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1+ INTRODUCTION

Koszul's concept of a linear connection is one of
the basic definitions of elementary differential geometry.
As is well-known, in Koszul's sense a linear connection V
on a manifold ¥ is a correspondence V: (X,Y) € X(M)xX(¥)
[ VXY'ex(M) which is‘Cm(M)-linear in X, IR -linear in Y
and has the property

(%) VFY = (XF) Y+ FVY (FeCc (M) .

For the applications different generalizations of this
concept are also important. A weakening of the Koszul-
axioms yields e.g. the so-called homogeneous connections,
see [7]. In 1969 an interesting modification of the de-
fining conditions was treated by C. di Comite {2]. He con-
sidered a mapping V: X(M)xX(M) - X(M) and an endomorphism
4 of the tangent bundle of ¥ as well. Di Comite called

the pair (V,4) a pseudoconnection on ¥, if - instead of

(¥x) - V satisfies the rule

This paper is in final form and no version of it will be
submitted for publication elsewhere.

- 1165 -



VY = (AoX) £Y + V¥

and the further Koszul~axioms remain (formally) unaltered.
This notion was extended and generalized to arbitrary
vector bundles (of finite rank) by I. Candela in 1982
[1]. In the present pbaper we propose and discuss a fur-
ther extension and generalization of Candela's concept

of pseudoconnections, motivated by the demands of the
theory of Finsler-type connections. We shall see, indeed,
that this new type of generalized connections arises in

a very natural manner in the construction of Finsler-type
connections. ,

For the reader's convenience, in section 2 a minimum
of the necessary preparatory material is collected. Pseu=-
doconnections (in our sense) are introduced and illus-
trated in section 3. Section 4 is the core of the paper,
here a "representation theorem" of Finsler-type connec-
tions is proved. The concluding section is devoted to a
brief discussion of Berwald-connections. Further Finsler-
geometric applications of pseudoconnections will be in-
vestigated in forthcoming papers.

The authors are grateful to L. Kozma for many valu-

able conversation on this material.

2. PRELIMINARIES

Our basic works of reference are [3] and [4], we
adopt their conventions as closely as feasible. Accord-
ingly, we work in the category of DIFF-manifolds (so all
data will be assumed to be smocoth in this paper) and in
the Abelian category VB of vector bundles. In the sequel
€= (E,7,B,F) € VB will denote a fixed vector bundle of

rank r over the n-dimensional base manifold B with typi-
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cal fiber F, Sec & is the Cw(B)—module of sections of £.
In particular, the tangent bundle of an m-dimensional

manifold ¥ is the quadruple T1,, = (TM,NM,M,ﬂfS. In this

M

case we write X(M) instead of Sec Ty as usual.
We need the simple
LEMMA 1. If £ = (E,%,B,F) € VB,
B E > F
(g,f): E~&, mit o b
B > B

28 a VB-morphism and f 18 fiberwise a linear isomorphism,

then for each section G € Sec é, the mapping
# # a1
f'o:B > E, x> [ 0($)=-fx [G(g(x))]

18 a section of E.

VE = (VE,NV,E,ﬂ¥3 denotes the vertical subbundle
of TE and XVE := Sec V¢ is the module of vertical vector
fields of E. As is well~known we have the following

LEMMA 2. There exists a natural morphism

o
VE ~»~ FE
(m,a): VE » &, T ¥ S
E 3 B

where the so-called canonical map o 1s fiberwise an iso-

morphism.

Now let us consider the pullback bundle

m*{T,_) = (EXBTB,pr1,Ean)

B
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and the mapping
Jj: TE — ExBTB, v EI;EW» (z,7Tm(v))

(T is the tangent functor). Then j determines an E-mor-
phism j: Ty ™ ﬂ*(TB) and we get the canonical short exact
sequence

T
(SEQ) 0 »vg = 1 -~ 0

E

(¢ is inclusion). A (right) splitting #: ﬂ*(TB) > 1, of

(SEQ) will be called a hkoriszontal map. (Recall that # is
characterized by jo#= 1ﬂ*(T ).) HE := Im# is the hori-
zontal subbundle, fHE := Sec Hf is the module of horizon-
tal vector fields of E. It is an elementary but fundamen-

tal fact that 1_=Vf @ #f (Whitney sum). In the sequel, a

E
horizontal map # will be fized. determines the horizon-
tal projection h :=#eoj : TE » HE and the vertical projec-
tion v =1TE~h: TE ~ VE, they will be important tools in

our considerations.

