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Introduction

The aim of the present study is to give a systematic and fairly comprehen-
sive account of the fundamentals of a manifold endowed with a second-order
differential equation or, in particular, a Finsler metric. ‘Fairly comprehen-
sive’ does not mean ‘complete’ or ‘encyclopaedic’ as the size of the Handbook
limits the length.

Philosophy
Any author who undertakes to work out a conceptual and calculative ap-

paratus for Finsler geometry should first make a choice between the possible
geometric frameworks under discussion. At the start two approaches offer
themselves: that of principal fibre bundles and that of vector bundles. The
theory of Finsler connections based on principal bundles was constructed in
a masterly way and in full detail by M. Matsumoto in the nineteen-sixties
[52], [53]. The theory of Matsumoto is a self-contained entity, nothing can
be taken away from it, and nothing essential can be added to it without im-
pairing the whole construction. It is a cornerstone of the edifice of modern
Finsler geometry.

Within the framework of vector bundles the road branches off in at least
three directions; among these, however, there are crosswalks.

(1) The fundamental structure is τTM , the tangent bundle of the tangent
manifold of the base manifold M .

(2) The geometric framework is provided by V τM , the vertical bundle to
the vector bundle τM .

(3) The theory is developed in terms of the transverse bundle τ∗MτM ,
written in more detail as (TM ×M TM, τ1, TM), in other words, the pull-
back bundle formalism is utilized.

The theory built on the first choice was founded by J. Grifone [36].
This direction is being followed and enriched by the work of N. L. Youssef,
and the papers written during the last ten years by the present author and
his collaborators also belong here. The exposition is based on the vertical
bundle in a monograph by A. Bejancu [9] and in a monograph by M. Abate
and G. Patrizio [1]. We find an exposition based on the pull-back bundle in
the papers of H. Akbar-Zadeh and his followers as well as in the excellent
theses by P. Dazord and by J.-G. Diaz. The foundations of such a theory
are outlined in a brilliant review by P. Dombrowski [30], which inspired an
interesting early paper of Z. I. Szabó [71]. Taking a great leap forward in



2

time, impressive arguments for this approach are provided in a paper dating
from 2000 by M. Crampin [20]. Let us point out here that the vector bundle
associated to the Finsler bundle of Matsumoto is just the pull-back bundle
τ∗MτM .

Which vector bundle should then be chosen as the fundamental geomet-
rical structure? To come to a decision, we should also consider the technical
tools available as calculative apparati in the different cases. On τTM we
can certainly use the whole arsenal of differential geometry; besides classi-
cal tensor calculus, also the calculus of differential forms and the apparatus
of covariant derivatives. Further efficient and elegant tools are provided
by the Frölicher–Nijenhuis calculus of vector-valued differential forms. It
was J. Grifone who made a systematic use of this in Finsler geometry and
elsewhere (see e.g. [37]).

It is a strong practical argument in favour of the pull-back bundle that
it has rank n as opposed to rank 2n for τTM , so in calculations with co-
ordinates they will not be duplicated. On the pull-back bundle, as on any
vector bundle, covariant derivative operators may be defined, although the
introduction of torsion is not self-evident. Problems arise in connection with
the definition of exterior differentiation and hence of the Lie derivative. All
these difficulties, however, had been solved by the beginning of the 1990’s.
Indeed, by that time E. Mart́ınez, J. Cariñena and W. Sarlet had worked out
the calculus of differential forms along the tangent bundle projection, which
offers adequate technical tools for any geometric theory on the pull-back
bundle τ∗MτM . It is important that the calculus of Mart́ınez, Cariñena and
Sarlet can be identified with the Frölicher–Nijenhuis calculus if the latter
is restricted to semibasic differential forms and tensors. (In applications to
Finsler geometry, this restriction does not impair generality!)

All these considerations together give us convincing arguments in favour
of the following decision:

In this work the theory will be formulated in the pull-back vector bundle
τ∗MτM = (TM ×M TM, p1, TM).

As a consequence,

the main technical tools are the Frölicher–Nijenhuis calculus as applied
to semibasic scalar- and vector-valued forms over TM , and covariant
derivatives in τ∗MτM .
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As to the covariant derivatives, let us remark here that in the majority
of cases we apply a Berwald derivative coming from a nonlinear connection.

Structure
The structure of the work is more or less implied by the fundamental

framework just set up. In shaping the exposition, that it be self-contained
was one of our top priorities, especially since, to the best of our knowledge,
this is the first systematic work to proceed along these lines.

Chapter 1 contains the fundamentals of manifolds, vector bundles, co-
variant derivative operators in vector bundles, basic differential operators on
a manifold and all other notions to be used later. In addition, some indis-
pensable results will also be stated here, so that the reader will not be forced
to look for them in other books. Proofs are generally omitted; the reader is
referred to our main sources [15], [35], [44], [61] concerning the basic theory.
The Appendix is actually a supplement to this chapter (and partly to the
next): it provides a glossary of notational conventions, set-theoretical and
topological concepts and summarizes the necessary algebraic background.

Chapter 2 forms the backbone of the study. The general constructions
presented in Chapter 1 are to be applied to the pull-back bundle τ∗MτM . The
main topics are:

(1) to work out, starting from scratch, a fairly comprehensive theory
of nonlinear connections in the generality of vector bundles, specializing the
treatment to the tangent bundle later when the set of tools available becomes
larger;

(2) to work out the Frölicher–Nijenhuis theory;
(3) to present the elements of the Mart́ınez–Cariñena–Sarlet theory and

to relate it to the Frölicher–Nijenhuis theory;
(4) to discuss covariant derivative operators in τ∗MτM , in particular, the

Berwald derivative induced by a nonlinear connection. (This is what is
traditionally called ‘the theory of Finsler connections’.)

In this chapter, as well as in the next chapter, most of the results are
proved in detail.

Chapter 3 demonstrates how the general theory works in practice. It is
applied to a geometric treatment of second-order differential equations and
(not independently!) to a deduction of the theorems providing the founda-
tions of the theory of Finsler manifolds. What is called here, with a permis-
sible sloppiness, a second-order differential equation, will appear in the main
text as a second-order vector field. Some related notions are semisprays and
sprays. (In the case of a second-order vector field we require smoothness
everywhere, while semisprays and sprays are not necessarily differentiable



4

and are of class C1 in the zero vectors, respectively. In addition, sprays are
homogeneous of degree 2.) Any second-order vector field (semispray, spray)
generates a nonlinear connection, and hence a Berwald derivative in τ∗MτM .
This Berwald derivative is an efficient tool in the study of the linearizability
properties of a second-order vector field as the theorems of Mart́ınez and
Cariñena show. We build up the theory of Finsler manifolds in an uncon-
ventional manner. Instead of a Lagrange function or an energy function, we
start with a metric tensor which leads to a Finsler manifold if it satisfies the
‘normality’ condition of M. Hashiguchi. In the course of the exposition, the
regularity conditions due to R. Miron are of great importance for a better
understanding of the fine details of metric properties.

Intended audience
To comprehend this work no prior knowledge of connection theory or

Finsler geometry is required, and the author believes that he indeed suc-
ceeded in presenting a self-contained treatment of the subject at the level
of an interested graduate student. The work is, however, addressed also to
interested physicists and biologists. Let me hope that it will in fact prove
to be useful (at least as a work of reference) and stimulating for a broader
readership not versed in dealing with the conceptual and technical appara-
tus exposed here. The foundation is firm, but the theory is still far from
complete, and this may prove a challenge for further work.
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Chapter 1

The Background: Vector
Bundles and Differential
Operators

A. Manifolds

1.1. An n-dimensional topological manifold (or briefly a topological n-mani-
fold) is a second countable Hausdorff spaceM which is locally homeomorphic
to the Euclidean n-space Rn. If U ⊂ M is an open set and u is a homeo-
morphism of U onto an open subset of Rn then the pair (U, u) is called a
chart for M . If (ei)n

i=1 is the dual of the canonical basis of Rn, the functions
ui := ei ◦ u (1 5 i 5 n) are mentioned as the coordinate functions of the
chart. Instead of (U, u) we frequently write (U, (ui)n

i=1).
A family (Uα, uα)α∈A of charts on M is an atlas on M if (Uα)α∈A forms

a cover of M .

1.2. The requirement of second countability for a topological manifold M
is equivalent (among others) to the following properties:

(1) M is σ-compact, i.e., M is the union of a sequence of compact parts
of M .

(2) M is paracompact (i.e., every open covering of M has a locally finite
refinement) and the number of connected components of M is at most
countable.

Using topological dimension theory it can be shown that any topological
manifold admits a finite atlas. For a proof of this important fact we refer to

5
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[35], Vol. I, 1.1.

1.3. An atlas A = (Uα, uα)α∈A for a topological n-manifold M is said to be
smooth if any two charts in A overlap smoothly in the following sense:

all of the chart changes
uα ◦u−1

β : uβ(Uα ∩Uβ) −→ uα(Uα ∩Uβ) ((α, β) ∈ A×A, Uα ∩Uβ 6= 0)
are smooth (between open subsets of Rn).

A smooth atlas A on M is called complete if A contains each chart
in M that overlaps smoothly with every chart in A. A complete smooth
atlas on M is said to be a smooth structure on M . It can easily be seen
that each smooth atlas on M is contained in a unique complete atlas, and
hence determines a unique smooth structure on M . A smooth manifold is a
topological manifold furnished with a smooth structure.

By a typical abuse of notation, we usually writeM for a smooth manifold,
the presence of the smooth structure being understood.

1.4. Let M and N be smooth manifolds. A continuous map f : M −→ N is
said to be smooth if for each point p ∈ M and each chart (V, x) on N with
f(p) ∈ V there is a chart (U, u) on M with p ∈ U such that f(U) ⊂ V and the
map x◦f ◦u−1 is smooth (as a mapping of open subsets of Euclidean spaces,
see A.4.). The set of smooth maps M −→ N is denoted by C∞(M,N). A
smooth map f ∈ C∞(M,N) is called a diffeomorphism if it is bijective and
f−1 ∈ C∞(N,M) is also smooth.

In particular, a smooth function on a manifold M is a smooth map
f : M −→ R. (R, as a smooth manifold, will be described in a moment; see
1.8, Example.) For the set of all smooth real-valued functions on M we use
the shorthand C∞(M) := C∞(M,R). C∞(M) is a real commutative algebra
(as well as a commutative ring) under the usual pointwise operations.

Unless otherwise stated, in our forthcoming considerations

the term ‘manifold’ will mean ‘smooth manifold’ of dimension at least
two and assumed to be connected; all ‘maps’ are also ‘smooth maps’

.

1.5. The support of a smooth function f ∈ C∞(M) is

supp(f) := closure of {p ∈M | f(p) 6= 0}.

The existence of a number of fundamental differential geometric objects
(connections, covariant derivatives, Riemannian metrics, etc.) depends on
the following fact:
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Any smooth manifold M admits smooth partitions of unity: if (Uα)α∈A is
an open cover of M , then there exists a family (fα)α∈A of smooth functions
on M satisfying the following conditions:

∀p ∈M, ∀α ∈ A : fα(p) = 0;PU1.

∀α ∈ A : supp(fα) ⊂ Uα, i.e. (fα) is subordinate to (Uα);PU2.

(supp(fα))α∈A is a locally finite family;PU3.

∀p ∈M :
∑
α∈A

fα(p) = 1.PU4.

1.6. Cocycles. Let GL(k) be the group of all k× k invertible real matrices
(k ∈ N∗; cf.A.5(5)). A GL(k)-cocycle on a manifold M is a family
γ = (Ui, γij)i,j∈I such that

(i) (Ui)i∈I is an open cover of M ;

(ii) if (i, j) ∈ I × I and Ui ∩ Uj 6= 0 then γij : Ui ∩ Uj −→ GL(k) is a
smooth map;

(iii) if (i, j, k) ∈ I × I × I and Ui ∩ Uj ∩ Uk 6= ∅ then for each point
p ∈ Ui ∩ Uj ∩ Uk

γij(p)γjk(p) = γik(p).

As an immediate consequence of (iii) we obtain:

(iv) ∀i ∈ I : γii(p) = 1k; ∀(i, j) ∈ I × I : γij(p) = (γji(p))−1,
for an appropriate choice of p ∈M (1k is the unit k × k matrix).

Two GL(k)-cocycles on M are called equivalent if they are contained in
a common GL(k)-cocyle. It can easily be checked that this is indeed an
equivalence relation; the set of equivalence classes of GL(k)-cocycles on M
will be denoted by H1(M ; GL(k)).

1.7. Let M be an n-dimensional manifold. The tangent space to M at a
point p is the real vector space of linear functions v : C∞(M) −→ R satisfying
the Leibniz rule

v(fg) = v(f)g(p) + f(p)v(g) for all f, g ∈ C∞(M).

If (U, u) = (U, (ui)n
i=1) is a chart on M with p ∈ U then the functions(

∂

∂ui

)
p

: f ∈ C∞(M) 7→
(

∂

∂ui

)
p

(f) =
∂f

∂ui
(p) := Di(f ◦ u−1)u(p) (1 5 i 5 n)

are tangent vectors to M and we have the following important
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Basis theorem.
((

∂
∂ui

)
p

)n

i=1
is a basis for the tangent space TpM , and

v =
n∑

i=1

v(ui)
(
∂

∂ui

)
p

for all v ∈ TpM.

If ]a, b[⊂ R is an open interval and c : ]a, b[−→ M a smooth map, i.e.
a curve in M , then the velocity of c at t ∈ ]a, b[ is the tangent vector
ċ(t) ∈ Tc(t)M given by

ċ(t)(f) := (f ◦ c)′(t) for all f ∈ C∞(M).

Suppose we are given a chart (U, (ui)n
i=1) around c(t). Then, applying the

basis theorem, we get

ċ(t) =
n∑

i=1

ċ(t)(ui)
(

∂

∂ui

)
c(t)

=
n∑

i=1

(ui ◦ c)′(t)
(

∂

∂ui

)
c(t)

.

1.8. Let M and N be manifolds and f : M −→ N a smooth map. The
tangent map to f at a point p ∈M is the map (f∗)p : TpM −→ Tf(p)N given
by

(f∗)p(v)(h) := v(h ◦ f) for all v ∈ TpM and h ∈ C∞(N).

If P is another manifold and h : N −→ P is a smooth map, then we have the
following global version of the chain rule:

[(h ◦ f)∗]p = (h∗)f(p) ◦ (f∗)p for all p ∈M.

We say that f is an immersion at p if (f∗)p is injective, and a submersion
if (f∗)p is surjective. The map f is called an immersion or a submersion if
the relevant property holds at every p ∈M .

A manifold M is a submanifold of a manifold M provided

(1) M is a topological subspace of M ;

(2) the canonical injection i : M −→M is an immersion.

Example. Let r := 1R. Then (R, (r)) is a chart, {(R, (r))} is an atlas for
R, which defines a smooth structure (called canonical) on R. According to
1.7, let (

d

dr

)
t

(ϕ) := ϕ′(t) for all ϕ ∈ C∞(R), t ∈ R.
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Then (( d
dr )t) is a basis for TtR. Now suppose we are given a curve

c : ] a, b [ −→M in M . For the velocities of c we have

ċ(t) = (c∗)t

(
d

dr

)
t

, t ∈ ] a, b[ .

Indeed, if f is any smooth function on M , then

ċ(t)(f) := (f ◦ c)′(t) =
(
d

dr

)
t

(f ◦ c) =: (c∗)t

(
d

dr

)
t

(f),

which proves our claim.

1.9. Let V be an n-dimensional real vector space, b = (bi)n
i=1 a basis for V ,

and b∗ := (bi)n
i=1 the dual of b. The map

ϕb : V −→ Rn, v 7→ ϕb(v) := (b1(v), . . . , bn(v))

is a linear isomorphism, hence (V, ϕb) is a global chart for V , which makes
it a manifold. (The smooth structure obtained in this way does not depend
on the choice of b.) Fix a point p ∈ V and consider the map

ιp : V −→ TpV, v 7→ ιp(v) := ċ(0),

where c : t ∈ R 7→ c(t) := p+ tv. Then

ιp(v) = ċ(0) 1.7=
n∑

i=1

ċ(0)(bi)
(
∂

∂bi

)
p

=
n∑

i=1

bi(v)
(
∂

∂bi

)
p

;

in particular

ιp(bj) =
n∑

i=1

δi
j

(
∂

∂bi

)
p

=
(
∂

∂bj

)
p

(1 5 i 5 n).

From this it follows that ιp is a linear isomorphism; it will be mentioned as
the canonical identification of V and the tangent space TpV .
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B. Vector bundles

1.10. Fibred manifolds. A triple (E, π,M) is said to be a fibred manifold
if E and M are manifolds and π : E −→M is a surjective submersion. Then
E is called the total space, π the projection, and M the base space. For each
point p ∈M , the subset Ep := π−1(p) of E is called the fibre over p.

An elementary but important example of fibred manifolds may be con-
structed as follows.

Let M and N be manifolds and let M ×N have the product topology.
If (Uα, xα)α∈A and (Vβ, yβ)β∈B are atlases for M and N respectively, then
(Uα × Vβ, xα × yβ)(α,β)∈A×B is an atlas for M × N and it gives rise to a
smooth structure on the product. The smooth manifold obtained in this
way is said to be the product manifold of M × N . It follows immediately
from the corresponding definitions that the natural projection maps

pr1 : M ×N −→M, (p, q) 7→ p; pr2 : M ×N −→ N, (p, q) 7→ q

are smooth. The triple (M ×N, pr1,M) is a fibred manifold called a trivi-
al fibred manifold over M ; its fibres (M × N)p = {p} × N (p ∈ M) are
canonically diffeomorphic to N .

Notes. (1) From now on, the product M ×N of two manifolds will tacitly
be assigned the product smooth structure described above.

