding covariant exterior derivative. We denote by R∇ the

curvature of ∇.

Affine curvatures. The vertical map V associated to H may also be

interpreted as a
◦
π-valued 1-form on

◦

TM , so it makes sense to speak of its
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covariant exterior derivative. By the fundamental affine curvature of H we

mean the type
(
1
2

)
tensor field R along

◦
τ defined by

R(X̃, Ỹ ) := d∇V (H X̃,H Ỹ ); X̃, Ỹ ∈ X(
◦
τ). (23)

Then for vector fields X,Y on M we get

iR(X̂, Ŷ ) = −v[Xh, Y h], (24)

so R is just the obstruction tensor to integrability of the horizontal distri-

bution Im(H ) ⊂ T
◦

TM .

We define the affine curvature tensor H of the Ehresmann connection

by

H(X̃, Ỹ )Z̃ := R∇(H X̃,H Ỹ )Z̃. (25)

It is related to the fundamental affine curvature by

H(X̃, Ỹ )Z̃ = (∇v

Z̃
R)(X̃, Ỹ ). (26)

We remark that the terms ‘fundamental affine curvature’ and ‘affine cur-

vature’ are borrowed from Berwald’s paper,5 whose terminology we try to

adopt as far as possible.

The Berwald curvature. An immediate calculation shows that for any

sections X̃, Ỹ , Z̃ along
◦
τ , R∇(iX̃, iỸ )Z̃ = 0. However, the type

(
1
3

)
tensor

B along
◦
τ defined by

B(X̃, Ỹ )Z̃ := R∇(iX̃,H Ỹ )Z̃, (27)

and called the Berwald curvature of the Ehresmann connection, comprises

important new information. Notice first that for any vector fields X,Y, Z

on M ,

iB(X̂, Ŷ )Ẑ = [[Xv, Y h], Zv]. (28)

From this relation, using the Jacobi identity and the fact that the Lie brack-

ets of vertically lifted vector fields vanish, we infer: the Berwald curvature

is symmetric in its first and third variable. If, in addition, the Ehresmann

connection is homogeneous or torsion-free, then the Berwald curvature is

totally symmetric.21

To clarify the meaning of the Berwald curvature, we recall that any

covariant derivative operatorD onM gives rise to an Ehresmann connection

HD on TM by the rule

(v, w) ∈ TM ×M TM 7−→HD(v, w) := Y∗(w)− i(v,DwY ) ∈ TTM,
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where Y ∈ X(M) is any vector field such that Y (τ(v)) = v. Then HD is

homogeneous and has vanishing Berwald curvature. The torsions TD of D

and T of HD are related by

(TD(X,Y ))v = iT(X̂, Ŷ ); X,Y ∈ X(M), (29)

while the relation between the curvature RD of D and the affine curvature

H of HD is given by

(RD(X,Y )Z)v = iH(X̂, Ŷ )Ẑ; X,Y, Z ∈ X(M). (30)

Conversely, if H is a homogeneous Ehresmann connection of class C1 on

TM ×M TM , then there exists a (necessarily unique) covariant derivative

D on M such that for any vector fields X,Y on M we have

(DXY )v = i∇h

X̂
Ŷ = [Xh, Y v]. (31)

The Ehresmann connection arising from D is just the given connection H ,

therefore the Berwald curvature of H vanishes.

6. Semisprays and Ehresmann connections

A semispray S over M is said to be a spray if it is of class C1 on

TM and positive-homogeneous of degree 2 (briefly, 2+-homogeneous) in

the sense that [C, S] = S. By an affine spray we mean a spray which is of

class C2 (and hence is smooth) on its whole domain TM . Equivalently, an

affine spray is a 2+-homogeneous second-order vector field.