In local calculations we choose and fix a trivializ-
ing map {y: VxF - ﬂ_1(V) for £, a chart (U;u) UcV, u =
= (u1,...,un) for B and a basis (aK)iz for F. We use the

1
summation convention, with Latin indices running from 1

to n and Greek indices runninc from 1 to r. If p: F - ﬂfx
EKaK > (£%), then one gets the fibered chart (W_T(U),
(uxp)ow_T) for E. The corresponding coordinate-functions
are

xt 1= ulorw (1 £ 72 £ n)
and

y< i= zKopzow'1 (1 £k < 7
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where (ZK) is the dual of the basis (aK) and Py is the
second projection of the product UxF. We note that the

mappings

et V > FE, x- eK(x) := w(x,aK) (1 £k £ r)

constitute a framing ([4], Vol. 2, p. 352) for £. We also
(s V" (s " 5 "

have the framings L*—T] , [~—E] and [_—E] for
dx/1=1 dy k=1 dy k=1

Ty and V&, resp. (actually they are constituted by vector

fields defined on ﬂ—1(U)). If the horizontal map # is de-

scribed locally by the functions NE: ﬂ_1(U) -+ IR, then

the vector fields

(=2}
QL

i—N'faK:n”(U) > TE (1512 n)
dex v ooy

provide a framing for #f{ and we get the "adapted frame"
$ 9
7l T on TE over U.
S dy
With these notations one obtains the following state-

ments:
LEMMA 3.
(i) a#e6=—3——8— (1 <8< »),
dy
a'c = (OBOﬂ)§~E (0 = © eB).
3y

(ii) Consider the VB-morphism
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x
(ﬂ,prz). kLl (TB) T Ty pr, L . l o
E —> B
Then
# 23 .
pr —— = Jo——= (12 7 £ n),
2 3u* 5zt
consequently the sections prz# é—? constitute a framing
ou
for ﬂ*(TB). Moreover,
#.,_ T # 3 A
pr, X = (X oﬂB)prz — [X-X ——7].
ou du

PROOF. (1) is obvious from the definitions. To prove

{ii), assume that =z EFx ez ﬂ—1(x), x €U. Then
# 9 _ . # 0 *
pr1 [prz ——7(2)] =z, since prz ——iESec ™ (TB).
du ou
On the other hand
# 0 =119 3
prafors ) wom T i) ] - o).
2 2 du* 2 2 e utlx
while
§ 9 K ]
i), - i) e )] -
sz z dx’) 2 ayK 3
[ere[) 5[] ) -
7 T K
dx 4z dy ‘=z
={z,[3——-}} (1<7 <),
7
du ‘' x

thus (ii) also follows.
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3. PSEUDOCONNECTIONS

A linear connection in & is a mapping V: Sec Ty x

x Sec £ - Sec & characterized on the analogy of the case
E=Ty- B
over B, we start from the following

Replacing now T, by an arbitrary vector bundle

DEFINITION. Let £ and also & = (E,%,B,F) € VB be
given. A pseudoconnection in the vector bundle & (with
respect to g) is a pair (V,4}, where 4: E -> TB is a B-
morphism and V: Sec § XxSec & + Sec & is a mapping satis-

fying the following conditions:

{I) VX1+X2] = VX1Y+VX2Y’
(I1) VX(Y1+Y2) = VXY1+VXY2’
(I11) vaY = fVXY,
(IV) Vo FY = (AoX) fYfV ¥
(X,X,,%, € Sec £ Y,Y,,7, € Sec £; f € c”(B)) .
Thus the reguirements (I)~-{(III} formally coincide

with the corresponding Koszul-axioms, the only but im-

portant new feature is the property (IV). If E =Tp and

A =?T , a pseudoconnection becomes a linear connection,
B -

while in case of & =& one can recover Candela'’s concept

of pseudoconnections. Both as illustrations and for our
further purposes, it will be useful to consider the fol=-

lowing very simple but not incurious examples.

EXAMPLE 1. Let V be a linear connection in TE (that

is - by the usual %"abuse of language" - on the total space
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E of &) or in the vector bundle HE. Then the correspond-

ence

(X,Y) € sec ﬂ*(TB)><Sec ﬂ*(TB)H J°Y% o

*
¥ oY€ Sec T (TB)

together with the F-morphism is a pseudoconnection in

w*(rB) .