(2) We shall frequently denote a fibred manifold by the same symbol as
we use for its projection, thus the shorthand for (E, π,M) will ‘officially’
be π. However, by an abuse of language, we shall also speak of a ‘fibred
manifold E’. This usage needs some carefulness: there are several instances
where the same manifold is the total space of different fibred manifolds.

1.11. Sections. Let (E, π,M) be a fibred manifold.
(1) A smooth map s : M −→ E is said to be a section of π if it satisfies

the condition π ◦ s = 1M . The set of all sections of π will be denoted by
Γ(π).

(2) Suppose that U ⊂ M is an open submanifold. A local section of
π with domain U is a smooth map s : U −→ E satisfying the condition
π ◦ s = 1U. For sets of local sections we use the following notations:

ΓU(π) − the set of all local sections of π with domain U;

Γloc(π) − the set of all local sections of π regardless of domain;

Γp(π) − the set of all local sections whose domains contain the point p.
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An important property of fibred manifolds is that Γloc(π) 6= ∅, i.e., any
fibred manifold admits local sections. In fact, it can be shown that a smooth
surjection π : E −→ M is a submersion if and only if for each point p ∈ M
Γp(π) 6= ∅. For a proof the reader is referred to [13].

1.12. Vector bundles. (1) A fibred manifold (E, π,M) is called a (real)
vector bundle of rank k (k ∈ N) if the following conditions are satisfied:

For each point p ∈M , the fibre Ep is a k-dimensional real vectorVB 1.

space.
For each point p ∈M , there exists an open neighbourhood U of pVB 2.

and a diffeomorphism ϕ : π−1(U) −→ U× Rk such that

(i) pr1 ◦ ϕ = π � π−1(U), i.e., the diagram

π−1(U) U× Rk-ϕ

U

π � π−1(U)
@

@
@

@R

pr1
�

�
�

�	

is commutative;

(ii) for each q ∈ U, the map

ϕ2 := pr2 ◦ (ϕ � Eq) : Eq −→ Rk

is a linear isomorphism.

A pair (U, ϕ) having the properties formulated in VB 2 is called a vector
bundle chart for π. A family (Ui, ϕi)i∈I is said to be a vector bundle atlas
for π if (Ui)i∈I is a cover of M .

(2) Let (E, π,M) be a vector bundle of rank k, and let (V, ϕ) be a vector
bundle chart for π. Suppose that (U, u) = (U, (ui)n

i=1) is a chart on M such
that U ⊂ V. Consider the canonical basis (ei)k

i=1 of Rk and its dual (ei)k
i=1.

If
xi := ui ◦ π, yj := ej ◦ pr2 ◦ ϕ (1 5 i 5 n, 1 5 j 5 k)

then (π−1(U), ((xi)n
i=1, (y

j)k
j=1)) is a chart for the manifold E, called an

adapted chart to the vector bundle chart (V, ϕ). The family

(x, y) := ((xi)n
i=1, (y

j)k
j=1)

will be mentioned as an adapted local coordinate system on E.
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(3) If (E, π,M) and (E′, π′,M ′) are vector bundles then a vector bundle
homomorphism, or a bundle map from π to π′, consists of a pair

f : E −→ E′, f : M −→M ′

of smooth maps, satisfying the following condition:
The diagram

E
f−−−−→ E′

π
y y π′
M −−−−→

f
M ′

is commutative, and the induced maps fp : Ep −→ E′
f(p) are linear for all

p ∈M .
If, in addition, f is a diffeomorphism, then we speak of a (vector bundle)

isomorphism. In the particular case M ′ = M a bundle map of the form
(f, 1M ) is called a strong bundle map or M -morphism and denoted simply
by f .

By abuse of language, instead of a bundle map (f, f) : π −→ π′ we shall
also speak of a ‘bundle map f : E −→ E′ ’, cf. 1.10, Note (2).

(4) A vector bundle (E′, π′,M) is called a (vector) subbundle of the
vector bundle (E, π,M) if E′ ⊂ E, π′ = π � E′ and the canonical inclusion
i : E′ −→ E is a strong bundle map.

Notation. The category of vector bundles will be denoted by VB. More
precisely, the category VB has as its objects all vector bundles and as its
morphisms all bundle maps. For each manifold M , VB(M) denotes the
subcategory constituted by vector bundles over M and M -morphisms. If k
is a natural number, VkB stands for the full subcategory of vector bundles
of rank k. Finally, VkB(M) := VkB∩VB(M) is the subcategory of all vector
bundles of rank k over M with M -morphisms as morphisms. (We recall the
notion of category and morphism in the Appendix; see A.10.)

1.13. Construction of vector bundles. (1) Let us first suppose that
(E, π,M) is a vector bundle of rank k over the n-dimensional base space M ,
and let (Ui, ϕi)i∈I be a vector bundle atlas for π. Then the mappings

γij : Ui ∩ Uj −→ GL(k), q 7→ γij(q) := (ϕi)q ◦ (ϕj)−1
q

((i, j) ∈ I × I; Ui ∩ Uj 6= 0)
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together with the cover (Ui)i∈I constitute a GL(k)-cocycle

γ := (Ui, γij)i,j∈I

for M , called a structure cocycle for π.
(2) Our next goal is to sketch that, conversely, any GL(k)-cocycle γ on

M determines, up to a bundle isomorphism, a vector bundle π of rank k
over M such that a structure cocycle for π is the given γ.

Starting from the cocycle γ := (Ui, γij)i,j∈I , consider the disjoint union

Ẽγ := t
i∈I

Ui × Rk := ∪
i∈I
{i} × Ui × Rk.

Define a relation ∼ on Ẽγ by setting

(i, p, v) ∼ (j, q, w) : ⇔ (p = q ∈ Ui ∩ Uj) and w = γji(p)(v).

Due to the cocycle properties 1.6, (i)–(iv) this is an equivalence relation. Let
[(i, p, v)] be the equivalence class of (i, p, v), and Eγ := Ẽγ/ ∼ the set of all
equivalence classes. Define the projection πγ :Eγ −→M by πγ [(i, p, v)] := p.
Now it is not difficult to check that the triple (Eγ , πγ ,M) obtained so is a
vector bundle of rank k over M for which γ is a structure cocycle. If γ̃ is also
a GL(k)-cocycle on M and γ̃ is equivalent to γ (in the sense of 1.6) then the
vector bundle (Eeγ , πeγ ,M) constructed from γ̃ is isomorphic to (Eγ , πγ ,M).
This means that the isomorphism class [πγ ] depends only on the equivalence
class [γ] ∈ H1(M,GL(k)). Denoting by Vectk(M) the set of strong bundle
isomorphism classes of vector bundles of rank k over M , we can conclude:

Bundle classification theorem. There is a canonical bijective correspon-
dence

Vectk(M)↔ H1(M,GL(k)) .

(3) The construction principle sketched a moment ago can frequently be
realised in the following form.

Consider an n-dimensional manifold M . Let VS(k) be the category of k-
dimensional real vector spaces, Ob(VS(k)) the class of its objects (cf. A.10).
Assume that

(i) a map M −→ Ob(VS(k)), p 7→ Ep is given;

(ii) there is an open cover (Ui)i∈I of M and a family ((ϕi)p)i∈I of linear
isomorphisms

(ϕi)p : Ep −→ Rk, p ∈ Ui
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such that{
γ := (Ui, γij)i,j∈I ,

γij : Ui ∩ Uj −→ GL(k), q 7→ γij(q) := (ϕi)q ◦ (ϕj)−1
q (Ui ∩ Uj 6= ∅)

is a GL(k)-cocycle for M .

If
E := t

p∈M
Ep := ∪

p∈M
{p} × Ep; π : E −→M, π({p} × Ep) := p,

then there is a unique smooth structure on E which makes (E, π,M) into a
vector bundle of rank k with a structure cocycle γ.

1.14. Applications 1: pull-backs. Let (E, π,M) be a vector bundle and
let f : N −→ M be a smooth map. Assign to each point q ∈ N the vector
space Ef(q) and consider the disjoint union

f∗E := t
q∈N

Ef(q) = ∪
q∈N
{q} × Ef(q).

Suppose that (Vi, ψi)i∈I is a vector bundle atlas for π, and let (Vi, γij)i,j∈I

be the corresponding structure cocycle (1.13(1)). If ϕi(p) := (ψi)f(p) (i ∈ I)
then

(ϕi)p ◦ (ϕj)−1
p = (ψi)f(p) ◦ (ψj)−1

f(p) = (γij ◦ f)(p),

for every (i, j) ∈ I × I and p ∈ Ui ∩ Uj , furthermore the family

(Ui, γij ◦ f)i,j∈I , Ui := f−1(Vi)

is a GL(k)-cocycle on N . Thus, by 1.13(3), there is a vector bundle

(f∗E, f∗π, N)

of rank k over N with a structure cocycle (Ui, γij ◦ f)i,j∈I . This vector
bundle is called the pull-back of π by f . The total space of f∗π is just the
fibre product

N ×M E := {(q, z) ∈ N × E | f(q) = π(z)},

therefore f∗E is a (closed) submanifold of N × E. The projection of the
pull-back bundle is

pr1 � N ×M E =: π1,
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so, by a slight abuse of notation, instead of (f∗E, f∗π,N) we also write
(f∗E, π1, N) or (N ×M E, π1, N). If

π2 := pr2 � N ×M E,

then (π2, f) is a bundle map from f∗π to π:

f∗E = N ×M E
π2−−−−→ E

π1

y y π
N −−−−→

f
M

.

If we identify each fibre (f∗E)q with Ef(q) itself, then we can characterize
the pull-back construction as follows.

The pull-back of a vector bundle (E, π,M) by a smooth map f : N −→M
is a vector bundle (f∗E, f∗π,N) such that:

(f∗E)q = Ef(q) for all q ∈ N.PB 1.

The diagramPB 2.

f∗E −−−−→ E

f∗π
y y π

N −−−−→
f

M

where the top arrow means a fibrewise identical map
is commutative.

If E is trivial, i.e. equal to M × Rk, then f∗E = N × RkPB 3.

and f∗π = pr1.

If V ⊂M is an open subset , U := f−1(V) ⊂ N,PB 4.

EV := π−1(V) ⊂ E, (f∗E)U := (f∗π)−1(U), then
f∗EV = (f∗E)U, and we have the following commutative diagram:

N M-

f∗E E-

? ?

U V-

f∗EV EV
-

? ?

��	 ��	

��	 ��	



16 CHAPTER 1. THE BACKGROUND: VECTOR BUNDLES. . .

1.15. Applications 2: linear algebra for vector bundles.
The process described in 1.13 allows us to construct new vector bundles

from old ones using fibrewise the algebraic operations which one employs
in linear algebra for vector spaces and homomorphisms. (These purely al-
gebraic constructions are briefly summarized in A.5, A.6, A.8 and A.9.) In
other words, any smooth functor (or multifunctor) can be canonically ex-
tended from the category VS of finite-dimensional real vector spaces to the
category VB(M) to obtain new vector bundles. For later use, we list here
some typical examples.
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Let (πi)m
i=0 be a series of vector bundles in VB(M) (m ∈ N∗, π0 is the

shorthand for (E, π,M)). Then we obtain the following vector bundles:
Bundle Total space

π∗ – the dual of π E∗ := t
p∈M

E∗
p

π1 ⊕ π2 – Whitney sum of π1 and π2 E1 ⊕ E2 := t
p∈M

(E1)p ⊕ (E2)p

Hom(π1, π2) – homomorphism
bundle

Hom(E1, E2) =
:= t

p∈M
Hom((E1)p, (E2)p)

End(π) := Hom(π, π) – endomor-
phism bundle

End(E) = t
p∈M

End(Ep)

π1 ⊗ π2 – tensor product of π1 and π2 E1 ⊗ E2 := t
p∈M

(E1)p ⊗ (E2)p

∧sπ – sth exterior power of π ∧sE:= ∪
p∈M
∧s(Ep);∧◦E:=M × R,

∧sE := M × {0}, s > rankπ

∧π :=
k
⊗

m=0
∧m π – exterior algebra

bundle of π (k := rankπ)

∧E :=
k
⊗

m=0
∧m E

Tsπ – bundle of covariant tensors of
order s on E

TsE:= t
p∈M

TsEp= t
p∈M

Ls(Ep) =

= t
p∈M

s
⊗E∗

p =:
s
⊗E∗

Trπ – bundle of contravariant tensors
of order r over π

TrE := t
p∈M

TrEp =

= t
p∈M

Lr(E∗
p) = t

p∈M

r
⊗Ep =:

r
⊗E

Tr
sπ := Trπ ⊗ Tsπ – bundle of type

(r, s) tensors over π
(of contravariant order r, covariant or-
der s)

Tr
sE := TrE ⊗TsE =

= E ⊗ · · · ⊗ E︸ ︷︷ ︸
r times

⊗E∗ ⊗ · · · ⊗ E∗︸ ︷︷ ︸
s times

A`π – bundle of antisymmetric co-
variant tensors of order ` over π;
A`π = ∧`π∗

A`E := t
p∈m

A`(Ep) = t
p∈M
∧` E∗

p =

=: ∧`E∗

Aπ :=
k
⊕

`=0
A`π – bundle of forms over

π;
Aπ = ∧π∗
S`π – bundle of symmetric covariant
tensors of order ` over π

S`E := t
p∈M

L`
sym(Ep)

Remark. The Whitney sum and the tensor product of several vector bun-
dles in VB(M) may be defined by recursion.
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The main steps in a unified justification of these constructions are the
following:

(i) Let F : VS −→ VS be a covariant smooth functor. If (Ui, γij)i,j∈I is a
structure cocycle for the vector bundle (E, π,M), then the maps

F(γij) : Ui ∩ Uj −→ GL(F(Rk)), p 7→ F(γij)(p) := F(γij(p))

( Ui ∩ Uj 6= 0; (i, j) ∈ I × I )

are also smooth, and

(∗) (Ui, F(γij))i,j∈I

is a GL(F(Rk))-cocycle forM . In view of 1.13(2) there exists a unique vector
bundle F(π) ∈ VB(M) with structure cocycle (∗) and fibres (isomorphic to)
F(Ep), p ∈M .

(ii) If F : VS −→ VS is a contravariant smooth functor, then in the
preceding construction we have to consider the new cocycle (Ui,F(γ−1

ij ))i,j∈I

instead of (∗); while if F is a contra-covariant smooth bifunctor , then we
have to form the cocycle

(Ui,F((γ1)−1
ij , (γ2)ij)i,j∈I .

In light of these special cases, the extension of the construction to other
functors and multi-functors is immediate.

1.16. Consider the vector bundles (E, π,M) and (F, %,M). The canonical
isomorphisms

E∗
p ⊗ Fp −→ L(Ep, Fp) (p ∈M)

(cf. A.8,1(f)) induce a strong bundle isomorphism

π∗ ⊗ % ∼= Hom(π, %) .

More generally, let (Ei, πi,M) (1 5 i 5 s) and (F, %,M) be vector bun-
dles. We may construct the bundle L(π1, . . . , πs; %) whose fibre at a point
p ∈M is the vector space of s-linear maps (E1)p × · · · × (Es)p −→ Fp. Then

L(π1, . . . , πs; %) ∼= L(π1 ⊗ · · · ⊗ πs; %) ∼= π∗1 ⊗ · · · ⊗ π∗s ⊗ % .

1.17. To conclude this overview on the basic constructions we recall the
following fundamental result:

For every vector bundle π ∈ VB(M) there exists a vector bundle
% ∈ VB(M) such that π ⊕ % is trivial.
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For a well-readable proof (which strongly depends on the finite atlas theorem
(1.12)) the reader is referred to [15] or [35], Vol. I, 2.23.

1.18. Let (E, π,M) and (E′, π′,M) be two vector bundles over M , and
suppose that f : π −→ π′ is a strong bundle map. For any point p ∈ M , let
us consider the linear map fp := f � Ep. The rank rk(fp) is called the rank
of f at p. Put

Ker f := ∪
p∈M

Ker fp, Im f := ∪
p∈M

Im fp.

With this notation we have:

(1) The mapping p 7→ rk(fp) of M into the discrete topological space N is
lower semi-continuous.

(2) The following conditions are equivalent:

(i) The function p ∈ M 7→ rk(fp) ∈ N is continuous, and therefore
(since M is connected) constant.

(ii) Ker f is a vector subbundle of E.

(iii) Im f is a vector subbundle of E′.

For a proof see [28], Vol. III, (16.17.5).

1.19. Exact sequences. Let a finite sequence

(Ei, πi,M) (0 5 i 5 m; m = 2)

of vector bundles be given. A sequence (f1, f2) of two strong bundle maps
written in the form

E0
f1−→ E1

f2−→ E2

is said to be exact or exact at E1 (or at π1) if, for each point p ∈ M , the
sequence ((f1)p, (f2)p) of two linear maps

(E0)p
(f1)p−→ (E1)p

(f2)p−→ (E2)p

of real vector spaces is exact, i.e. (see A.5(8)), Im(f1)p = Ker(f2)p.
A longer sequence

E0
f1−→ E1

f2−→ E2 −→ . . . −→ Em−1
fm−→ Em
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of strong bundle maps is called an exact sequence if each sequence (fi, fi+1)
is exact at Ei for 1 5 i 5 m − 1. In particular, an exact sequence of the
form

(∗) 0 −→ E1
f2−→ E2

f3−→ E3 −→ 0

with the trivial bundles (M × {0}, pr1,M) and hence zero bundle maps at
the ends, is called a short exact sequence. By a slight abuse of language,
instead of an ‘exact sequence of strong bundle maps’ we also speak of an
‘exact sequence of vector bundles’.

Notice that if E0
f1−→ E1

f2−→ E2 is an exact sequence then the strong
bundle maps f1 and f2 satisfy the equivalent conditions of 1.18(2), and the
bundles Im f1 and Ker f2 are therefore defined and equal. Exactness of the
short sequence (∗) means that f2 is injective, Im f2 = Ker f3, and that f3 is
surjective.