There is an important relation between affine sprays and covariant

derivatives, formulated clearly and explicitly by Ambrose, Palais and

Singer1 first. In our terms, if S ∈ X(TM) is an affine spray, then there

exists a covariant derivative D on M such that S = HD ◦ δ. Conversely,

if D is a covariant derivative on M and HD is the Ehresmann connection

determined by D, then S := HD ◦ δ is an affine spray. This construction

was generalized to a great extent by M. Crampin and J. Grifone in the early

1970s, independently (see Ref. 6 and Ref. 9).

Theorem 6.1 (M. Crampin and J. Grifone). If S is a semispray over

M , then there exists a unique Ehresmann connection HS on TM such that

the horizontal lift of a vector field on M with respect to HS is given by

Xh := HS(X̂) =
1

2
(Xc + [Xv, S]) (Crampin’s formula), (32)

or, equivalently, the horizontal projector associated to HS is

hS =
1

2
(1X(TM) + [J, S]) (Grifone’s formula). (33)
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We list some basic properties of HS .

CrGr 1. The torsion of HS vanishes.

This can be checked by a direct calculation.

CrGr 2. If H is an Ehresmann connection with vanishing torsion, then

there is a semispray S such that H = HS.

This result of M. Crampin7 is far from being trivial, see also E. K.

Ayassou’s Thèse de doctorat.2

CrGr 3. HS is homogeneous, if and only if, there is a 2+-homogeneous

semispray S̄ and a vector field X on M such that S = S̄ +Xv.

For a proof we refer to Ref. 21.

CrGr 4. The semispray HS ◦ δ coincides with S, if and only if, [C, S] = S.

Applying, e.g., Grifone’s formula (33) and Grifone’s identity (9), the

proof of this claim is routine.

By the (affine and Berwald) curvatures of a semispray S we shall mean

the (corresponding) curvatures of HS . When there is no risk of confusion,

instead of HS we shall simply write H .

The affine deviation tensor (L. Berwald5) or the Jacobi endomorphism

(W. Sarlet et al.15) of a semispray S is the type
(
1
1

)
tensor K defined by

K(X̃) := V [S,H X̃]; X̃ ∈ X(
◦
τ ), H := HS . (34)

The Jacobi endomorphism and the fundamental affine curvature R of S are

related by

R(X̃, Ỹ ) =
1

3
(∇vK(Ỹ , X̃)−∇vK(X̃, Ỹ )); X̃, Ỹ ∈ X(

◦
τ ), (35)

for a proof see Ref. 21.

If S is a spray, then the tensors K, R and H carry the same informa-

tion: each of them can be expressed from another one. Adopting Z. Shen’s

terminology,20 we say that a spray is R-flat, if one (hence every) of its affine

curvatures vanishes. By a flat spray we mean an affine R-flat spray. Prop-

erty CrGr 3 and our remarks concerning the Berwald curvature at the end

of the preceding section imply immediately the following

Characterization of affine sprays. A spray is affine, if and only if, its

Berwald curvature vanishes.

The next important observation goes back to the 1920s, i.e., to the first

golden age of the ‘geometry of paths’.

Characterization of flat sprays. A spray S is flat, if and only if, there

is a coordinate system (ui)ni=1 for M at any point p ∈ M such that the
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coordinate expression of S in the induced coordinate system (xi, yi)ni=1 is

S = yi ∂
∂xi .

Then (xi, yi) will be called a rectilinear coordinate system on TM .

We sketch here the main steps of the proof, cf. Ref. 20: 8.1.6. The

sufficiency of the condition is obvious. To prove the converse, suppose that

S is flat. Then B = 0 and H = 0. Let the coordinate expression of S in an

induced coordinate system (xi0, y
i
0)ni=1 (xi0 := ui0 ◦ τ) be

S = yi0
∂

∂xi0
− 2

◦

G
i ∂

∂yi0
.