EXAMPLE 2. If V is a linear connection on F or in

Vg, then the mapping
* . .
Sec T (TB) XiVE - &VE, (X,Y) UY#oXY

and the horizontal map # constitute a pseudoconnection

in V& with respect to ﬂ*(TB).
EXAMPLE 3. The mapping
fVE><£VE - ivE, (X,7) > UVXY

together with the obvious E-morphism 7 is a pseudoconnec-—

tion in V¢, whenever V is a linear connection on Z.

EXAMPLE 4. Let V be again a linear connection on E

or in HE. The assignment
(X,¥) €XFxSec 1T*(TB) b JoUgoY € Sec n*(rB)

and the E-morphism 7 provide a pseudoconnection in
ﬂ*(TB) w.r.t. V&,

The next results illustrate, how one can construct

pseudoconnections with the help of "pullback".
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LEMMA 4. (i) Let V be a linear connection on the

manifold B. There exists a unique pseudoconnection

(V#,%), V#: Sec ﬂ*(TB) x Sec ﬂ*(TB) + Sec ﬂ*ﬁf)

in ﬂ*(TB) satisfying the condition

# # #

v 4 przY = prz(VXY) (X,Y € X(B)).
rZX

p

(ii) If V Zs a linear connection in §, then there

18 a unique pseudoconnection

(§#F#3, §#: Sec ﬂ*(TB) X$VE -> XVE
in VE such that
V X €X(B), o€Sec £: VI 4 ML a#(VXo).
: per

PROOF. The unicity statements are clear. As for the
existence, we work in the chart (U;(ui)).

(i) As in the case of a linear connection, the map-
ping V# is determined by its values over a framing, there-

fore we have to define it by

_ V# 4 3 prg é—; = prg Va 3—? . (1£4,5<n).
pry —z du — ou
du du

We show that this defining property is independent of the
choice of the chart (U,(uz)), that is, for another chart
(7, @y,
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again holds. - In the neighbourhood U NU we can write

9
14
Buz

I”

= a4t 4l Uav > m (1 €4 < n).
7 7

3 7

2

Using axioms (I)-(IV), part (ii) of Lemma 3, the obvious

relation.%/’ojocS = =§~2~ (1 £ 2 £ n) and calculating the
- Sx Sa
partial derivative 3—7(A§0ﬂ) by the generalized chain
Sa )
rule, we have:
V# pr# 9. V# ,(A?onnnﬁ 9 _ .
ol 2 2 35Y (A om) r# S 2 auk
Pro— =7 2Py T
ou ou
. # 2
= (4 oﬂ){[ﬂbgo Z}(A oﬂ)prz %t
x ou
+ (4 oﬂ)V# pr# 9 =
r# 9 2 Buk
Pry 77
du
k
[{a4”;
= (4om) d or pr# LI + (A.oﬂ)pr# Vv 3 _ =
i 2 .k J 209 k
u ou ~—7~8u
ou
k
[ 14"
) Y S W
ltBu ou ¢ =
ou
# k 3
= pr, |V A, == =
2 A% 9 7 Buk
7 A
ou
# 3
= pr, |V —l.
218
~7
du
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Likewise, we can easily check that for any vector
field X = x° 8—7/.-, y=1° é—,z : U > IB the requirement
U du

V# " prgy = prg(VXY) holds.
pr.X
2

(1i) We define V' by

ok i?w:a#va %J (1<isn, 15c<p),
17

# 2
Pry —7 3y
ou
the argument is similar to the previous one.

An analogous reasoning gives the following

LEMMA 5. (i) There exists a unique pseudoconnection
.

o
(V,7); V:XVE><Sec ﬂ*(TB) ~ Sec ﬂ*(TB)

in w*(TB) with respect to V& such that

[+]
. N #oo_
v X € iVE, Y € X(B) : VXpPZY = 0.

(ii) There is exactly one pseudoconnection

Q [«]
(D,Z): D: ivE Xva - XVE

in VE satisfying the condition

o # .
DXa c=0; X'€&VE, g € Sec £,

REMARK. The last two pseudoconnections are nontriv-

ial: it is not true that each section of ﬂ*(TB) and Vg

o ]
has vanishing pseudocovariant derivatives by V and D re-

spectively.
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4. FINSLER-TYPE CONNECTIONS

First we recall Miron's concept of a Finsler-type

connection. (A detailed treatment can be found in [5].)

DEFINITION. A linear connection V: &(EF)xX(E) ~ X (FE)
on the total space of £ is called Finsler-type (with

respect to ) if for an arbitraxy vector field X: E ~» TE
we have

(F1) YE&VE=¢VXY€kVE;

(F2) Y€iHE = jﬁZEiHE'

Using the introduced terms we can make the following

basic observation.