A strong bundle map s2 : E3 −→ E2 is said to split the short exact
sequence (∗) if

f3 ◦ s2 = 1E3 ;

then s3 is also mentioned as a (right) splitting of (∗). (Second countability of
the common base space guarantees that splittings of a short exact sequence
do exist.) Since f3 is surjective, s2 is injective and the image of s2 is a
Whitney summand in E2:

E2 = Im f2 ⊕ Im s2.

To any right splitting s2 of (∗) there exists a unique (necessarily surjective)
strong bundle map

s1 : E2 −→ E1

such that
s1 ◦ f2 = 1E1

and the sequence of strong bundle maps

0←− E1 ←−
s1

E2 ←−
s2

E3 ←− 0

is also exact. s1 is said to be the (bundle) retraction associated with f2 and
complementary to s2 (cf. A.5, Proposition 2).
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C. Sections of vector bundles

1.20. If (E, π,M) is a vector bundle then the set Γ(π) of all sections of π
is a C∞(M)-module under the pointwise operations

(s1 + s2)(p) := s1(p) + s2(p), (fs)(p) := f(p)s(p)

(s, s1, s2 ∈ Γ(π); f ∈ C∞(M); p ∈ M). The zero element of this module is
the zero section o given by

p ∈M 7→ o(p) := the zero vector 0p =: 0 of Ep.

If U ⊂M is an open submanifold, then ΓU(π) is a C∞(U)-module in the
same way. The following result is of basic importance:

The C∞(M)-module Γ(π) is finitely generated and projective.

Of course, this does not imply that Γ(π) possesses a basis. However, for each
point p ∈ M there exists an open neighbourhood U of p such that ΓU(π)
has a basis, called a frame or a local basis for π over U.

Indeed, choose a vector bundle chart (U, ϕ) around p, and let (ei)k
i=1 be

the canonical basis of Rk (k = rank(π)). Then the maps

εi : q ∈ U 7→ εi(q) := ϕ−1(q, ei) (1 5 i 5 k)

are clearly local sections of π, and (εi(q))k
i=1 is a basis of the real vector

space Eq for any point q ∈ U . Hence (εi)k
i=1 is a basis of the C∞(U)-module

ΓU(π). By shrinking U if necessary, we can suppose that π−1(U) is the
domain of an adapted local coordinate system ((xi)n

i=1, (y
j)k

j=1). Then for
any section σ ∈ Γ(π) we have the coordinate expression

σ � U =
k∑

j=1

σjεj , where σj := yj ◦ σ (1 5 j 5 k).

1.21. Push-forwards of sections. If (f, f) is a bundle map from the
vector bundle (E, π,M) into the vector bundle (E′, π′,M ′) and f is a dif-
feomorphism, then for any (local) section s of π,

f#(s) := f ◦ s ◦ f−1



22 CHAPTER 1. THE BACKGROUND: VECTOR BUNDLES. . .

is a (local) section of π′, called the push-forward of s by f :

M M ′-
f

E E′-f

?

π

?

π′

�
f−1

66

s

The map f# : Γ(π) −→ Γ(π′) obtained so is a module homomorphism under
the ring isomorphism

(f−1)∗ : C∞(M) −→ C∞(M ′), h 7→ h ◦ f−1.

In particular, if f is a strong bundle map then f# is a homomorphism of
C∞(M)-modules.

Via push-forwards, each exact sequence of vector bundles gives rise to
an exact sequence of modules of sections: if

E0
f0−→ E1

f1−→ E2

is an exact sequence of M -morphisms, then

Γ(π0)
(f0)#−→ Γ(π1)

(f1)#−→ Γ(π2)

is an exact sequence of (C∞(M)-linear maps of) C∞(M)-modules.

1.22. Let (E, π,M) be a vector bundle, and let f : N −→ M be a smooth
map. A section of π along the map f is a smooth map σ : N −→ E such
that π ◦ σ = f . The set of sections of π along f will be denoted by Γf (π).
Γf (π) is evidently a C∞(N)-module; now we show that there is a canonical
isomorphism

Γ(f∗π) ∼= Γf (π)

given by

(∗) s ∈ Γ(f∗π) 7→ σ := π2 ◦ s ∈ Γf (π),

where π2 := pr2 � N ×M E (see 1.14):
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N M-
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N ×M E E-π2
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π1

?

π

6

s σ
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In fact, σ := π2 ◦ s is a smooth map, and it is indeed a section along f
since

π ◦ σ = π ◦ π2 ◦ s = f ◦ π1 ◦ s = f.

The correspondence (∗) is invertible, its inverse ‘pulls σ ∈ Γf (π) back’ to
the section (1N , σ) ∈ Γ(f∗π).

1.23. Canonical isomorphisms of modules of sections. For explicit
or implicit later use, we list here some canonical isomorphisms of basic im-
portance. Let (E, π,M) and (E′, π′,M) be vector bundles.

(1) Γ(π∗) ∼= (Γ(π))∗

The idea of the proof is quite clear. If σ ∈ Γ(π∗), we define an element
σ̂ in (Γ(π))∗ by

σ̂(s)(p) := σ(p)(s(p)),

where s ∈ Γ(π) and p ∈ M . Then σ̂(s) is indeed a smooth function on
M , and it is easy to check that the map σ ∈ Γ(π) 7→ σ̂ ∈ (Γ(π))∗ is an
injective homomorphism of C∞(M)-modules. After that, employing first a
local argument and using a partition of unity in the next step, it may be
shown that the correspondence σ 7→ σ̂ is surjective as well.

(2) Γ(π ⊗ π′) ∼= Γ(π)⊗C∞(M) Γ(π′)

This isomorphism can be established by the following reasoning. In view
of the definition of the tensor product (see A.8), the module Γ(π) ⊗C∞(M)

Γ(π′) is generated by elements of the form σ⊗σ′, where σ ∈ Γ(π), σ′ ∈ Γ(π′).
We may therefore define a map

α : Γ(π)⊗C∞(M) Γ(π′) −→ Γ(π ⊗ π′)

by the rule that, for each point p ∈M ,

α(σ ⊗ σ′)(p) = σ(p)⊗ σ′(p),
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and using C∞(M)-linear extension to the whole module. Then α is an injec-
tive homomorphism of C∞(M)-modules. To check that α is also surjective,
first we establish the result locally, and then, by a partition of unity we piece
together the local sections to obtain the desired global section.

Using the fundamental relations (1) and (2), the following isomorphisms
can easily be deduced:

Γ(Ts(π)) ∼= Ts(Γ(π)) = Ls
C∞(M)(Γ(π)),(3a)

Γ(Tr(π)) ∼= Tr(Γ(π)) ∼= Lr
C∞(M)((Γ(π))∗) ∼= Lr

C∞(M)(Γ(π∗)),(3b)

Γ(Tr
s(π)) ∼= Tr

s(Γ(π)) = Tr(Γ(π))⊗Ts(Γ(π)),(3c)

Γ(∧rπ) ∼= ∧r
C∞(M)Γ(π),(4a)

Γ(∧sπ∗) ∼= ∧s
C∞(M)Γ(π∗) ∼= ∧s

C∞(M)(Γ(π))∗ ∼= (Ls
skew)C∞(M)(Γ(π)),(4b)

Γ(S`(π)) ∼= S`(Γ(π)) = (L`
sym)C∞(M)(Γ(π)).(5)

It will be convenient to denote the C∞(M) -modules

Γ(Ts(π)), Γ(Tr(π)), Γ(Tr
s(π)) and (∧sπ∗)

by
Γs(π), Γr(π), Γr

s(π) and As(π),

respectively. Then Γ••(π) stands for the mixed tensor algebra of Γ(π). Ele-
ments of Γr

s(π) will also be called π-tensor fields of type (r, s) (r-fold con-
travariant, s-fold covariant) on the base manifold M .

We emphasize that in virtue of the listed results a π-tensor field of type
(r, s) can always be regarded as a C∞(M)-multilinear map

[Γ(π)]∗ × · · · × [Γ(π)]∗︸ ︷︷ ︸
r times

×Γ(π)× · · · × Γ(π)︸ ︷︷ ︸
s times

−→ C∞(M).

1.24. Pseudo-Riemannian and Riemannian vector bundles. Let
(E, π,M) be a vector bundle. A pseudo-Riemannian metric in π is a sec-
tion g of S2(π) such that for each point p ∈M , the symmetric bilinear form
gp : Ep × Ep −→ R is non-degenerate. Then the pair (π, g), or simply π,
is called a pseudo-Riemannian vector bundle. If, in particular, the bilinear
forms gp are positive definite on the vector spaces Ep, then g is said to be a
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Riemannian metric in π, and (π, g), or just π, is called a Riemannian vector
bundle.

Every vector bundle admits Riemannian metrics. Indeed, local existence
is clear, and we may glue the local sections with the help of a partition of
unity on M , since the positive definite sections form a convex open set.

Any pseudo-Riemannian metric g in π determines a strong bundle iso-
morphism [ : z ∈ E −→ [(z) =: z[ ∈ E∗ between π and π∗ by the rule

z[(w) := gp(z, w) for all p ∈M ; z, w ∈ Ep.

The inverse of [ is denoted by ]; [ and ] are called the musical isomorphisms
with respect to g.
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D. Tangent bundle and tensor fields

In our forthcoming discussion M is an n-dimensional manifold,
in accordance with 1.4.

1.25. If TM := t
p∈M

TpM and

τM : TM −→M, v 7→ τM (v) := p, if v ∈ TpM

then (TM, τM ,M) is a vector bundle of rank n. More precisely, there is
a unique smooth structure on the set TM such that (TM, τM ,M) is a
fibred manifold (the tangent spaces TpM being the fibres) and such that
the following condition is satisfied:

TB. For each chart (U, (ui)n
i=1) on M , the mapping

v ∈ τ−1
M (U) 7→ (τM (v), v(u1), . . . , v(un)) ∈ U× Rn

is a diffeomorphism.

From these it follows that (TM, τM ,M) is indeed a vector bundle, called the
tangent vector bundle, or more briefly the tangent bundle of the manifold
M . The total space TM is also mentioned as the tangent manifold to M .

Next, suppose that f : M −→ N is a smooth map. The tangent map of
f is the map f∗ : TM −→ TN whose restriction to a tangent space TpM
is given in 1.8. Then (f∗, f) is a bundle map between the tangent bundles
(TM, τM ,M) and (TN, τN , N):

TM
f∗−−−−→ TN

τM

y y τN

M
f−−−−→ N

1.26. Vector fields. The sections of τM are called vector fields on M . Thus
a vector field X assigns to every point p ∈M a tangent vector X(p) =: Xp of
TpM such that the map M −→ TM obtained so is smooth. For the C∞(M)-
module of vector fields on M we use the specific notation X(M) := Γ(τM ).

A basic feature of the module X(M) is that it can be canonically identified
with the C∞(M)-module, DerC∞(M), of derivations of the algebra C∞(M).
Indeed, any vector field X on M acts as a derivation on C∞(M) by the rule

f ∈ C∞(M) 7→ Xf, (Xf)(p) := X(p)(f) (p ∈M).
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Conversely, every derivation on C∞(M) comes from a vector field.
Henceforth, whenever convenient, we will consider vector fields to be

derivations on C∞(M) without any comment or notational change. This
interpretation enables us to define the Lie bracket [X,Y ] of two vector fields
X,Y ∈ X(M) by

[X,Y ]f := X(Y f)− Y (Xf) for all f ∈ C∞(M).

This bracket operation is skew-symmetric, bilinear over the real numbers
and satisfies the Jacobi identity

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0 (X,Y, Z ∈ X(M)).

The Lie bracket, though R-bilinear, is not C∞(M)-bilinear. In fact, for any
function f ∈ C∞(M) and vector fields X,Y ∈ X(M) we have

[fX, Y ] = f [X,Y ]− (Y f)X and [X, fY ] = f [X,Y ] + (Xf)Y.

Anyway, we see that the pair (X(M), [ , ]) is a Lie algebra over R; a
prototype of Lie algebras.

Local description. With the conventions of 1.1, let (U, u) = (U, (ui)n
i=1)

be a chart on M . The maps

∂

∂ui
: f ∈ C∞(U) 7→ ∂f

∂ui
:= Di(f ◦ u−1) ◦ u (1 5 i 5 n)

(cf. 1.7) are local vector fields defined on U, called the coordinate vector
fields of the chart (U, u). In view of the basis theorem in 1.7,

(
∂

∂ui

)n
i=1

is a
frame for τM over U in the sense of 1.20. Thus, for any vector field X on
M , the restriction X � U can uniquely be represented in the form

X � U =
n∑

i=1

X(ui)
∂

∂ui
.

More generally, consider a domain V of M . By a frame field on V we
mean a family (Xi)n

i=1 of vector fields on V such that (Xi(p))n
i=1 is a basis of

TpM for each point p ∈ V. The frame field (Xi)n
i=1 is said to be holonomic,

if there exists a family of charts (Uα, (ui
α)n

i=1)α∈A such that (Uα)α∈A covers
V and Xi � Uα = ∂

∂ui
α

(1 5 i 5 n). A frame field is anholonomic if it is not
holonomic.
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Remark. A frame field (Xi)n
i=1 formed by globally defined vector fields

Xi ∈ X(M) is also called a parallelization of the manifold. A manifold which
admits a global parallelization is said to be parallelizable. The real line R
endowed with the canonical smooth structure (1.8, Example) is obviously
parallelizable: the natural vector field

d

dr
: R −→ TR, t 7→

(
d

dr

)
t

provides a parallelization for R. More generally, the real vector spaces Rn

(n ∈ N) as manifolds (cf. 1.9) are parallelizable: if the maps

Di : C∞(Rn) −→ R, f 7→ Dif (1 5 i 5 n)

are the standard partial derivatives in Rn (see A.4), then (Di)n
i=1 is a frame

field (called natural) on Rn. Further well-known examples of parallelizable
manifolds are the spheres S1, S3 and S7. For a good introduction to the
subject the reader is referred to [15].

A frame field defined on a (proper) domain of a manifold M is also
mentioned as a local parallelization of M .

1.27. f-relatedness. Let f : M −→ N be a smooth map. We say that two
vector fields X ∈ X(M) and Y ∈ X(N) are f-related , denoted as X ∼

f
Y , if

f∗ ◦X = Y ◦ f , i.e., if the diagram

TM
f∗−−−−→ TN

X
x x Y

M −−−−→
f

N

is commutative. It can readily be seen that

X ∼
f
Y ⇔ (∀h ∈ C∞(N) : Y h ◦ f = X(h ◦ f)).

Using this observation, we obtain: if X ∼
f
X1 and Y ∼

f
Y1, then

(1) λX + µY ∼
f
λX1 + µY1 (λ, µ ∈ R);

(2) (h ◦ f)X ∼
f
hX1 (h ∈ C∞(N));

(3) [X,Y ] ∼
f

[X1, Y1].
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Now suppose that f is a diffeomorphism. Then (f∗, f) is a bundle isomor-
phism between τM and τN , and the general construction described in 1.21
yields for any vector field X on M the push-forward vector field

f#X := f∗ ◦X ◦ f−1 ∈ X(N).

Then, obviously, X ∼
f
f#X.

Let us finally consider a fibred manifold (E, π,M). A vector field
ξ ∈ X(E) is said to be projectable on M if there is a smooth map
X : M −→ TM such that X ◦ π = π∗ ◦ ξ:

E
ξ−−−−→ TE

τE−−−−→ E

π
y yπ∗

y π
M −−−−→

X
TM −−−−→

τM

M

.

Then
τM ◦X ◦ π = τM ◦ π∗ ◦ ξ = π ◦ τE ◦ ξ = π.

Since π is surjective and therefore it has a right inverse, we conclude that
τM ◦X = 1M . This means that X is actually a vector field on M . In view
of the construction, ξ ∼

π
X.

1.28. Flows.

In this subsection I denotes a nonempty open interval of the real line.

(1) Let X be a vector field on the manifold M . A curve c : I −→ M is
said to be an integral curve of X if ċ = X ◦ c.

Local description. Choose a chart (U, u) = (U, (ui)n
i=1) for M . If

X � U =
n∑

i=1

Xi ∂

∂ui
; f i := Xi ◦ u−1, ci := ui ◦ c, then c is an integral curve

of X if, and only if,

ci′ = f i ◦ (c1, . . . , cn) (1 5 i 5 n),

or, equivalently, if the curve

u ◦ c : c−1(U) ⊂ I −→ u(U) ⊂ Rn
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in Rn is a solution of the ordinary differential equation (abbreviated as ODE)

x′ = f(x), f := (f1, . . . , fn).

(2) A smooth map ϕ : R×M −→M is said to be a dynamical system or
flow on M if for all p ∈M and s, t ∈ R we have

FLOW 1. ϕ(0, p) = p.
FLOW 2. ϕ(s, ϕ(t, p)) = ϕ(s+ t, p).
For any fixed point p ∈M , the curve

cp : R −→M, t 7→ cp(t) := ϕ(t, p)

is called the flow line of p, the image cp(R) of the flow line cp is called the
orbit of p. The map

ϕ̇ : M −→ TM, p 7→ ϕ̇(p) := ċp(0)

is a vector field, the velocity field of the flow ϕ.
Observe that the flow lines are integral curves of the velocity field of a

flow. Indeed, let us denote by X the velocity field of ϕ. Consider the flow
line cp of a point p ∈M . Then

X(cp(0)) = X(p) := ϕ̇(p) := ċp(0),

so the assertion holds automatically for the parameter 0. If t ∈ R is arbitrary
and q := cp(t), then for all s ∈ R we have

cq(s) := ϕ(s, q) = ϕ(s, ϕ(t, p)) = ϕ(s+ t, p) = cp(s+ t),

therefore ċq(0) = ċp(t), and hence

X[cp(t)] = X(q) = ϕ̇(q) = ċq(0) = ċp(t),

as we claimed.
(3) A subset W ⊂ R ×M is called radial, if it contains {0} ×M and

the intersection W ∩ (R × {p}) is connected for all p ∈ M . A local flow on
the manifold M is a smooth map from a radial open set W ⊂ R ×M into
M such that the conditions FLOW 1, 2 are satisfied for all s, t, p for which
both sides of the relations are defined. The flow lines and the velocity field
of a local flow may be introduced in the same way as in the global case.
(Of course, then the domain of a flow line is a proper open interval of R, in
general.)
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Now the fundamental existence and uniqueness theorem for ODE may
be translated into the language of manifolds as follows.