Condition B = 0 implies the existence of a covariant derivative D on M

satisfying (31). If the Christoffel symbols of D with respect to (ui0)ni=1 are

the functions
◦

Γijk, then

◦

Γijk ◦ τ =
◦

Gijk :=
∂2

◦

Gi

∂yj0∂y
k
0

; i, j, k ∈ {1, . . . , n}. (36)

Our assumption H = 0 implies by (30) that RD = 0. From this we infer

that there is a chart (U, (ui)ni=1) on M such that in the ui-coordinates the

Christoffel symbols of D vanish. If the spray coefficients of S in the induced

coordinate system (xi, yi)ni=1 are the functions Gi, then 0 = (Γkij ◦ τ)yk
(36)
=

Gijky
k = Gij and 0 = Gijy

j = 2Gi by the 2+-homogeneity of the Gis, there-

fore S ↾
◦
τ
−1

(U) = yi ∂
∂xi .

We recall that two sprays S and S̄ over M are said to be projectively

related if there is a function P , smooth on
◦

TM , of class C1 on TM such

that S̄ = S − 2PC. Then the projective factor P is necessarily positive-

homogeneous of degree 1. We shall find useful the following simple

Observation. A spray S is projectively related to a given spray S̄, if and

only if, S is contained by the C∞(
◦

TM)-submodule of X(
◦

TM) generated by

S̄ and C.

Indeed, the necessity of the condition is obvious. Conversely, if S =

fS̄ + hC (f, h ∈ C∞(
◦

TM)), then using relation (8) we get C = fC. Hence

f is the constant function with the value 1, and S = S̄+hC, as we claimed.

7. Basic facts on Finsler functions

By a Finsler function we mean a function F : TM → R satisfying the

following conditions:
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Fins 1. F is smooth on
◦

TM .

Fins 2. CF = F , i.e., F is positive-homogeneous of degree 1.

Fins 3. The metric tensor g := 1
2∇v∇vF 2 is (fibrewise) non-degenerate.

A pair (M,F ) consisting of a manifold and a Finsler function on its tangent

manifold is called a Finsler manifold. A Finsler manifold (M,F ) is positive

definite if the condition

Fins 4. F (v) > 0 for all v ∈
◦

TM and F (0) = 0

is also satisfied. It may be shown (see Ref. 14) that the nomenclature is

correct: Fins 4 implies that the metric tensor is positive definite. It is

immediately verified that a positive definite Finsler manifold (M,F ) reduces

to a Riemannian manifold (M,γ) in the sense that g = γ ◦ τ , if and only if,

∇v∇v∇vF 2 = 0.

If F is a Finsler function, then θ := dJF is a 1-form, ω := ddJF
2 is

a 2-form on
◦

TM , called the Hilbert 1-form and the fundamental 2-form

of (M,F ), respectively. Fins 3 implies that ω is non-degenerate, and the

converse is also true. The 1-forms θ and dJF
2, and the 2-form ω have the

following properties:

LCθ = 0, LCdJF
2 = dJF

2, LCω = ω; (37)

iCω = dJF
2; (38)

ω(Jξ, η) + ω(ξ,Jη) = 0 (ξ, η ∈ X(
◦

TM)), i.e.,

the vertical endomorphism is skew-symmetric

with respect to the fundamental 2-form.

(39)

The next result is the miracle of Finsler geometry.

Proposition 7.1 (the fundamental lemma of Finsler geometry) and

definition. If (M,F ) is a Finsler manifold, then there exists a unique

spray S such that iSω = −dF 2. The Ehresmann connection H determined

by S according to Theorem 6.1 is homogeneous and conservative in the sense

that dhF = 0. H is said to be the canonical connection of (M,F ); this is

the only torsion-free, homogeneous, conservative Ehresmann connection on

TM .