THEOREM. Suppose that

*(

(Vh,/); V': Sec ﬂ*(T ) X Sec ﬂ*(T ) + Sec m(T,),
B B B
~h ~h . . .
(V' ,#); V' ': Sec W*(TB) x&VE +L£VE,
v, v . .

(V' ,7); V¢ iVE XiVE > iVE,

~v . v

(V' ,7Z): V7 : iVEJ<Sec ﬂ*(TB) + Sec ﬂ*(TB)
are pseudoconnections in ﬂ*(TB), VE, V&, ﬂ*(TB) respec-
tively. Then

Vi X(E)xX(F) > X{E),
(1)

(X,7) = V¥ s o Gor + W ¥ 4o’ jor+ ¥ vy

JoX vX vX JoX
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is a Finsler-type connection in E. Conversely, any Fins-
ler-type connection can be uniquely represented in thsz

form (1).

PROOF. (&) V Zs a linear connection., We check only the

last Koszul-axiom
VY = (XF) T+ VY (XY EXE), FEC(R),

the others hold trivially. Using the "pointwise principle”
and the properties (I}-(IV), we obtain from the defini-

tion:

P v Lov oL ~h _
vaY = Vjng fY+ VUXv(fY) +Jf0VvXJ°fY+ Vjon(fy) =
v

L oh . , SV .
.._/{ijon(J Y) +.}//0VUXf(J 7) +vv

~h
Xf(vY)-+Vjon(vY) =

= o[ brego) F1GoN) + £ et + (R F (o) + 75 ex] +

+

. ~
(vX) f(vY) + fszvY # Urojo) f(0X) + £V, 07 =

. h . ~v .
;fo[(hX+vX)f(JoY)+f(vj°XJo_v +Voxdo?) ] +

h
jox

+

(vX + hX) £ (vY) +f(vijvy+$ vY) =

(XF) Y + £V, 7,

as desired.
(b) V 28 a Finsler-type connection. Assume that
X € x(F). If YE&VE then vY =Y, joY =0, hence

h Y € xF,

2 -
V., Y = vaY + ijX v

X
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thus (F1) is proved. Likewise, if Y’EiHE then vY¥ =0 and
therefore

o Ao rvoL .
VX_Y = t/fO(VJ.OXJOY + VUXJOY) € kHE,

as was to be shown.

(c) Conversely, assume that V is a Finsler-type con-
nection on E. To prove that V can be represented in the
form (1), consider those pseudoconnections

v, o, (00,0, (Y

' 7)
in the vector bundle ﬂ*(TB), ﬂ*(TB), VE, VE respectively,
which are constructed from V according to Example 1, 2,

3, 4 respectively. Then V X,Y € x(E) :

; A ) ~U . ~h _
:/ovjoXJoi+VvaY+ OVUXJOY+Vj°XUY =

=°#°j°7#bjDX#°j°Y+vaX”Y*%bj°VUX”bj°Y+07%mjoxvY=
= thXhY+vVUXuY+thXhY+vVthY =
= thhY+vahY+thvY+vaUY = VXY

as we claimed. (In the penultimate step we used the fact
that V is Finsler-type.) It remains to show that the re-
presentation (1) of a Finsler-type connection is unique.
Suppose first that X,Y €XyE. Then joX = joY = 0, hence

from (1) V,¥ = V ,v¥ = VY. On the other hand V¥ = vV, Y

vX
(because V is Finsler-type), therefore
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This means that the pseudoconnection (Vv,i) is the same
as that of Example 3. If X,Y € Sec ﬂ*(TB), then
HoX HoY € X F and by (1)

H
v} oy ::%ovh io# oY =.#ovhy
HoX Foroxd ™ Xt

Applying the mapping j, one gets

hy . i
VXY = Joz#OXkOY,

therefore the pseudoconnection (Vhrﬂ) coincides with the

pseudoconnection of Example 1. The unicity of the other

two terms can be seen analogously.

REMARK. The Theorem was motivated by a result of
Z. I. Szabd [6]. The idea of such a representation of

Finsler~type connections in 1_ originated with P. Domb-

B
rowski.
Keeping the notations of the Theorem, we have the

following conseguences:

COROLLARY 1. The mappings

. . v sh
(2) (X,7) Ei(E)XiVEk» VUXY +Vj°XY,

. . ot oSV
(3) (X,Y) ex(E)x&HEr»t%OVjOXJ°Y +%%VUXJ°Y

are linear connections in V§ and HE respectively. Con-
versely, any linear connection in V& and HE can be uniquely

represented in the form (2) and (3) respectively.