Integrability theorem for vector fields. Every vector field is the
velocity field of a unique, maximal local flow; on a compact manifold even a
global one.

(‘Maximality’ means the maximality of the domains of flow lines.)

1.29. One-forms. The dual (T ∗M, τ∗M ,M) of the tangent bundle τM is
called the cotangent bundle of M (T ∗M := (TM)∗; cf. 1.15). Similarly to
the foregoing, the shorthand for the cotangent bundle of M will be τ∗M .
The C∞(M)-module of sections of τ∗M , denoted by A1(M) := Γ(τ∗M ), is the
module of the one-forms on M . In view of 1.23(1) we obtain:

A1(M) ∼= (Γ(τM ))∗ = (X(M))∗ = HomC∞(M)(X(M), C∞(M))

=: LC∞(M)(X(M)).

Taking into account that the tangent spaces TpM may be identified with
the second dual spaces (TpM)∗∗, we may also write

(A1(M))∗ = [Γ(τ∗M )]∗
1.23(1)∼= Γ((τ∗M )∗) ∼= Γ(τM ) = X(M),

hence [X(M)]∗∗ ∼= X(M).
For any smooth function f on M , the map

X ∈ X(M) 7→ Xf ∈ C∞(M)

is an element of (X(M))∗, therefore the isomorphism A1(M) ∼= (X(M))∗

assures the existence of a unique one-form df ∈ A1(M) such that

df(X) = Xf for all X ∈ X(M).

df is called the exterior derivative, or simply the differential , of f .
It may easily be seen that the differential of a constant function is zero.

Conversely, due to the connectedness of M , if f ∈ C∞(M) satisfies df = 0,
then f is constant.

We also recall a much deeper result:

The C∞(M)-module A1(M) is generated by differentials.

For a proof the reader is referred to [35] Vol. I, pp. 117–118.
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1.30. Tensor fields. Let (r, s) ∈ N × N, r + s 6= 0. A section of the
tensor bundle Tr

s(τM ) is called a tensor field (or, by abuse of language, a
tensor) of type (r, s) on M (contravariant of order r, covariant of order s).
The C∞(M)-module of type (r, s) tensor fields on M is denoted by Tr

s(M);
T0

0(M) := C∞(M). The direct sum T••(M) := ⊕
(r,s)∈N×N

Tr
s(M) is said to be

the (mixed) tensor algebra of M .

Examples.

T1
0(M) := Γ(T1

0τM )
1.23(3b)∼= T1

0(X(M))(1)

∼= HomC∞(M)((X(M))∗, C∞(M)) = (X(M))∗∗ ∼= X(M).

T0
1(M) := Γ(T0

1τM ) ∼= T0
1(X(M)) = HomC∞(M)(X(M), C∞(M))(2)

= (X(M))∗ ∼= A1(M).

Let s = 1. Then(3)

Ts(M) := T0
s(M) := Γ(TsτM ) ∼= TsX(M) = Ls

C∞(M)(X(M)),

i.e., Ts(M) may be identified with the module of C∞(M)-multilinear maps
(X(M))s −→ C∞(M).

Consider a smooth map f : M −→ N . If A ∈ T0
s(N), and

(f∗A)p(v1, . . . , vs) := Af(p)((f∗)p(v1), . . . , (f∗)p(vs))

for each point p ∈M and vectors vi ∈ TpM (1 5 i 5 s), then f∗A ∈ T0
s(M),

is called the pull-back of A by f .
(4) Keep the assumption s = 1. We also have the canonical isomorphism

T1
s(M) ∼= Ls

C∞(M)(X(M),X(M)).

Indeed,

T1
s(M) := Γ(T1

sτM ) 1.15= Γ(τM ⊗ τ∗M ⊗ · · · ⊗ τ∗M )
1.23(2)∼=

∼= X(M)⊗A1(M)⊗ · · · ⊗A1(M)

∼= (A1(M)⊗ · · · ⊗A1(M))⊗ X(M)

∼= HomC∞(M)((A
1(M)⊗ · · · ⊗A1(M))∗,X(M))

1.29∼=

∼= HomC∞(M)(X(M)⊗ . . .⊗X(M),X(M))∼=Ls
C∞(M)(X(M),X(M)),
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taking into account the definition of the tensor product of modules (see
A.8(1)) in the last step. Thus, the elements of T1

s(M) may be interpreted
as C∞(M)-multilinear maps

X(M)× · · · × X(M)︸ ︷︷ ︸
s times

−→ X(M).

For this reason, tensor fields of type (1, s) will also be mentioned as vector
valued (covariant) tensor fields of order s. In particular, if s = 1, we see
that there is a canonical isomorphism

T1
1(M) ∼= EndC∞(M) X(M).

The unique tensor field ιM of type (1, 1) which corresponds to the identity
homomorphism 1X(M) is called the unit tensor field on M . ιM , as a section
of τM ⊗ τ∗M , acts by the rule

p ∈M 7→ ιM (p) ∈ T1
1(TpM); ιM (p)(α, v) := α(v); v ∈ TpM, α ∈ (TpM)∗.

(5) A (pseudo-) Riemannian manifold (M, g) is a manifoldM with a (pseudo-)
Riemannian metric g on τM (cf. 1.24). Then g is also called a (pseudo-)
Riemannian metric on M . In view of the cited definition, a (pseudo-) Rie-
mannian metric g ∈ T0

2(M) is a symmetric tensor field such that

gp : TpM × TPM −→ R is
{

non-degenerate, resp.
positive definite

at any point p ∈M . As we have learnt above (see 1.24) in the general case,
a pseudo-Riemannian metric g gives rise to the musical (strong bundle)
isomorphisms

[ : TM −→ T ∗M and ] : T ∗M −→ TM,

inverse to each other. They induce isomorphisms between the modules of
sections, denoted by the same letter, in a natural manner. To be explicit,

[ : X ∈ X(M) 7→ X[ ∈ A1(M), X[(Y ) = g(X,Y ) for all Y ∈ X(M);

] : θ ∈ A1(M) 7→ θ] ∈ X(M), g(θ], Y ) = θ(Y ) for all Y ∈ X(M).

The gradient of a function f ∈ C∞(M) (with respect to g) is the vector
field grad f := (df)]. Then

g(grad f, Y ) = (df)(Y ) = Y f for all Y ∈ X(M).
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1.31. Contractions. There is a unique C∞(M)-linear map

tr : EndX(M) ∼= T1
1(M) −→ C∞(M),

called trace or (1, 1)-contraction such that

tr(X ⊗ θ) := ιM (θ,X) for all X ∈ X(M) and θ ∈ A1(M).

This map can be extended to tensors of higher order as follows. Assume
that A ∈ Tr

s(M) (r, s ∈ N∗), and let two indices i, j be given such that
1 5 i 5 r and 1 5 j 5 s. Consider the map

Âi
j : (A1(M))r−1 × (X(M))s−1 −→ T1

1(M),

(θ1, . . . , θr−1, X1, . . . , Xs−1) 7→ Âi
j(θ

1, . . . , θr−1, X1, . . . , Xs−1)

defined by

Âi
j(θ

1, . . . , θr−1, X1, . . . , Xs−1)(θ,X) :=

= A(θ1, . . . ,

i
^

θ , . . . , θr−1, X1, . . . ,

j
^

X, . . . ,Xs−1)

for any one-form θ and vector field X on M . Then the map

cij : Tr
s(M) −→ Tr−1

s−1(M), A 7→ cijA := tr ◦ Âi
j

is C∞(M)-linear. This map is called the contraction of the contravariant
index i and the covariant index j.

1.32. Tensor derivations. A map D : T••(M) −→ T••(M) is said to be a
tensor derivation on M if it satisfies the following conditions:

D is R-linear.DO1.

D is type-preserving , i.e., D(Tr
s(M)) ⊂ Tr

s(M)DO2.

for each (r, s) ∈ N× N.

D obeys the Leibniz rule D(A⊗B) = DA⊗B +A⊗DB for anyDO3.

tensor fields A and B on M.

D commutes with all contractions.DO4.

Now we summarize some of the most important consequences of DO1–DO4.
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(1) Tensor derivations are local operators or differential operators in the
following sense: if D is a tensor derivation on M , A ∈ T••(M) and
U ⊂M is an open set, then

A � U = 0 ⇒ DA � U = 0.

Indeed, let p be any point in U. There is a smooth function f on M
such that f(p) = 0 and f(q) = 1, if q ∈M \U. Then A = fA = f ⊗A,
and in view of DO3 and DO2 we have

DA = D(f ⊗A) = Df ⊗A+ f ⊗DA = (Df)A+ fDA.

Thus (DA)(p) = (Df)(p)A(p) + f(p)(DA)(p) = 0; hence DA � U = 0.

(2) Tensor derivations are natural with respect to restrictions. That is, if
D is a tensor derivation on M and U is an open set of M , then there
is a unique tensor derivation DU on U such that

DU(A � U) = (DA) � U for all tensors A on M

or the following diagram commutes:

Tr
s(M)

�U−−−−→ Tr
s(U)

D
y y DU

Tr
s(M) −−−−→

�U

Tr
s(U)

DU is called the restriction of D to U, and henceforth we omit the
subscript U.

(3) Product rule. Let D be a tensor derivation on M . If A ∈ Tr
s(M)

then

(DA)(θ1, . . . , θr, X1, . . . , Xs) = D[A(θ1, . . . , θr, X1, . . . , Xs)]

−
r∑

i=1

A(θ1, . . . ,Dθi, . . . , θr, X1, . . . , Xs)

−
s∑

j=1

A(θ1, . . . , θr, X1, . . . ,DXj , . . . , Xs)

(θi ∈ A1(M), 1 5 i 5 r, Xj ∈ X(M), 1 5 j 5 s).
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(4) Theorem of T. J. Willmore. Any tensor derivation of the mixed
tensor algebra T••(M) is completely determined by its action over the
smooth functions and vector fields on M . Conversely, given a vector
field Z ∈ X(M) and an R-linear map D0 : X(M) −→ X(M) satisfying
the condition

D0(fX) = (Zf)X + fD0(X) for all f ∈ C∞(M), X ∈ X(M),

there exists a (necessarily unique) tensor derivation D on M such that

D � C∞(M) = Z and D � X(M) = D0.

For an enjoyable proof the reader is referred to [61].

(5) Extension to π-tensor fields. Let (E, π,M) be a vector bundle and
let us consider the tensor algebra Γ••(π) of π-tensor fields on M . We
also define a tensor derivation D : Γ••(π) −→ Γ••(π) by the requirements
DO1–DO4 of 1.32. Then the properties 1.32, (1)–(3) are valid without
any change. A strict analogue of Willmore’s theorem is also true in
this generality. For its fundamental importance we restate the result:

Theorem (generalized Willmore’s theorem).
(i) Any tensor derivation of the mixed tensor algebra Γ••(π) is

completely determined by its action over the smooth functions of
the base space and the sections in Γ(π).

(ii) Given a vector field X on M and an R-linear map
D0 : Γ(π) −→ Γ(π) such that

D0(fσ) = (Xf)σ + fD0(σ) for all f ∈ C∞(M), σ ∈ Γ(π)

there exists a unique tensor derivation D along π satisfying

D � C∞(M) = X and D � Γ(π) = D0.

1.33. The Lie derivative. Let a vector field X ∈ X(M) be given. There
exists a unique tensor derivation dX on M such that

dXf := Xf for all f ∈ C∞(M);

dXY := [X,Y ] for all Y ∈ X(M).

The operator dX is called the Lie derivative with respect to X.
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In fact, for all functions f ∈ C∞(M) and vector fields X ∈ X(M) we
have

dXfY := [X, fY ] = (Xf)Y + f [X,Y ] = (Xf)Y + fdXY ;

therefore the assumptions of Willmore’s theorem are satisfied with the choice

D0 : X(M) −→ X(M), Y 7→ D0(Y ) := [X,Y ].

Corollaries. (1) For any vector fields X, Y on M ,

d[X,Y ] = [dX , dY ] := dX ◦ dY − dY ◦ dX .

Indeed, it may be immediately checked that d[X,Y ] and [dX , dY ] coincide
on C∞(M) and X(M), and therefore they are equal by Willmore’s theorem.

(2) Let A ∈ T0
s(M), B ∈ T1

s(M) ∼= Ls (X(M),X(M)) (s = 1). In view of
the product rule 1.32(3), for the Lie derivative dXA of A and dXB of B we
obtain:

dXA(X1, . . . , Xs) = X[A(X1, . . . , Xs)]−
s∑

i=1

A(X1, . . . , [X,Xi], . . . , Xs),

dXB(X1, . . . , Xs) = [X,B(X1, . . . , Xs)]−
s∑

i=1

B(X1, . . . , [X,Xi], . . . , Xs)

(Xi ∈ X(M), 1 5 i 5 s)

.

Dynamic interpretation. Let two vector fields, X and Y be given on M .
Suppose that X is the velocity field of the local flow ϕ : W ⊂ R×M −→M
(see 1.28), and denote by ϕt the map p 7→ ϕ(t, p) if (t, p) ∈ W for a fixed
t ∈ R. Then we have

dXY = [X,Y ] = lim
t−→0

1
t
((ϕ−1

t )#Y − Y ) = lim
t−→0

1
t
(Y − (ϕt)#Y ) .

For a proof the reader is referred to [61] or [80].
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E. Differential forms

We continue to let M be an n-dimensional, connected manifold.

1.34. A differential form of degree k (∈ N∗) on the manifoldM or an exterior
form of degree k, or a k-form for short, is a section of the vector bundle
∧kτ∗M = AkτM . According to 1.23(4b),

Γ(∧kτ∗M ) ∼= (Lk
skew)C∞(M)(X(M)),

therefore any k-form α on M may be regarded as a C∞(M)-multilinear map
(X(M))k −→ C∞(M) which is skew-symmetric:

α(Xσ(1), . . . , Xσ(k)) = ε(σ)α(X1, . . . , Xk)

for every permutation σ ∈ Sk and vector fields Xi ∈ X(M) (1 5 i 5 k). For
the C∞(M)-module of k-forms on M we use the notation

Ak(M) := Γ(∧kτ∗M ).

We put A◦(M) := C∞(M), then the direct sum

A(M) :=
n
⊕

k=0
Ak(M)

becomes a graded algebra over the ring C∞(M) with the wedge product
defined by

(α ∧ β)(X1, . . . , Xk+`) :=

=
1
k!`!

∑
σ∈Sk+`

ε(σ)α(Xσ(1), . . . , Xσ(k))β(Xσ(k+1), . . . , Xσ(k+`))

(α ∈ Ak(M), β ∈ A`(M); Xi ∈ X(M), 1 5 i 5 k + `) cf. A.9(2)). This
algebra is said to be the exterior or Grassmann algebra of the manifold M .
The Grassmann algebra is associative and graded commutative:

α ∧ β = (−1)k`β ∧ α for all α ∈ Ak(M) and β ∈ A`(M).

A(M), considered as an algebra over R, is generated by smooth functions
and their differentials since, as we indicated in 1.29, the C∞(M)-module
A1(M) is generated by differentials.
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1.35. Volume manifolds. A volume form on an n-dimensional manifold
M is an n-form µ ∈ An(M) such that µ(p) 6= 0 for all p ∈ M ; M is called
orientable if there exists a volume form on M . A volume form µ on M
assigns an orientation µp ∈ An(TpM) to each tangent space of M ; then a
basis (bi)n

i=1 of TpM is called positive if µp(b1, . . . , bp) > 0.
Due to the connectedness of M , we have the following results:

(1) M is orientable if, and only if, there is an n-form µ ∈ An(M) such
that any n-form ν ∈ An(M) may be written in the form ν = fµ, for
some f ∈ C∞(M).

(2) If M is orientable then M has exactly two orientations.

A pair (M,µ) is said to be a volume manifold if µ is a volume form on M .
Now assume that (M, g) is an oriented (pseudo-) Riemannian manifold.

Then there exists a unique volume form µg on M such that for any point
p ∈M and any positive orthonormal basis (bi)n

i=1 of TpM we have

(µg)p(b1, . . . , bn) = 1.

The volume form µg is said to be the Riemannian volume form on M .

1.36. Divergence and Laplace–Beltrami operator. Let (M,µ) be a
volume manifold. If X is a vector field on M , then the Lie derivative dXµ is
an n-form again. Hence, taking into account 1.35(1), there exists a unique
function divµX ∈ C∞(M) such that

dXµ = (divµX)µ;

this function is called the divergence of the vector field X with respect to µ.
If f is a nowhere zero smooth function on M then fµ is also a volume

form, and for the divergence of X with respect to fµ we have

divfµX = divµX +
1
f
Xf.

Indeed, using the Leibniz rule DO3 in 1.32,

(divfµX)fµ := dX(fµ) = (Xf)µ+ fdXµ =
1
f

(Xf)fµ+ (divµX)fµ,

whence the result.
Now let, in particular, (M, g) be a (pseudo-) Riemannian manifold. Then

we define the divergence divg X of a vector field X ∈ X(M) with respect to
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g to be the divergence of X with respect to the Riemannian volume form
µg, i.e.,

(divg X)µg := dXµg.

Finally, the Laplace–Beltrami operator on functions on an orientable (pseudo-)
Riemannian manifold (M, g) is defined by the formula

∆ := divg ◦ grad .