The first intrinsic formulation and index-free proof of the fundamental

lemma is due to J. Grifone.9 For our formulation and recent proofs we refer

to Refs. 21,23.
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Lemma 7.1. If S is spray over M , then it is related to the canonical spray

S̄ of a Finsler manifold (M, F̄ ) over
◦

TM by

S̄ = S − SF̄

F̄
C − F̄ (iSddJF̄ )♯ (40)

where the sharp operator is taken with respect to the fundamental 2-form

of (M, F̄ ).

A proof of this useful observation can be found in Ref. 24.

8. Projectively Finslerian sprays

We say that a spray is Finsler metrizable in a broad sense, or projectively

Finslerian if there is a Finsler function whose canonical spray is projectively

related to the given spray. From relation (40) it follows at once that a spray

S is projectively related to the canonical spray of a Finsler manifold (M, F̄ ),

if and only if, iSddJF̄ = 0. In this section we give a more illuminating

derivation of this important observation, and deal with several equivalent

characterizations of Finsler metrizability in a broad sense.

We need some preparatory results.

Lemma 8.1. A function F̄ : TM → R satisfying Fins 1 and Fins 2 is a

Finsler function, if and only if, the 2-form ddJF̄ on
◦

TM is of rank 2n− 2.

The proof is quite immediate.

Lemma 8.2. If F̄ is a Finsler function, then the nullspace of the 2-form

ddJF̄ is generated by the canonical spray of F̄ and the Liouville vector field.

By the preceding Lemma it is enough to check that the canonical spray

and the Liouville vector field indeed belong to the nullspace, and this is a

routine verification.

Lemma 8.3. Let F̄ : TM → R be a function satisfying Fins 1 and Fins 2.

Let S be a spray over M . If ∇ = (∇h,∇v) is the Berwald derivative deter-

mined by S, then relations

iSddJF̄ = 0 and ∇S∇vF̄ = ∇hF̄

are both equivalent to the ‘Euler–Lagrange equation’

S(XvF̄ )−XcF̄ = 0, X ∈ X(M). (41)
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The proof is just a calculation again: it is enough to evaluate the 1-form

iSddJF̄ on
◦

TM at a complete lift and the Finsler 1-form ∇S∇vF̄ −∇hF̄ at

a basic vector field.

Theorem 8.1. Let S be a spray over M , and let ∇ = (∇h,∇v) be the

Berwald derivative determined by S. If F̄ is a Finsler function, then the

following four statements are equivalent:

Proj. S and the canonical spray of (M, F̄ ) are projectively related.

Rap 1. iSddJF̄ = 0.

Rap 2. ∇S∇vF̄ = ∇hF̄ .

Rap 3. dhdvF̄ = 0.

If in an induced coordinate system (xi, yi)ni=1 on TM the spray coefficients

of S are the functions Gi, and Gij := ∂Gi

∂yj , then the common local expression

of Rap 1 and Rap 2 is

yi
∂2F̄

∂xi∂yj
− 2Gi

∂2F̄

∂yi∂yj
=
∂F̄

∂xj
(j ∈ {1, . . . , n}), (42)

while the local expression of Rap 3 is

∂2F̄

∂xj∂yk
−Gij

∂2F̄

∂yi∂yk
=

∂2F̄

∂xk∂yj
−Gik

∂2F̄

∂yi∂yj
(j, k ∈ {1, . . . , n}) (43)

Proof. Let S̄ be the canonical spray of (M, F̄ ). By the Observation in the

end of section 6, S and S̄ are projectively related, if and only if, S is in the

submodule generated by S̄ and C. This submodule is just the nullspace of

ddJF̄ by Lemma 8.2, so we obtain the equivalence of Proj and Rap 1.