PROOF. These assertions can be gathered from the

proof of the Theorem.
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As special cases one obtains the following results.

COROLLARY 2. Let VB be a linear connection in the
base manifold of §. Consider the "pullback" pseudoconnec—
=]
tion (V#ﬁf) and the pseudoconnection (V,Z) in ﬂ*(TB) con-
structed in Lemmas ¢ and &5. Then the mapping
# [e]

(4) X(E)X&,E > X, B, (X,Y) %ovjoXj"YWvaXjﬂ

H

18 a linear connection in HE which is called induced by

VB.

COROLLARY 3. Let Vg be a linear connection in &. The
#

pullback connection (5 ) (Lemma 4, (ii)) and the pseudo-

connection (D,%7) (Lemma &, (ii)) determine a linear con-
nection in VE by the correspondence
#

o ~
s Dv Y +V Y.

(X,Y) € XEF)xX ¥ Fox

4

It is called induced by Vg.

REMARK. The Finsler-type connection

(X,Y) € X(E)XX(E) J/ovj.oonm
o o . ~ )
+DUXUY+j0VUXJ0Y+Vj°XUY€ X(E)

corresponding to the latter two linear connections may be
called <Znduced by VB and VE

ric) construction of this is essentially contained in [9].

. A different (rather geomet-
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5. BERWALD CONNECTION

In order to give an illustrative application of the
ideas just presented we conclude the paper with a partic-
ularly simple description of the Berwald connection.
(This terminology is a little ambiguous, we use it in
Vilms' sense [10]. For another construction see [9].) We

need a preliminary observation.

LEMMA 6. The patir

B B,
(Vtgf), V :Sec ﬂ*(TB)X xVE > xVE, (X,Y) = vlwex,Yl]

18 a pseudoconnection in V& with respect to ﬂ*(TB).

Bo
PROOF. Evidently, V 1is additive in X and Y. Let

f‘ECm(E). Then on the one hand (applving the "pointwise
principle™)
Bo
Va, Y = v[#ofX, Y] = v[f(#oX),¥] =
X
Bo
=U(f[-'}/{°X,Y]—(.Yf)-#°X) = fv[-%°XI-Y] = va-YI

on the other hand

viFeX,fY] = v(fl#eX, Y] + (#oX) fY) =

Be
FolFeX, Y] + (FoX) FY = #oX) fY + FU,FY.

Bo
Yy
v, F

COROLLARY 4. The mapping

B B °
V:X(E)Xva - ivE, (X,Y) v V_ Y := D _Y+V., ¥

]
(where D was constructed in Lemma 5 (ii)) Zs a linear
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connection in V§ which <e called Berwald-connection be-

tonging to J.

As for the importance of Berwald-connections in the
general theory of connections, we refer to the napers
[91, [10]. However, it will be instructive to show how
one can derive Jaak Vilms' next clever observation in

our approach.

PROPOSITION. The curvature tensor field of # is

equal to the exterior covariant derivative of the ver-
: B
tical projection v with respect to the V belonging to .

PROOF. The curvature tensor field of # is by defini-
tion R :-%[h,h], where the bracket means Nijenhuis-
torsion [8]. We also recall from [8] the useful computa-
tional formula

R(X,Y) = -v[hX,hY] (X,Y € X(E}) .

By the rule of exterior covariant differentiation,

B B

B o
Vo(X,Y) =VXUY—V vX~v[X,Y]==Dv

v vY¥+v[hX,vY]-

X

]

—DUYvX-—v[hY,vX]-v[X,Y] =

[} ]
=DvaY-Duva-—v[hX,hY]-—[vX,vY],

o ]

Here DUXUY-DUYUX'—[DX,UY]==O because locally (assuming

8 ~K9 z 8 “KO9

that X = x* + YT S
Sx

’ -
ByK sx* ByK

RN
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This

(1]

(2]

[31]

[4]

[51]

[6]

[7]

vX Y
e ~A 3 _ 7 ~\ 3 gk 3 A9 _
=D g 1" =5-D 4 X — [X ¥ _d =
X = Yy Yy — oy oy Ay
K K
oy 3y
< 3¥ ~k 39X B sk 8 A D
=X e K A'_[X ey A] = 0.
dy Yy oy oy oy oy
B
implies Vv (X,Y) = =v[hX,hY] = R(X,Y).
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