If a metric tensor g is fixed on M , we omit the subscript g.

1.37. Bundle-valued forms, wedge product, wedge-bar product.
Let a vector bundle (E, π,M) be given, and consider the tangent bundle τM
of M .

(1) Using the construction principle sketched in 1.13(3), we can build a
vector bundle

Ak(τM , π) ∈ VB(M) (k ∈ N∗)

whose fibre at a point p ∈M consists of the skew-symmetric k-linear maps

TpM × · · · × TpM −→ Ep.

A π-valued (or, less consistently, E-valued) k-form on M is a section of the
bundle Ak(τM , π);

Ak(M,π) := Γ(Ak(τM , π))

is the C∞(M)-module of π-valued k-forms on M . (An alternative notation:
Ak(M,E).) We extend the definition to the case k = 0 by

A0(M,π) := Γ(π).

Any π-valued k-form K on M may be canonically identified with the skew-
symmetric k-linear map

K̃ : (X(M))k −→ Γ(π)

given by [
K̃(X1, . . . , Xk)

]
(p) := K(p)(X1(p), . . . , Xk(p))

for every point p ∈ M and vector fields X1, . . . , Xk on M . (For a proof we
refer to [35], Vol. I, 2.24.) Henceforth we shall use the canonical isomorphism

Ak(M,π) ∼= Lk
skew(X(M),Γ(π))

obtained in this way without any comment.
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(2) Next, consider the direct sum

A(M,π) :=
n
⊕

k=0
Ak(M,π)

and define the wedge product α ∧ L of a k-form α ∈ Ak(M) and a π-valued
`-form L ∈ A`(M,π) by the formula

(α ∧ L)(X1, . . . , Xk+`) :=

=
1
k!`!

∑
σ∈Sk+`

ε(σ)α(Xσ(1), . . . , Xσ(k))L(Xσ(k+1), . . . , Xσ(k+`))

(Xi ∈ X(M), 1 5 i 5 k + `). Then α ∧ L ∈ Ak+`(M,π), and A(M,π)
becomes a graded left module over the graded ring A(M) with the wedge
product as the scalar multiplication. This action of A(M) on A(M,π) is
effective in the following sense: if α, β ∈ A(M) and

α ∧K = β ∧K for all K ∈ A(M,π)

then α = β. Notice that the C∞(M)-bilinear correspondence

α⊗ σ ∈ A(M)⊗C∞(M) Γ(π) 7→ α ∧ σ ∈ A(M,π)

induces a canonical isomorphism of graded A(M)-modules

A(M)⊗C∞(M) Γ(π)
∼=−→ A(M,π).

We shall consider these modules identical under this isomorphism and write
α⊗ σ = α ∧ σ whenever it is convenient.

(3) Now consider the endomorphism bundle End(π) (see 1.15) and the
module A(M,End(π)) of End(π)-valued forms on M . For later use, we
define a seemingly artifical ‘multiplication’

(Ω, L) ∈ A(M,End(π))×A(M,π) 7→ Ω[L] ∈ A(M,π)

as follows: if Ω ∈ Ak(M,End(π)), L ∈ A`(M,π), then

Ω[L](X1, . . . , Xk+`) =:

=
1
k!`!

∑
σ∈Sk+`

ε(σ)Ω(Xσ(1), . . . , Xσ(k))(L(Xσ(k+1), . . . , Xσ(k+`)))
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for all vector fields X1, . . . , Xk+` on M . With the help of this product, each
Ω ∈ A(M,End(π)) determines a C∞(M)-linear map

Ω̂ : σ ∈ Γ(π) 7→ Ω̂(σ) := Ω[σ] ∈ A(M,π),

and the correspondence

Ω ∈ A(M,End(π)) 7→ Ω̂ ∈ HomC∞(M)(Γ(π),A(M,π))

defines a natural isomorphism of C∞(M)-modules.
More generally, consider the map

a : Ω ∈ Ak(M,End(π)) 7→ aΩ,

given by
aΩ(L) := Ω[L] for all L ∈ A(M,π).

It can easily be checked that aΩ is a graded A(M)-module homomorphism
of A(M,π), i.e., if α ∈ Aj(M) and L ∈ A`(M,π), then

aΩ(α ∧ L) = (−1)j`α ∧ aΩ(L).

Conversely, it may be shown that any graded A(M)-homomorphism of
A(M,π) is of the form aΩ.

(4) Next we turn to the special case when the role of the vector bundle
π is played by the tangent bundle τM . Then a τM -valued form on M is
called a vector-valued form on M and we write B(M) as a shorthand for
A(M, τM ). In detail,

Bk(M) := Ak(M, τM ) := Γ(Ak(τM , τM )) (k > 0);

B0(M) := X(M), B(M) :=
n
⊕

k=0
Bk(M) = A(M, τM ).

Now we are in a position to define an important action of B(M) on A(M).
Namely, let the wedge-bar product of a k-form α ∈ Ak(M) and a vector-
valued `-form L ∈ B(M) be the (k + `− 1)-form α ∧̄L given by

(α ∧̄L)(X1, . . . , Xk+`−1) :=

=
1

`!(k − 1)!

∑
σ∈Sk+`−1

ε(σ)α(L(Xσ(1), . . . , Xσ(`)), Xσ(`+1), . . . , Xσ(`+k−1)),

where Xi ∈ X(M); 1 5 i 5 k + `− 1, and k > 0;

α ∧̄L := 0, if α ∈ A0(M) = C∞(M).
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Examples. 1. Let L ∈ B1(M) = A1(M, τM ) ∼= T1
1(M). Then

(α ∧̄L)(X1, . . . , Xk) =
k∑

i=1

α(X1, . . . , L(Xi), . . . , Xk)

for any k (= 1)-form α and vector fields X1, . . . , Xk on M . In particular,
for the unit tensor field ιM ∈ T1

1(M) we have the relation

α ∧̄ ιM = kα.

2. Suppose that L ∈ B`(M) = A`(M, τM ) (` ∈ N), and let α be a one-form
on M . Then α ∧̄L ∈ A`(M) and for any vector fields X1, . . . , X` on M we
have

α ∧̄L(X1, . . . , X`) =
1
`!

∑
σ∈S`

ε(σ)α
[
L(Xσ(1), . . . , Xσ(`))

]
= α

[
L(X1, . . . , X`)

]
,

therefore
α ∧̄L = α ◦ L for all α ∈ A1(M).

In particular, α ∧̄L = α(L) if ` = 0, i.e., if L ∈ X(M). (Compare this with
1.38(1) !)

(5) We also define the wedge-bar product of two vector-valued forms:

(i) K ∧̄L := 0, if K ∈ B0(M) = X(M);

(ii) if K ∈ Bk(M), k ∈ N∗ and L ∈ B`(M), then K ∧̄L ∈ B`+k−1(M),
given by

K ∧̄L(X1, . . . , Xk+`−1) :=

=
1

`!(k − 1)!

∑
σ∈Sk+`−1

ε(σ)K
[
L(Xσ(1), . . . , Xσ(`)), Xσ(`+1), . . . , Xσ(`+k−1)

]
(Xi ∈ X(M), 1 5 i 5 `+ k − 1). Then, in particular,

K ∧̄X = K(X), if K ∈ B1(M) and X ∈ B0(M) = X(M);

K ∧̄L = K ◦ L, if K ∈ B1(M), L ∈ B(M).

Lemma. If α is a one-form and A is a vector-valued one-form on M , then
for any vector-valued forms K, L on M we have the ‘associativity’ properties

α ∧̄ (K ∧̄L) = (α ∧̄K) ∧̄L, A ∧̄ (K ∧̄L) = (A ∧̄K) ∧̄L.
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Proof. Since α ∧̄K = α ◦ K, α ∧̄ (K ∧̄L) = α ◦ (K ∧̄L), A ∧̄K = A ◦ K,
A ∧̄ (K ∧̄L) = A ◦ (K ∧̄L), the assertion is an immediate consequence of the
definitions of the wedge-bar products.

1.38. The substitution operator. (1) Let X be a vector field on the
manifold M . If A is a k-form or vector-valued k-form on M (k = 1) and

iXA(X2, . . . , Xk) := A(X,X2, . . . , Xk) (Xi ∈ X(M), 2 5 i 5 k),

then iXA is a differential form (resp. a vector-valued form) of degree k− 1.
We extend this definition to the case k = 0 by putting

iXf = 0, if f ∈ C∞(M) and iXY := 0, if Y ∈ B0(M) = X(M).

Notice that for a one-form α ∈ A1(M) we have

iXα = α(X);

in particular, for the differential of a function f ∈ C∞(M),

iXdf = X(f).

The map iX : A(M) −→ A(M) (resp. B(M) −→ B(M)) defined in this way
is called the substitution operator induced by X. iX is a graded derivation
of degree −1 of the graded algebra A(M) in the sense of A.7(2), therefore

iX(α ∧ β) = iXα ∧ β + (−1)kα ∧ iXβ for all α ∈ Ak(M), β ∈ A(M).

As for the wedge product of a ‘scalar’ k-form α ∈ A(M) and a vector-valued
form L ∈ B(M), we have a completely similar relation:

iX(α ∧ L) = iXα ∧ L+ (−1)kα ∧ iXL.

It follows immediately from the definition that

i2Xα = 0, i2XL = 0 for all α ∈ A(M), L ∈ B(M).

It may also readily be seen that if α ∈ Ak(M) (resp. L ∈ B`(M)) (k, ` = 1)
satisfies iXα = 0 (resp. iXL = 0) for every vector field X on M , then α = 0
(resp. L = 0).

(2) Next we offer a straightforward generalization of the notion of a
substitution operator to bundle-valued forms. Let (E, π,M) be a vector
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bundle over M and X a vector field on M . The substitution operator
iX : A(M,π) −→ A(M,π) induced by X is defined word for word as above:

iXσ := 0, if σ ∈ A0(M,π) = Γ(π);

iXL(X2, . . . , Xk) := L(X,X2, . . . , Xk), if L ∈ Ak(M,π), k = 1

(Xi ∈ X(M); 2 5 i 5 k). Then iX is clearly C∞(M)-linear, and for any
bundle-valued k(= 1)-forms L, iXL ∈ Ak−1(M,π). As for the action A(M)
on A(M,π) (see 1.37(2)), we have:

iX(α ∧ L) = iXα ∧ L+ (−1)kα ∧ iXL for all α ∈ Ak(M), L ∈ A(M,π).

1.39. The exterior derivative. Let α be a k-form on the manifold M ,
and define a map

dα : [X(M)]k+1 −→ C∞(M)

as follows:

(i) if α is a 0-form, i.e. a smooth function on M , then dα is the differential
of α described in 1.29;

(ii) if α ∈ Ak(M), k = 1, then

dα(X1, . . . , Xk+1) :=
k+1∑
i=1

(−1)i+1Xi[α(X1, . . . , X̂i, . . . , Xk+1)]

+
∑

15i<j5k+1

(−1)i+jα([Xi, Xj ], X1, . . . , X̂i, . . . , X̂j , . . . , Xk+1)

(Xi ∈ X(M), 1 5 i 5 k + 1, X̂i means that Xi has to be deleted).

In both cases dα is a (k+ 1)-form on M , called the exterior derivative of α.
The map

d : A(M) −→ A(M), α 7→ dα

is said to be the exterior differential on the Grassmann algebra A(M). The
exterior differential is a graded derivation of degree 1, i.e., we have

d(α ∧ β) = (dα) ∧ β + (−1)kα ∧ dβ for all α ∈ Ak(M), β ∈ A(M).
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1.40. Fundamental identities. To conclude this section, here is a short
list of standard results, all of them expressed also in terms of the graded
commutator (see A.7, Lemma 2). Let X and Y be vector fields on the
manifold M . Then

iX ◦ iY + iY ◦ iX = 0 ⇐⇒ [iX , iY ] = 0,(1)

i[X,Y ] = dX ◦ iY − iY ◦ dX ⇐⇒ i[X,Y ] = [dX , iY ],(2)

dX = iX ◦ d+ d ◦ iX ⇐⇒ dX = [iX , d],(3)

d[X,Y ] = dX ◦ dY − dY ◦ dX ⇐⇒ d[X,Y ] = [dX , dY ],(4)

dX ◦ d = d ◦ dX ⇐⇒ [dX , d] = 0,(5)

d2 = 0 ⇐⇒ 1
2
[d, d] = 0.(6)

Formula (3), a ‘magic’ formula of H. Cartan, is particularly useful.
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F. Covariant derivatives

1.41. Definition. Let (E, π,M) be a vector bundle. A covariant derivative
operator or simply a covariant derivative in π is a map

∇ : X(M)× Γ(π) −→ Γ(π), (X,σ) 7→ ∇Xσ

which, for any vector fields X and Y on M , any sections σ, σ1, σ2 in Γ(π),
and any function f in C∞(M), satisfies

∇X+Y σ = ∇Xσ +∇Y σ.COVD1.

∇fXσ = f∇Xσ.COVD2.

∇X(σ1 + σ2) = ∇Xσ1 +∇Xσ2.COVD3.

∇X(fσ) = (Xf)σ + f∇Xσ.COVD4.

Then the section ∇Xσ is called the covariant derivative of σ with respect
to X.

Remarks. (1) Let ∇ be a covariant derivative in π. Then, for any section
σ of π, the map

∇σ : X(M) −→ Γ(π), X 7→ (∇σ)(X) := ∇Xσ

is C∞(M)-linear, in view of COVD2. ∇σ is called the covariant differential
of σ. A section of π is said to be parallel if its covariant differential vanishes.

Observe that, accoording to 1.37(1), ∇σ ∈ A1(M,π). From COVD4 we
obtain that the map

σ ∈ Γ(π) 7→ ∇σ ∈ A1(M,π)

has the following property:

(∗) ∇(fσ) = df ∧ σ + f∇σ for all f ∈ C∞(M), σ ∈ Γ(π).

Conversely, a covariant derivative operator in π may also be defined as
an R-linear map ∇ : Γ(π) −→ A1(M,π) satisfying the condition (∗); then
the operator ∇X := iX ◦ ∇ : Γ(π) −→ Γ(π) is the covariant derivative with
respect to the vector field X on M .

(2) Before proceeding, we point out two important features of a covariant
derivative operator. First, it is clear from our preceding discussion that∇Xσ
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is tensorial in X, therefore the value of ∇Xσ at a point p ∈ M depends
only on X(p). Hence we may define ∇vσ for any individual tangent vector
v ∈ TM as follows:

∇vσ :=
(
∇Xσ

)
(p), if X ∈ X(M) satisfies X(p) = v.

Secondly, the dependence of ∇Xσ on σ is more delicate. However, by a
standard ‘bump function reasoning’ (see e.g. [62], Lemma 1.3), it can easily
be shown that the map σ ∈ Γ(π) 7→ ∇σ ∈ A1(M,π) is a (first order) differ-
ential operator analogously to 1.32(1), i.e., if a section σ ∈ Γ(π) vanishes on
a neighbourhood of a point p ∈M then ∇σ is also zero ‘near p’.

(3) Supppose that ∇1 and ∇2 are two covariant derivative operators in
(E, π,M); then their difference

∇1 −∇2 : Γ(π) −→ A1(M,π)

is C∞(M)-linear. Hence, in view of 1.37(3), there is a unique bundle-valued
form D ∈ A1(M,End(π)) such that

∇1σ −∇2σ = D[σ] for all σ ∈ Γ(π).

D is called the difference form of the covariant derivatives ∇1 and ∇2.
Conversely, given any covariant derivative ∇ in π and any form
D ∈ A1(M,End(π)), the map

∇ : σ ∈ Γ(π) 7→ ∇σ := ∇σ + D[σ]

is again a covariant derivative in π.
(4) Suppose that π is a trivial vector bundle with a total space M ×Rk.

Then there exists a unique covariant derivative∇ in π such that the constant
sections (i.e., sections of the form p ∈M 7→ (p, v) ∈M ×Rk with a constant
v) are parallel. ∇ is called the trivial covariant derivative in π. Using this
fact and a partition of unity argument, it follows that every vector bundle
admits a covariant derivative operator.

1.42. Induced covariant derivatives. (1) A covariant derivative operator
∇ in π induces naturally a covariant derivative ∇∗ in the dual bundle π∗

such that for any sections s∗ ∈ Γ(π∗), σ ∈ Γ(π) and any vector field X on
M (

∇∗Xs∗
)
(σ) := X[s∗(σ)]− s∗

(
∇Xσ

)
.

Clearly, this relation determines ∇∗ uniquely.
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Taking into account that by the canonical isomorphisms listed in 1.23
we have

Γ(End(π)) ∼= Γ(π∗ ⊗ π) ∼= Γ(π∗)⊗ Γ(π) ∼= [Γ(π)]∗ ⊗ Γ(π)

∼= HomC∞(M)(Γ(π),Γ(π)),

a covariant derivative ∇̂ may be obtained in End(π) as follows:(
∇̂XL

)
(σ) := ∇XL(σ)− L

(
∇Xσ),

for all L ∈ Γ(End(π)), σ ∈ Γ(π), X ∈ X(M). We shall write ∇ instead of ∇∗
and ∇̂, this abuse of notation is common and should not lead to confusion.

More generally, using the second version of Willmore’s theorem (1.32(5)),
we conclude that given a vector field X on M , there exists a unique tensor
derivation ∇X of Γ••(π) such that

∇Xf = Xf for all f ∈ C∞(M),

and ∇Xσ is the covariant derivative of σ with respect to X for all σ ∈ Γ(π).
It may easily be checked that if A ∈ Γr

s(π) is a π-tensor field on M , then
the map

X ∈ X(M) 7→ ∇XA ∈ Γr
s(π)

is C∞(M)-linear. This fact enables us to adopt the following

Definition. The covariant differential of a π-tensor field A ∈ Γr
s(π) is the

C∞(M)-multilinear map ∇A given by

∇A(X, s1, . . . , sr, σ1, . . . , σs) :=
(
∇XA

)
(s1, . . . , sr, σ1, . . . , σs)

for all X ∈ X(M), si ∈
[
Γ(π)

]∗ (1 5 i 5 r), σj ∈ Γ(π) (1 5 j 5 s). If
∇A = 0, then A is said to be parallel (with respect to ∇).