Since for any vector field X on M we have

dhdvF̄ (δ, X̂) = S(XvF̄ )−XcF̄ ,

applying Lemma 8.3 we conclude that Rap 3 implies Rap 1. To show

the converse, observe that the 2-form dhdvF̄ is 0+-homogeneous, i.e.,

∇CdhdvF̄ = 0, and hence it may be represented in the form

dhdvF̄ =
1

2
(iδd

vdhdvF̄ + dviδd
hdvF̄ ) (44)

by Lemma 4.1. Using (20) and relation dv ◦ dv = 0, it follows that the first

term in the right-hand side of (44) vanishes. As to the second term, taking

into account Lemma 8.3 again, we get for any vector field X on M

iδd
hdvF̄ (X̂) = dhdvF̄ (δ, X̂) = S(XvF̄ )−XcF̄ = iSddJF̄ (X̂),
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hence assuming Rap 1, we conclude that dhdvF̄ = 0.

Our statements concerning the coordinate expressions can immediately be

checked.

Relations (42) and (43), as criteria for Finsler metrizability of a spray

in a broad sense are due to A. Rapcsák.18 The index-free form Rap 1 and

an equivalent of Rap 3 were first published in Ref. 24. Later I realized

that the equivalence of Proj and Rap 1 has already been discovered by

J. Klein and A. Voutier.13 There is nothing new under the sun...

Now I am in a position to make some remarks about the following

Analytic version of Hilbert’s 4th problem: find the Finsler functions

whose canonical spray is projectively related to a given flat spray.

This reformulation of Hilbert’s problem 4 differs very much from

Hilbert’s original formulation,12 in which he immediately connected the

problem to his actual research on the axiomatic foundations of geometry.

However, the first thorough approach to the problem was analytic in G.

Hamel’s thesis.10 Hamel’s work was supervised by Hilbert, immediately

after his famous lecture in Paris in 1900. This indicates that the refor-

mulation of the problem in differential geometric terms alien to classical

geometry was found relevant by Hilbert himself. The next corollary of The-

orem 8.1 makes it clear that our formulation is just an index-free expression

of Hamel’s analytic interpretation of Hilbert’s 4th problem.

Corollary 8.1. A flat spray is (locally) projectively related to the canonical

spray of a Finsler function F̄ , if and only if, one of the following relations

holds in any rectilinear coordinate system:

Ham 1. yi
∂2F̄

∂xi∂yj
=
∂F̄

∂xj
, j ∈ {1, . . . , n}.

Ham 2.
∂2F̄

∂xi∂yk
=

∂2F̄

∂xk∂yj
, j, k ∈ {1, . . . , n}.

In Hamel’s paper11 equation Ham 2 was derived and solved in 3 dimen-

sions. In the 2-dimensional case an extremely elegant solution of Ham 2

was given by A. V. Pogorelov;17 see also Álvarez Paiva’s delightful account.3

The next observation makes it possible to transform the problem into the

quest of a suitable 0+-homogeneous function instead of a 1+-homogeneous

Finsler function.
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Proposition 8.1. A flat spray S is (locally) projectively Finslerian, if and

only if, there is a 0+-homogeneous function f on TM , smooth on
◦

TM , such

that ∇v∇v(Sf)2 is a non-degenerate 2-form along
◦
τ , and in any rectilinear

coordinate system (xi, yi)ni=1 on TM we have

∂f

∂yj∂xk
yk = 0, j ∈ {1, . . . , n}. (45)

A sketchy solution of (45) can be found in Rapcsák’s paper,19 but his solu-

tion is probably incomplete. On the other side, an interesting new strategy

has been shown to solve Hilbert’s fourth problem by Álvarez Paiva in Ref. 4.

Notice that the Liouville vector field and the given spray S generate an in-

tegrable distribution, and we can (at least locally) take the quotient by

its leaves. The result is a manifold of dimension 2n− 2, the so-called path

space, whose points represent the unparametrized geodesics of S. It follows

from Lemma 8.2 that ddJF̄ defines a symplectic 2-form on the path space.

The idea of Álvarez Paiva is to specify the properties of the symplectic

form on the path space. It would be illuminating to establish an exact rela-

tion between the solutions of (45) and the general form of Álvarez Paiva’s

‘admissible symplectic forms’.
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