(2) Given vector bundles πi ∈ VB(M) with covariant derivative operators
∇i (1 5 i 5 2), there is a unique covariant derivative∇ on the tensor product
bundle π1 ⊗ π2 such that for any vector field X on M we have

∇X(σ1 ⊗ σ2) =
(
∇1

Xσ1

)
⊗ σ2 + σ1 ⊗∇2

Xσ2; σ1 ∈ Γ(π1), σ2 ∈ Γ(π2).

Similarly, if Φ is a section of Hom(π1, π2), the formula(
∇XΦ

)
(σ) := ∇2

X(Φ(σ))− Φ
(
∇1

X(σ)
)
; σ ∈ Γ(π), X ∈ X(M)

defines a covariant derivative operator in Hom(π1, π2).
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1.43. Covariant exterior derivative. Let ∇ be a covariant derivative
operator in the vector bundle (E, π,M). The map

d∇ : A(M,π) −→ A(M,π), K ∈ Ak(M,π) 7→ d∇K ∈ Ak+1(M,π)

given by

(i) d∇K := ∇K, if K ∈ A0(M,π) = Γ(π);

(ii) d∇K(X1, . . . , Xk+1) :=
k+1∑
i=1

(−1)i+1∇Xi

[
K(X1, . . . , X̂i, . . . , Xk+1)

]
+

∑
15i<j5k+1

(−1)i+jK([Xi, Xj ], X1, . . . , X̂i, . . . , X̂j , . . . , Xk+1)

(Xi ∈ X(M), 1 5 i 5 k + 1)

is called the covariant exterior derivative (or gauge exterior derivative) with
respect to ∇.

An illustrative particular case: if K ∈ A1(M,π), then

d∇K(X,Y ) = ∇X [K(Y )]−∇Y [K(X)]−K[X,Y ] for all X,Y ∈ X(M).

As for the wedge product of forms and bundle-valued forms defined in 1.37(2)
and the operator

a : A(M,End(π)) −→ HomA(M)(A(M,π),A(M,π)),

we obtain:

d∇(α ∧ L) = dα ∧ L+ (−1)kα ∧ d∇L; α ∈ Ak(M), L ∈ A(M,π).(iii)

d∇(aΩ(L)) = ad∇Ω(L) + (−1)kaΩd
∇L, i.e.,(iv)

d∇(Ω[L]) = (d∇Ω)[L] + (−1)kΩ[d∇L]; Ω ∈ Ak(M,End(π)), L ∈ A(M,π).

(Notice that in the term d∇Ω ∇ means the operator ∇̂ described in 1.42(1).)

1.44. Curvature. The curvature R∇ of a covariant derivative operator ∇
in a vector bundle (E, π,M) is the End(π)-valued 2-form on M defined by

R∇(X,Y )(σ) = ∇X∇Y σ −∇Y∇Xσ −∇[X,Y ]σ

for any vector fields X, Y on M and any section σ in Γ(π). It is easy to
verify that the map

(X,Y, σ) ∈ X(M)× X(M)× Γ(π) 7→ R∇(X,Y )σ ∈ Γ(π)

is indeed trilinear over C∞(M) and skew-symmetric in the first two argu-
ments.
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Lemma 1. For any section σ ∈ Γ(π) we have

d∇(d∇σ) = R∇[σ].

Proof. Let X,Y ∈ X(M). By the definition of d∇ and using the skew-
symmetry of R∇ in X and Y in the last step, we obtain:[

d∇(d∇σ)
]
(X,Y ) = ∇X

[
(d∇σ)(Y )

]
−∇Y

[
(d∇σ)(X)

]
− (d∇σ)[X,Y ]

= ∇X∇Y σ −∇Y∇Xσ −∇[X,Y ]σ = R(X,Y )(σ) = R[σ](X,Y ).

Lemma 2. For any bundle-valued form K ∈ A(M,π),

d∇(d∇K) = R∇[K].

Proof. In view of the isomorphism A(M) ⊗C∞(M) Γ(π) ∼= A(M,π) (see
1.37(2)), it is enough to check that the assertion is true for K := α ∧ σ;
α ∈ Ak(M), σ ∈ Γ(π). Using formula (iii) of 1.43 and Lemma 1, we obtain:

d∇(d∇K) = d∇(d∇(α ∧ σ)) = d∇(dα ∧ σ + (−1)kα ∧ d∇σ) = d2α ∧ σ

+ (−1)k+1dα ∧ d∇σ + (−1)kdα ∧ d∇σ + (−1)2kα ∧ d∇(d∇σ)

= α ∧ d∇(d∇σ) = α ∧R∇[σ] = R∇[α ∧ σ] = R∇[K].

Proposition (Differential Bianchi identity). The curvature satisfies the
relation

d∇R∇ = 0.

First proof. Let σ ∈ Γ(π). By 1.43(iv), d∇(R[σ]) = (d∇R)[σ] + R[d∇σ].
Hence, by Lemmas 1 and 2,

(d∇R)[σ] = d∇(d∇(d∇σ))− d∇(d∇(d∇σ)) = 0.

Second proof. We apply a slightly longer but more direct argument. Consider
R∇ as a map

(X,Y ) ∈ X(M)× X(M) 7→ R∇(X,Y ) ∈ End(Γ(π)) ∼= Γ(End(π))

and extend ∇ to End(π) according to 1.42. Our task is to verify that

(d∇R∇)(X,Y, Z) = ∇X(R∇(Y, Z))−∇Y (R∇(X,Z)) +∇Z(R∇(X,Y ))

−R∇([X,Y ], Z) +R∇([X,Z], Y )−R∇([Y, Z], X) = 0.
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Since the expression on the left is tensorial in X, Y and Z, we may assume
that [X,Y ] = [X,Z] = [Y, Z] = 0. Thus, for any section σ ∈ Γ(π),[

(d∇R∇)(X,Y, Z)
]
(σ) =

[
∇X(R∇(Y,Z))

]
(σ)−

[
∇Y (R∇(X,Z))

]
(σ)

+
[
∇Z(R∇(X,Y ))

]
(σ) = ∇X(R∇(Y,Z)σ)−R∇(Y, Z)(∇Xσ)

−∇Y (R∇(X,Z)σ) +R∇(X,Z)(∇Y σ) +∇Z(R∇(X,Y )σ)

−R∇(X,Y )(∇Zσ) = ∇X∇Y∇Zσ −∇X∇Z∇Y σ −∇Y∇Z∇Xσ

+∇Z∇Y∇Xσ −∇Y∇X∇Zσ +∇Y∇Z∇Xσ +∇X∇Z∇Y σ −∇Z∇X∇Y σ

+∇Z∇X∇Y σ −∇Z∇Y∇Xσ −∇X∇Y∇Zσ +∇Y∇X∇Zσ = 0.

1.45. Proposition. If a vector bundle has a covariant derivative operator
whose curvature is zero, then any point of the base manifold has a neigh-
bourhood on which there exists a frame consisting of parallel sections.

Strategy of proof. Consider a vector bundle (E, π,M) of rank k over an n-
dimensional base manifold M . Let ∇ be a covariant derivative operator in
π with vanishing curvature R∇. Let us pick a point p ∈ M and choose a
chart (U, (ui)n

i=1) around p. By Remark 2 in 1.41, the covariant derivatives
∇i := ∇ ∂

∂ui
with respect to the local vector fields ∂

∂ui have a well-defined

meaning. The condition that R∇ = 0 is equivalent to the property that the
operators ∇i all commute with each other, i.e.,

[∇i,∇j ] = 0, 1 5 i, j 5 n.

Next, we apply the classical theorem of Frobenius‘s on the local existence
of an integral manifold with prescribed tangent spaces. (For an appropriate
formulation of the theorem the reader is referred to [80] Chapter 1, §9;
see also Exercise 5 there). This allows us to solve the system of partial
differential equations

∇iσ = 0, 1 5 i 5 n

with prescribed σ(p) ∈ Ep. Hence, assigning a basis (σj(p))k
j=1 of Ep we

obtain a family of sections (σj)k
j=1 which provides a local frame on a neigh-

bourhood of p and has the property ∇iσj = 0; 1 5 i 5 n, 1 5 j 5 k. Since
the last property implies that the sections σj are parallel, the truth of the
Proposition follows.

1.46. Metric derivatives. Let (π, g) be a pseudo-Riemannian vector bun-
dle over the base space M . A covariant derivative ∇ in π is said to be
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compatible with the metric g, or metric derivative if the metric g is parallel
with respect to ∇, i.e., ∇g = 0. This means that the following Ricci identity
holds:

Xg(σ1, σ2) = g(∇Xσ1, σ2)+g(σ1,∇Xσ2) for all X ∈ X(M); σ1, σ2 ∈ Γ(π).

Proposition and definition. Every pseudo-Riemannian vector bundle ad-

mits a metric derivative. Notably, let
◦
∇ be any covariant derivative in (π, g);

consider the covariant differential C[ :=
◦
∇g, and define C ∈ A1(M,End(π))

by

g(C(X,σ1), σ2) := C[(X,σ1, σ2) for all X ∈ X(M);σ1, σ2 ∈ Γ(π).

Then ∇ :=
◦
∇+ 1

2C, i.e., the map

σ ∈ Γ(π) 7→ ∇σ :=
◦
∇σ +

1
2
C[σ]

is a metric covariant derivative in π. C[ and C are called the lowered Cartan

tensor and the Cartan tensor of (π, g) with respect to
◦
∇, respectively. (The

common term Cartan tensor will also be used for C[ and C.) C[ is symmetric
in its second two variables, i.e.,

C[(X,σ1, σ2) = C[(X,σ2, σ1) for all X ∈ X(M); σ1, σ2 ∈ Γ(π).

Proof of the statement. In virtue of Remarks (4) and (3) in 1.41, a covari-

ant derivative
◦
∇ certainly exists in (π, g) and ∇ :=

◦
∇ + 1

2C is a covariant
derivative again. From the definitions (see also 1.42 (2)),

C[(X,σ1, σ2) :=
( ◦
∇g
)
(X,σ1, σ2) =

( ◦
∇Xg

)
(σ1, σ2) = X[g(σ1, σ2)]

− g
( ◦
∇Xσ1, σ2

)
− g
(
σ1,

◦
∇Xσ2

)
(X ∈ X(M); σ1, σ2 ∈ Γ(π)),

hence C[ is indeed symmetric in its second two variables. By using 1.42(2)
repeatedly we obtain readily

(∇Xg)(σ1, σ2) = X[g(σ1, σ2)]− g(∇Xσ1, σ2)− g(σ1,∇Xσ2) = X[g(σ1, σ2)]

− g
( ◦
∇Xσ1 +

1
2
C(X,σ1), σ2

)
− g
(
σ1,

◦
∇Xσ2 +

1
2
C(X,σ2)

)
= X[g(σ1, σ2)]

− g
( ◦
∇Xσ1, σ2

)
− g
(
σ1,

◦
∇Xσ2

)
− 1

2
C[(X,σ1, σ2)−

1
2
C[(X,σ2, σ1)

=
( ◦
∇Xg

)
(σ1, σ2)− C[(X,σ1, σ2) =

( ◦
∇g − C[

)
(X,σ1, σ2) = 0

(X ∈ X(M); σ1, σ2 ∈ Γ(π)), therefore ∇ is metric.
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Lemma. Let ∇ be a metric derivative in a pseudo-Riemannian vector bun-
dle (π, g). Then the curvature R∇ has the following skew-symmetry property:

g(R∇(X,Y )σ1, σ2) = −g(R∇(X,Y )σ2, σ1)

for all X,Y ∈ X(M); σ1, σ2 ∈ Γ(π).

Proof. Let X and Y be fixed vector fields on the base space of π, and let
σ be any section in Γ(π). By the tensoriality of R∇ we may assume that
[X,Y ] = 0. Then, using the metric property of ∇, we have

g(R∇(X,Y )σ, σ) = g(∇X∇Y σ, σ)− g(∇Y∇Xσ, σ) = X[g(∇Y σ, σ)]

− g(∇Y σ,∇Xσ)− Y
[
g(∇Xσ, σ)

]
+ g(∇Xσ,∇Y σ)

=
1
2
[
X(Y g(σ, σ))− Y (Xg(σ, σ))

]
=

1
2
[X,Y ]g(σ, σ) = 0,

whence the statement.

1.47. D-manifolds. If D is covariant derivative operator in the tangent
bundle τM , then, by a quite common abuse of language, D is said to be a
covariant derivative operator on the manifold M . Thus D is a map from
X(M)×X(M) into X(M) satisfying the axioms COVD1–COVD4; or, equi-
valently, D is an R-linear map

X ∈ X(M) 7→ DX ∈ A1(M, τM ) ∼= T1
1(M)

such that

D(fX) = df ⊗X + fDX for all f ∈ C∞(M), X ∈ X(M).

Following the terminology of Lang’s book [45], a pair (M,D) consisting of a
manifold and a covariant derivative operator on the manifold will be called
a D-manifold.

Definition. Let (M,D) be a D-manifold. The exterior covariant derivative
of the unit tensor field ιM ∈ T1

1(M) is said to be the torsion tensor field
(briefly the torsion) of D, and it is denoted by TD:

TD := dDιM .

D is called torsion-free, if TD = 0.
It follows immediately that for any vector fields X, Y on M we have

TD(X,Y ) = DXY −DYX − [X,Y ].
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Corollary. (The algebraic Bianchi identity for D-manifolds).
If (M,D) is a D-manifold, then its curvature tensor field RD and torsion

tensor field TD satisfy

dDTD = RD[ιM ] .

Indeed, according to 1.44, Lemma 2, dDTD = dDdDιM = RD[ιM ].

Remark 1. Evaluating both sides of the relation dDTD = RD[ιM ] on a
triple (X,Y, Z) of vector fields on M we obtain

S
(X,Y,Z)

((DXT
D)(Y, Z) + TD(TD(X,Y ), Z)) = S

(X,Y,Z)
RD(X,Y )Z.

In particular, if D is torsion-free, we have

RD(X,Y )Z +RD(Y, Z)X +RD(Z,X)Y = 0 for all X,Y, Z ∈ X(M).

( S
(X,Y,Z)

means cyclic sum for the ‘variables’ X,Y, Z; i.e., if we are given an expres-

sion of the form A(X,Y, Z), then

S
(X,Y,Z)

A(X,Y, Z) := A(X,Y, Z) +A(Y, Z,X) +A(Z,X, Y ).)

Remark 2. If D is a torsion-free covariant derivative on M , then the Lie
bracket of two vector fields may be expressed in terms of covariant deriv-
atives. This enables one to express the exterior derivative of a differential
form in terms of D. Namely, 1.39(ii) leads to the formula

dα(X1, . . . , Xk+1) =
k+1∑
i=1

(−1)i+1(DXiα)(X1, . . . , X̂i, . . . , Xk+1),

where α ∈ Ak(M) (k ∈ N∗), Xi ∈ X(M), 1 5 i 5 k + 1.

1.48. Locally affine structures.

Definition. An atlas A = (Uα, (ui
α)n

i=1)α∈A of a manifold M is said to be
a locally affine structure on M if all its transition maps

γαβ : p ∈ Uα ∩ Uβ 7→ γαβ(p) :=

(
∂ui

β

∂uj
α

(p)

)
∈ GL(n) ((α, β) ∈ A×A)

are constant.
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Lemma and definition. Assume that A = (Uα, (ui
α)n

i=1)α∈A is a locally
affine structure on the manifold M . For all α ∈ A, let

Dα
XY :=

n∑
i=1

X(Y i)
∂

∂ui
α

if X,Y ∈ X(Uα), Y =
n∑

i=1

Y i ∂

∂ui
α

.

Then the family (Dα)α∈A determines a well-defined covariant derivative
operator D on M , called the covariant derivative arising from the locally
affine structure A. D is torsion-free and has zero curvature.

The proof is a routine verification.

Proposition. Any covariant derivative operator D on a manifold M which
has zero curvature and torsion arises from a locally affine structure on M .

Proof. Since D has zero curvature, 1.45 Proposition shows that any given
p ∈ M has a neighbourhood which admits a local frame (Xi)n

i=1 with the
property DXiXj = 0 (1 5 i, j 5 n). Since D is torsion-free we have
[Xi, Xj ] = 0 (1 5 i, j 5 n). This guarantees (see e.g. [13], Proposition 11.5.2)
that there is a chart around p such that Xi = ∂

∂ui (1 5 i 5 n). These charts
give rise to a locally affine structure on M with the desired property.

1.49. The Levi-Civita derivative.

We conclude this preparatory chapter with a very well-known but
crucial result. The method of its proof, the ‘Christoffel trick’ is
almost equally important and will appear several times later on.

The fundamental lemma of (pseudo-) Riemannian geometry. Let
(M, g) be a pseudo-Riemannian manifold. There exists a unique covariant
derivative operator D on M , called the Levi-Civita derivative (of g) such
that

LC1. D is metric, i.e. Dg = 0.
LC2. D is torsion-free, i.e. TD = 0.

Proof. (1) Let X, Y , Z be arbitrary vector fields on M . For the uniqueness,
we express g(DXY, Z) in terms which do not involve the covariant derivative
operator D. To do this, we write down the metric property LC1 three times,
permuting cyclically the vector fields X, Y , Z:

Xg(Y, Z) = g(DXY, Z) + g(Y,DXZ),

Y g(Z,X) = g(DY Z,X) + g(Z,DYX),

Zg(X,Y ) = g(DZX,Y ) + g(X,DZY ).
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Adding the first two relations, subtracting the third, and using the property
LC2 we obtain:

2g(DXY, Z) = Xg(Y, Z) + Y g(Z,X)− Zg(X,Y )− g(X, [Y, Z])
+ g(Y, [Z,X]) + g(Z, [X,Y ])

.

This is the so-called Koszul formula, which implies the uniqueness.
(2) As to the existence, for fixed vector fields X, Y on M let α be the

map

Z ∈ X(M) 7→ α(Z) := the right-hand side of the Koszul formula.

It may be easily checked that α is a C∞(M)-linear map from X(M) into
C∞(M), i.e. α ∈ A1(M). The musical isomorphism between A1(M) and
X(M) described in 1.30(5) guarantees that there is a unique vector field,
namely DXY := α#, such that

2g(DXY, Z) = α(Z) for all Z ∈ X(M).

Now a straightforward, but tedious calculation shows that this way of defin-
ing D actually leads to a covariant derivative operator on M which satisfies
LC1 and LC2.
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Chapter 2

Calculus of Vector-valued
Forms and Forms along the
Tangent Bundle Projection

A. Vertical bundle to a vector bundle

In this part (E, π,M) is a vector bundle of rank k over
the n-dimensional base manifold M ; k, n ∈ N∗.

2.1. The vertical subbundle of τE.
Consider the tangent map π∗ : TE −→ TM . The pair (π∗, π) is a bundle

map between the tangent bundles τE and τM (see 1.25). Let z ∈ E. The
vector space

VzE := Ker(π∗)z ⊂ TzE

is called the vertical subspace of TzE, and the vectors of VzE are mentioned
as vertical vectors at z. As the linear maps (π∗)z are all surjective, we see
that

dimVzE = dimTzE − dimTπ(z)M = n+ k − n = k = rankπ.

For each point p ∈ M the fibre Ep is a submanifold of E. Denote the can-
onical inclusion Ep−→E by jp. Then π ◦ jp is the constant map Ep−→{p},
therefore

(π∗)z ◦
[
(jp)∗

]
z

= 0 for all z ∈ Ep.

From this it follows that

Im
[
(jp)∗

]
z
⊂ VzE for all z ∈ Ep.

59
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On the other hand, the map[
(jp)∗

]
z

: TzEp −→ TzE

is obviously injective, hence

dim Im
[
(jp)∗

]
z

= dimTzEp = k = dimVzE.

Thus we conclude the following result:

Lemma. VzE = Im
[
(jp)∗

]
z

for all p ∈M and z ∈ Ep; therefore we have a
canonical isomorphism VzE ∼= TzEp.

Now consider the subset

V E := t
z∈E

VzE

of TE, and let V π be the natural projection

V E −→ E, w ∈ VzE 7→ V π(w) := z.

Then V E carries a unique smooth structure such that (V E, V π,E) becomes
a vector subbundle of τE . This vector bundle (abbreviated, according to our
practice, by V π) is said to be the vertical bundle to π, or, as suggested by
the Lemma, the bundle along the fibres.

2.2. Canonical maps. The map

i : (z, z′) ∈ E ×M E 7→ i(z, z′) :=
[
(jp)∗

]
z
(ιz(z′)) (p := π(z) = π(z′)),

where ιz is the canonical identification of Ep = Eπ(z) with TzEp (see 1.9),
defines a strong bundle isomorphism

π∗π
i−→ V π,

displayed more vividly by the diagram

E ×M E
i−−−−→ V E

π1

y y V π

E E
1E
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(see also 1.14). The canonical isomorphism i is said to be the big vertical
morphism. It may naturally be prolonged to a strong bundle map
E ×M E −→ TE, this prolongation will also be denoted by i. In particular,
we have the useful map

v`E : E −→ TE, z 7→ v`E(z) := i(0π(z), z)

(0π(z) is the zero vector of Eπ(z)). v`E is called the small vertical lift (a term
of P. Michor, see [56]).

A further important canonical map is the vertical projection

vprE := π2 ◦ i−1 : V E −→ E.

The pair (vprE , π) yields a bundle map V π −→ π, called the canonical sur-
jection of V π onto π. These maps may be arranged in the diagram

-
vprE

E M-
π

V E E

?
V π

?
π

i−1
�

��

E ×M E

π2@
@R

Roughly speaking, vprE picks off the ‘second component’ z′ of i(z, z′),
whereas V π : V E −→ E yields the ‘first component’ z. (As for the latter
remark, the precise relation is V π = τE � V E = π1 ◦ i−1).

2.3. The canonical short exact sequence arising from π. Let us first
consider the pull-back bundle π∗τM of the tangent bundle τM by π. This
bundle is also said to be the transverse bundle to π. In view of 1.14, the total
space of the transverse bundle is E ×M TM , the fibre over a point z ∈ E
is the vector space {z} × Tπ(z)M ∼= Tπ(z)M , and we have the commutative
diagram

E ×M TM
p2−−−−→ TM

p1

y y τM

E −−−−→
π

M

where p1 := π∗τM := pr1 � E ×M TM , p2 := pr2 � E ×M TM .
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Lemma and definition. The map

j : TE −→ E ×M TM, w ∈ TzE 7→ j(w) := (z, (π∗)z(w))

defines a surjective strong bundle map between τE and the transverse bundle
π∗τM . If, by a slight abuse of notation, i : E ×M E −→ TE means the big
vertical morphism composed with the canonical inclusion V E ↪→ TE, then
the sequence

0 −→ E ×M E
i−→ TE

j−→ E ×M TM −→ 0

or, more accurately

0 −→ π∗π
i−→ τE

j−→ π∗τM −→ 0

is a short exact sequence of vector bundles, called the canonical short exact
sequence constructed from π.

Proof. j is clearly a strong bundle map. The surjectivity of j may easily be
seen using local coordinates. Thus the sequence is exact at π∗τM . As i is
injective, the sequence is exact at π∗π. Im i = V π by 2.2. For any point
z ∈ E and vector w ∈ TzE,

j(w) = (z, (π∗)z(w)) = 0 ∈ {z} × Tπ(z)M ⇔ w ∈ VzE,

hence Im i = V π = Ker j, and the sequence is exact at τE .

Remark. The strong bundle map j : τE −→ π∗τM may be interpreted as a
π∗τM -valued one-form on E, i.e. we can write

j ∈ A1(E, π∗τM ) := Γ(A1(τE , π∗τM )).

Indeed, j may be considered as the map

z ∈ E 7→ jz := (π∗)z ∈ Hom(TzE, Tπ(z)M) ∼= Hom(TzE, (π∗τM )z).

2.4. Vertical vector fields. A section of the vertical bundle V π is called
a vertical vector field on E. For the C∞(E)-module of vertical vector fields
we shall use the convenient notation Xv(E) instead of Γ(V π). Now we
summarize some basic facts concerning vertical vector fields which we shall
need in subsequent sections.
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(1) A vector field ξ ∈ X(E) is vertical if, and only if, ξ ∼
π

0. The Lie

bracket of two vertical vector fields is vertical, hence Xv(E) is a subal-
gebra of the Lie algebra X(E).

These assertions are immediate consequences of 1.27(1), (3).

(2) ξ ∈ X(E) is vertical if, and only if, for each f ∈ C∞(M), ξ(f ◦π) = 0.

This is obtained directly from the definitions (see also 1.8).

(3) Consider the big vertical morphism i : E ×M E −→ V E. The map

CE : E −→ V E, z 7→ CE(z) := i(z, z)

is a vertical vector field, called the canonical vector field , or the radial
vector field , or the Liouville vector field on E. Obviously

vprE(CE(z)) = z for all z ∈ E,

and CE is the unique vertical vector field on E which satisfies this
relation. Using an adapted chart

(
π−1(U), ((xi)n

i=1, (y
j)k

j=1)) on E
(see 1.12(2)) it is easily verified that

CE � π−1(U) =
k∑

j=1

yj ∂

∂yj
.

Now we show that CE is the velocity field of the flow

ϕ : R× E −→ E, (t, z) 7→ etz.

Let z0 be a point of E, and let us consider the flow line

cz0 : t ∈ R 7→ etz0 ∈ E

of z0. Then

ċz0(0) =
n∑

i=1

(xi ◦ cz0)
′(0)

(
∂

∂xi

)
z0

+
k∑

i=1

(yi ◦ cz0)
′(0)

(
∂

∂yi

)
z0

=
k∑

i=1

yi(z0)
(
∂

∂yi

)
z0

,

since the functions xi ◦ cz0 = ui ◦ π ◦ cz0 are obviously constant, while
yi ◦ cz0(t) = etyi(z0) (t ∈ R). Thus

ϕ̇ � π−1(U) = CE � π−1(U),

as we claimed.
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(4) More generally, let z ∈ E be a fixed point. Then the map

iz : u ∈ Eπ(z) 7→ iz(u) := i(z, u) ∈ VzE

is a linear isomorphism, called the vertical lift from Eπ(z) into VzE.
The image iz(u) of an individual vector u ∈ Eπ(z) is also mentioned
as the vertical lift of u into VzE, and we use for iz(u) the more vivid
notation u↑(z).

(5) The vertical lift of a section σ ∈ Γ(π) is the vertical vector field
σv ∈ Xv(E) defined by

σv(z) :=
[
σ(π(z))

]↑(z) for all z ∈ E.

Then
vprE ◦ σv = σ ◦ π,

therefore σv is fibrewise constant. Its expression in an adapted local
coordinate system ((xi)n

i=1, (y
j)k

j=1) on π−1(U) is

σv � π−1(U) =
k∑

j=1

(σj ◦ π)
∂

∂yj
, σj := yj ◦ σ (1 5 j 5 k).

Granting this, the following formulae are easy to see:

(σ1 + σ2)v = (σ1)v + (σ2)v (σ1, σ2 ∈ Γ(π)),(i)

(fσ)v = (f ◦ π)σv (f ∈ C∞(M), σ ∈ Γ(π)),(ii) [
σv

1 , σ
v
2

]
= 0 (σ1, σ2 ∈ Γ(π)).(iii)

(6) A vertical vector field ξ ∈ Xv(E) is the vertical lift of a section if, and
only if, for any section σ in Γ(π), [σv, ξ] = 0.

Necessity is evident from the last relation (iii). Using an adapted
local coordinate system on E, sufficiency may also be easily verified.

Remark. As to the vertical lift Xv ∈ Xv(TM) of a vector field X on M , a
more conceptual reasoning will be presented in 2.31(2).

2.5. The deleted bundle for π. Consider the zero section

o : p ∈M 7→ o(p) := 0p ∈ Ep
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of π. Then o(M) is a closed submanifold of E (see e.g. [35], Vol I., 3.10
Ex. 5); by abuse of language, this submanifold will also be mentioned as the
zero section of π. Let

◦
E := t

p∈M
Ep \ {0p},

◦
π := π �

◦
E.

Then
◦
E is the complement of o(M) in E, hence it is an open submanifold.

The triple (
◦
E,

◦
π,M) is obviously a fibred manifold, moreover a fibre bundle;

i.e., it has the following property:

Local triviality. For each point p ∈M there exists an open neighbour-
hood U of p in M and a diffeomorphism ϕ :

◦
π−1(U) −→ U× (Rk \ {0}) such

that pr1 ◦ ϕ =
◦
π �

◦
π−1(U). (C.f. 1.12, VB 2.)

The fibre bundle (
◦
E,

◦
π,M) is called the deleted bundle for π and is

usually denoted by
◦
π.

2.6. Homogeneity. Consider the deleted bundle (
◦
E,

◦
π,M) and let r be a

real number.

Definition 1. A real-valued function f :
◦
E −→ R is said to be

(i) positive-homogeneous of degree r, if for each positive t ∈ R and each

z ∈
◦
E

f(tz) = trf(z);

(ii) homogeneous of degree r, where r is an integer, if the above condition
holds for all real t 6= 0.

Lemma 1. Let f :
◦
E −→ R be a smooth function. In order that f is positive-

homogeneous of degree r, it is necessary and sufficient that CEf = rf .

Proof. The statement is merely a transcription of Euler’s classical theorem
on homogeneous functions into a vector bundle context.

We note in particular that if f is homogeneous of degree r, then the
‘Euler relation’ CEf = rf holds. On the other hand, this implies only
positive-homogeneity, and not homogeneity.

The following simple observations will play an important role in subse-
quent sections.
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Lemma 2. Let f be a real-valued function on E which is smooth on
◦
E.

(1) If f is positive-homogeneous of degree 0 on
◦
E and continuous on E,

then f is constant along the fibres; hence there is a smooth function
f0 on M such that f = f0 ◦ π.

(2) If f is positive-homogeneous of degree 1 on
◦
E and continuously differ-

entiable (i.e., of class C1) on E, then f is linear on the fibres (P. Dom-
browski’s ‘clever observation’ [29]).

(3) If f is positive-homogeneous of degree r on
◦
E and r-times continuously

differentiable on E, then f is a polynomial of degree r on the fibres.

Example 1. If ((xi)n
i=1, (y

j)k
j=1) is an adapted local coordinate system on

E, then the xi’s are homogeneous functions of degree 0 and the yj ’s of degree
1 on their domain.

Definition 2. (a) A map ξ : E −→ TE, z 7→ ξ(z) ∈ TzE is said to be
homogeneous of degree r, where r is an integer, if

(i) ξ is smooth on
◦
E (and hence ξ �

◦
E ∈ X(

◦
E)),

(ii) [CE , ξ] = (r − 1)ξ.

(b) The maps α : z ∈ E 7→ α(z) ∈ A(TzE) and

A : z ∈ E 7→ A(z) ∈ Lskew((TzE)k, TzE) (k ∈ N∗)

are said to be homogeneous of degree r (∈ Z) if

(i) α and A are smooth on
◦
E (i.e. α �

◦
E ∈ A(

◦
E), A �

◦
E ∈ B(

◦
E)),

(ii) dCE
α = rα, dCE

A = (r − 1)A.

Example 2. Continuing Example 1, the coordinate vector fields ∂
∂xi

(1 5 i 5 n) are homogeneous of degree 1, the vector fields ∂
∂yj (1 5 j 5 k)

are homogeneous of degree 0. Dually, the one-forms dxi are homogeneous
of degree 0; the one-forms dyj are homogeneous of degree 1. The Liouville
vector field CE is homogeneous of degree 1.

In general, a vector field ξ ∈ X(
◦
E) and a one-form α ∈ A1(

◦
E) are

homogeneous of degree r (r ∈ Z) if, and only if, their components, relative
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to any adapted local coordinate system ((xi)n
i=1, (y

j)k
j=1) for E, have the

following homogeneity properties:{
ξxi is positive-homogeneous of degree r − 1,
ξyj is positive-homogeneous of degree r;{
α
(

∂
∂xi

)
is positive-homogeneous of degree r,

α
(

∂
∂yj

)
is positive-homogeneous of degree r − 1 (1 5 i 5 n, 1 5 j 5 k).

Proposition. A continuous vector field ξ : E −→ TE, smooth on
◦
E, is

(1) a vertical lift if, and only if, ξ is vertical and homogeneous of degree 0;

(2) projectable on M if, and only if, [CE , ξ] is vertical.

Expressing ξ in an adapted local coordinate system, both assertions can
be verified by a straightforward calculation.

2.7. Basic and semibasic forms. (1) A differential form α ∈ A(E) is
called basic, if it is the pull-back of a form on M by π; semibasic if iξα = 0
for every vertical vector field ξ ∈ Xv(E).

(2) A vector-valued form K ∈ B(E) = A(E, τE) is called semibasic if it
is vertical-valued and iξK = 0 for all ξ ∈ Xv(E).

Semibasic (resp. vector-valued semibasic) forms constitute a subalgebra
of A(E) (resp. a submodule of B(E)), denoted by A0(E) (resp. B0(E)).

Lemma. A differential form on E is basic if, and only if, it is semibasic
and homogeneous of degree 0. �

Remark. We shall also need the analogous concept of a semibasic and a
vector-valued semibasic covariant tensor field on E. The definition is self-
evident: A ∈ T0

s(E) and B ∈ T1
s(E) are called semibasic if A and B kill

every sequence (ξ1, . . . , ξs) ∈ [X(E)]s which contains (at least one) vertical
vector field and B is vertical valued. We agree that elements of C∞(E) are
semibasic tensors as well.

2.8. Vector fields along π. A section of the transverse bundle π∗τM is
called a vector field along π. The terminology is justified by 1.22, which
assures that

Γ(π∗τM ) ∼= Γπ(τM ).

So any section σ̃ in Γ(π∗τM ) can be considered as a smooth map
σ̃ : E −→ TM satisfing τM ◦ σ̃ = π. For the C∞(E)-module of vector fields
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along π we shall use the convenient notation X(π). Now, in view of 1.21, the
canonical short exact sequence arising from π leads to the exact sequence of
C∞(E)-modules

0 −→ Γ(π∗π)
i#−→ X(E)

j#−→ X(π) −→ 0.

To simplify the symbolism, we shall usually omit the push-forward sign #
and write, by a slight abuse of notation,

0 −→ Γ(π∗π) i−→ X(E)
j−→ X(π) −→ 0.

Remark. Let Der(π) denote the real vector space of R-linear maps
θ : C∞(M) −→ C∞(E) satisfying

θ(fg) = θf(g ◦ π) + (f ◦ π)θg for all f, g ∈ C∞(M).

Then Der (π) is canonically isomorphic to X(π) (cf. 1.26); the canonical
isomorphism is the map

θ ∈ Der(π) 7→ X̃ ∈ X(π),

X̃ : z ∈ E 7→ X̃z ∈ (E ×M TM)z = {z} × Tπ(z)M ∼= Tπ(z)M

given by
X̃zf := (θf)(z) for all f ∈ C∞(M).

Indication of proof. A routine calculation shows that X̃z, defined by the
above rule, is indeed a tangent vector to M at π(z). Using coordinate
expressions, it is easily verified that the map

X̃ : z ∈ E 7→ X̃z ∈ (E ×M TM)z
∼= Tπ(z)M

is smooth, therefore X̃ ∈ Γ(π∗τM ) =: X(π).
Conversely, let X̃ ∈ X(π). If

(X̃f)(z) := X̃zf for all z ∈ E

(regarding X̃z as an element of Tπ(z)M), then for any functions f , g in
C∞(M) and point z in E we have[

X̃(fg)
]
(z) := X̃z(fg)

1.7=
(
X̃zf

)
g(π(z)) + f(π(z))X̃zg =

=
[
X̃f(g ◦ π) + (f ◦ π)X̃g

]
(z).

This means that X̃ may be interpeted as an element of Der(π).
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B. Nonlinear connections in a vector bundle

We keep the hypotheses and notations of the preceding section.

2.9. Horizontal subbundles, horizontal vector fields. A subbundle
Hπ of τE is said to be horizontal if τE = Hπ ⊕ V π. We denote the total
space of Hπ by HE, the fibre over a point z by HzE. The subspace HzE
of TzE is called the horizontal subspace at z (with respect to the choice of
Hπ). Since, for each point z ∈ E, the map

π∗ � HzE : HzE −→ Tπ(z)M

is obviously a linear isomorphism, it follows that

rank(Hπ) = dimM = n,

while the manifold HE is (2n+ k)-dimensional.
The C∞(E)-module of sections of Hπ is denoted by Xh(E), the elements

of Xh(E) are called horizontal vector fields on E. The horizontal vector fields
constitute a finitely generated projective module over C∞(E). However, in
general, Xh(E) does not form a Lie subalgebra of the Lie algebra X(E).

The Whitney decomposition τE = Hπ ⊕ V π leads to the direct sum
decomposition

X(E) = Xh(E)⊕ Xv(E)

of C∞(E) -modules.

2.10. Horizontal maps. A (right) splitting of the short exact sequence

0 −→ π∗π
i−→ τE

j−→ π∗τM −→ 0

is said to be a horizontal map for π. In other words, a strong bundle map

H : π∗τM −→ τE (or H : E ×M TM −→ TE)

is a horizontal map for π if

j ◦H = 1π∗τM .

The retraction associated with i, complementary to H (cf. A.5, Proposi-
tion 2) is called the vertical map belonging to H and denoted by V. Then
the sequence

0←− π∗π ←−
V

τE ←−
H

π∗τM ←− 0
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is also a short exact sequence of strong bundle maps. So we have

V ◦ i = 1π∗π, V ◦H = 0.

Due to the second countability of the base space, horizontal maps for a
vector bundle π do exist. However, in general there is no canonical way of
specifying a horizontal map.

The relation between the horizontal subbundles and the horizontal maps
is quite obvious. If H : π∗τM −→ τE is a horizontal map for π, then Im H

is a horizontal subbundle of τE. Conversely, any horizontal subbundle of τE
may be obtained as the image of a horizontal map.

2.11. Basic geometric data. We associate the following objects to any
horizontal map H.
(1) h := H ◦ j – the horizontal projector . It has the properties

h2 = h, Imh = Im H, Kerh = V π,

therefore h is indeed a projector which projects τE onto Hπ along V π.
(2) v := 1TE − h – the vertical projector belonging to H. Obviously,

v = i ◦ V, v2 = v, Imv = V π, Kerv = Im H.

(3) K = vprE ◦ v – the connector or Dombrowski map belonging to H.
Then, evidently, (K,π) is a bundle map from τE into π, so we have the
commutative diagram

TE
K−−−−→ E

τE

y y π
E −−−−→

π
M.

Furthermore,

K � V E = vprE or, equivalently, K ◦ σv = σ ◦ π (σ ∈ Γ(π)).

Indeed, for each point z ∈ E,

K[σv(z)] := vprE ◦ v(σv(z)) 2.2= π2 ◦ i−1(σv(z))
2.4(4),(5)

=

= π2 ◦ i−1 ◦ i(z, σ(π(z))) = σ(π(z)).

Note. Specifying a horizontal map H : π∗τM −→ τE for π, the notation hH,
vH and KH would be more accurate for the horizontal projector, the vertical
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projector and the connector belonging to H than h, v and K, respectively.
However, the suffix H may be omitted without any risk of confusion in most
cases.

(4) `h : X ∈ X(M) 7→ `h(X) =: Xh ∈ Xh(E) – the horizontal lift with
respect to H, defined by

Xh(z) := H(z,X[π(z)]) for all z ∈ E.

Then Xh is called the (H - ) horizontal lift of X. Notice that

π∗ ◦Xh = X ◦ π, i.e. Xh ∼
π
X.

Now, using 1.27(2), it follows that

(fX)h = (f ◦ π)Xh for all f ∈ C∞(M).

On the other hand, employing a local argument involving coordinates, it is
straightforward to check that

Xh(f ◦ π) = (Xf) ◦ π for all f ∈ C∞(M).

Lemma 1. Suppose given a horizontal map H for π. Then the map

(X,σ) ∈ X(M)× Γ(π) 7→ [Xh, σv] ∈ X(E)

has the following properties:

[Xh, σv] ∈ Xv(E),(i)

R-bilinear,(ii) [
(fX)h, σv

]
= (f ◦ π)[Xh, σv] (f ∈ C∞(M)),(iii) [

Xh, (fσ)v
]

= (f ◦ π)[Xh, σv] + ((Xf) ◦ π)σv.(iv)

Proof. Routine verification.

(5) Ω : (ξ, η) ∈ X(E)× X(E) 7→ Ω(ξ, η) := −v[h ξ,h η] ∈ X(E)

– the curvature of the horizontal map H. Ω is evidently Xv(E)-valued
and skew-symmetric. It may be seen in a moment that Ω is C∞(E)-bilinear
as well. Hence Ω ∈ A2(E, V π), i.e., Ω is a V π-valued 2-form on E. The
curvature of H measures ‘how far the Lie bracket of two H-horizontal vector
fields deviates from the horizontal’. The horizontal subbundle Im H, as an
n-plane field on E, is integrable if and only if the curvature of H vanishes;
in this case the horizontal subspaces are tangent to a submanifold of E
(cf. 1.45).
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Lemma 2. Let Ω be the curvature of the horizontal map H and consider
the map

% : X(M)× X(M) −→ Xv(E), (X,Y ) 7→ %(X,Y ) := Ω(Xh, Y h).

Then

(i) %(X,Y ) = [X,Y ]h − [Xh, Y h],

(ii) vprE ◦ %(X,Y ) = −K ◦ [Xh, Y h], where K is the connector belonging
to H.

Proof. As Xh ∼
π
X, Y h ∼

π
Y , it follows that

[Xh, Y h] = h[Xh, Y h] + v[Xh, Y h] ∼ [X,Y ].

This implies that h[Xh, Y h] ∼
π

[X,Y ], since v[Xh, Y h] ∼ 0. On the other

hand, [X,Y ]h ∼
π

[X,Y ]; therefore

h[Xh, Y h] = [X,Y ]h,

and %(X,Y ) := −v[Xh, Y h] = h[Xh, Y h] − [Xh, Y h] = [X,Y ]h − [Xh, Y h],
whence (i). The relation (ii) is an immediate consequence of the definitions.

2.12. Definition. (1) A vector-valued 1-form h ∈ A1(E, τE) ∼= T1
1(E) is

said to be a horizontal projector for π, if it is a projector with kernel V E,
i.e.,

h2 = h and Kerh = V E.

(2) A connector K for π is a map from TE to E such that

(K,π) is a bundle map from τE onto π.CON 1.

K � V E = vprE .CON 2.

Lemma 1. If h ∈ A1(E, τE) is a horizontal projector for π, then there is a
unique horizontal map H : π∗τM −→ τE for π such that H ◦ j = h.

Proof. Uniqueness. Suppose that H1 and H2 are two horizontal maps sat-
isfying H1 ◦ j = h and H2 ◦ j = h. Then (H1−H2) ◦ j = 0. Since j has right
inverses, we conclude that H1 = H2.
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Existence. Let v := 1TE − h. Choose any horizontal map
H0 : π∗τM −→ τE , and define H := h ◦H0. Since Imv = V E = Im i and
j ◦ i = 0, it follows that

j ◦ h = j ◦ (1TE − v) = j− j ◦ v = j,

and hence
j ◦H = j ◦ h ◦H0 = j ◦H0 = 1π∗τM .

Thus H is a horizontal map for π. Let h0 be the horizontal projector be-
longing to H0, and v0 = 1TE − h0. Then

H ◦ j = h ◦H0 ◦ j = h ◦ h0 = h ◦ (1TE − v0) = h,

as was to be shown.

The horizontal map constructed in Lemma 1 is called the horizontal map
belonging to (or induced by , etc.) the horizontal projector h.

Lemma 2. Let K : TE −→ E be a connector for π. There is a unique
horizontal map H : π∗τM −→ τE for π such that

vprE ◦ (1TE −H ◦ j) = K,

and therefore Im H = KerK.

Proof. Uniqueness. Suppose that the horizontal maps H1 and H2 have the
desired property. Let us denote by h1, v1 and h2, v2 the horizontal and the
vertical projectors belonging to H1 and H2, respectively. Then
vprE ◦ (v1 − v2) = 0. Since vprE is an isomorphism along the fibres of V π,
it follows that v1 = v2, and hence h1 = h2, H1 = H2.

Existence. Using CON 1, consider the map

v : z ∈ E 7→ vz := iz ◦Kz ∈ Hom(TzE, VzE).

In virtue of CON 2, for every point z ∈ E and section σ ∈ Γ(π) we have

Kz ◦ iz[σ(π(z))] = Kz[σv(z)] = σ(π(z));

therefore
v2

z = iz ◦ (Kz ◦ iz) ◦Kz = iz ◦Kz = vz.

Hence v projects TE onto V E, and consequently, h = 1TE−v is a horizontal
projector for π. In view of Lemma 1 there is a unique horizontal map H

such that H ◦ j = h. Then for any vector w ∈ TzE we have

vprE ◦ (1TE −H ◦ j)(w) = vprE(v(w)) = π2 ◦ i−1 ◦ i(z,Kz(w)) = Kz(w),

which ends the proof.
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The horizontal map constructed in Lemma 2 is called the horizontal map
belonging to (induced by , etc.) the connector K. Next we point out that a
horizontal subbundle of τE ; a horizontal map, a horizontal projector and a
connector for π are all ‘equivalent’ geometric concepts.

Corollary. Among the sets of horizontal subbundles Hπ of τE, horizontal
maps, horizontal projectors and connectors for π, a bijective correspondence
is established by the following scheme:

hH := H ◦ j
↗ horizontal projector for π

Hπ
Im H=Hπ←→ horizontal map H

↘ KH := vprE ◦ (1TE −H ◦ j)
connector for π

Hh := h ◦H0

↗ horizontal map for π
Hπ

Imh=Hπ←→ horizontal projector h
↘ Kh := vprE ◦ (1TE − h)

connector for π

hK : w ∈ TzE 7→ hK(w) :=
= w − iz(Kz(w))

↗ horizontal projector for π
Hπ

Ker K=Hπ←→ connector K
↘ HK := hK ◦H0

horizontal map for π

(H0 is an arbitrary horizontal map for π).
Terminology. (1) For the equivalent concepts described by the Corollary
the common term nonlinear connection will be used as well. By a slight
abuse of language we shall also speak of a nonlinear connection given by a
horizontal map, or a horizontal projector, and so on.

(2) Given a manifold M , a nonlinear connection (a horizontal map, etc.)
on M is (by abuse of language again) a nonlinear connection in the tangent
vector bundle τM (a horizontal map for τM , etc.).

2.13. Behaviour on the zero section. Let the zero section o : M −→E of
π be given, and suppose that ((xi)n

i=1, (y
j)k

j=1) is an adapted local coordinate
system on an open subset π−1(U) of E. A trivial calculation shows that

(o∗)p

(
∂

∂ui

)
p

=
(

∂

∂xi

)
o(p)

(1 5 i 5 n) for all p ∈ U.
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Since
((

∂
∂yj

)
o(p)

)k

j=1

, 1 5 j 5 k, is a basis for Vo(p)E, it follows that

To(p)E = (o∗)p(TpM)⊕ Vo(p)E.

Thus we have a natural horizontal map

Ho : {o(p)} × TpM 7→ (o∗)p(TpM) ⊂ To(p)E

over the zero section. It is hardly to be expected that any horizontal map
acts in this way on o(M), however, this property would be convenient for
our purposes. So we make the following compromise.

We drop the requirement of differentiability of a horizontal map
(horizontal projector, connector, horizontal subbundle) over the zero
section, and assume that all horizontal maps coincide with the map

Ho : {o(p)} × TpM 7→ (o∗)p(TpM)

on the zero section.

We shall see in the course of our investigations that this convention is in har-
mony with the demands and some characteristic features of Finsler geometry.

2.14. Homogeneity of nonlinear connections. (1) Let t ∈ R∗. The
map

ctE : E −→ E, z 7→ ctE(z) := tz

is called a dilation of E. (As we have seen in 2.4(3), the vector field gen-
erating the flow of positive dilations cexp t

E is just the canonical vector field
CE . This motivates the choice of notation ctE .) Analogously, the dilations
of π∗TM := E ×M TM are the maps

ctπ∗TM : (z, v) ∈ E ×M TM 7→ (tz, v) ∈ E ×M TM (t ∈ R∗).

Lemma 1. For every t ∈ R∗ we have

ctE ◦ vprE = vprE ◦
(
(ctE)∗ � V E

)
. �

(2) A horizontal map H : π∗τM −→ τE is said to be homogeneous if it
satisfies

H 0.
(
cexp t
E

)
∗ ◦H = H ◦ cexp t

π∗TM for all t ∈ R.
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Lemma 2. Let H : π∗τM −→ τE be a horizontal map, and let h, K and
Hπ := Im H be the horizontal projector, the connector and the horizontal
subbundle belonging to H, respectively. The following conditions are equi-
valent:

H is homogeneous.H 0.

h ◦ (ctE)∗ = (ctE)∗ ◦ h for all t ∈ R∗
+.H 1.

K ◦ (ctE)∗ = ctE ◦K for all t ∈ R∗
+.H 2.

HtzE =
(
ctE
)
∗HzE for all z ∈ E, t ∈ R∗

+.H 3.

Indication of proof. The equivalence of H 0 and H 2 is an easy consequence
of Lemma 1. We show that H 0 implies H 1; in the other cases the argument
is similar.

Choose a point z ∈ E, a vector w ∈ TzE, and let t ∈ R∗
+. Then

(
ctE
)
∗◦h(w) =

(
ctE
)
∗◦H ◦ j(w) =

(
ctE
)
∗◦H(z, (π∗)z(w)) H 0= H(tz, (π∗)z(w))

= H(tz, (π ◦ ctE)∗(w)) = H
(
tz, (π∗)tz

[
(ctE)∗(w)

])
= H ◦ j

(
(ctE)∗(w)

)
= h ◦ (ctE)∗(w),

so H 1 holds.

Remark 1. If a nonlinear connection is given by the assignment of a hor-
izontal projector, a connector, or a horizontal subbundle, then, naturally,
homogeneity is defined by H 1, H 2 and H 3, respectively. Due to the next
observation, this definition is consistent in the case of horizontal projectors.

Lemma 3 and definition. A horizontal projector h ∈ B1(E) satisfies H 1
if, and only if, it is homogeneous of degree 1 as a vector-valued form, i.e., if

H 4. dCE
h = 0

holds. The vector-valued one-form

t := −dCE
h ∈ B1(E)

is said to be the tension of the nonlinear connection given by h.
We omit the simple proof.
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Remark 2. The tension of a nonlinear connection is a semibasic vector-
valued form. Indeed, for any vector field ξ on E we have

t(ξ) := −(dCE
h)(ξ) = −[CE ,hξ]+h[CE , ξ] = [hξ, CE ]−h[hξ, CE ] = v[hξ, CE ].

Thus t is vertical-valued and t(ξ) = 0 whenever ξ is vertical.

Corollary. A nonlinear connection is homogeneous if, and only if, the hor-
izontal lift of any vector field is homogeneous of degree 1.

Proof. Since dCE
h is semibasic and Xh(E) is locally generated by the hori-

zontal lifts of vector fields on M , dCE
h is determined by its action on vector

fields of the form Xh (X ∈ X(M)). Using the result of the preceding calcu-
lation,

(dCE
h)(Xh) = −v[Xh, CE ] = [CE , X

h],

since Xh ∼
π
X and CE ∼π 0 imply that [CE , X

h] is vertical. Thus we have
the following chain of equivalent statements:

h is homogeneous H 4⇐⇒ dCE
h = 0 ⇐⇒ ∀X ∈ X(M) : (dCE

h)(Xh) = 0

⇐⇒ [CE , X
h] = 0 ⇐⇒ : Xh is homogeneous of degree 1.
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2.15. Nonlinear covariant derivatives.

Lemma. Let σ and s be sections of π. Suppose that f is a smooth function
on M that vanishes at a point p. If σ̃ = σ + fs, then

vprE ◦
(
(σ̃∗)p − (σ∗)p

)
= (df)p ⊗ s(p).

Proof. Choose a (small enough) neighbourhood U of p in M , and sup-
pose that (π−1(U), ((xi)n

i=1, (y
j)k

j=1)) is an adapted chart on E. If, over U,

σ =
k∑

j=1

σjεj , s =
k∑

j=1

sjεj , σ̃ =
k∑

j=1

σ̃jεj (cf. 1.20), then

∂σ̃j

∂ui
(p)− ∂σj

∂ui
(p) =

∂f

∂ui
(p)sj(p) (1 5 i 5 n, 1 5 j 5 k).

For any vector v =
n∑

i=1

vi

(
∂

∂ui

)
p

∈ TpM ,

(σ∗)p(v) =
n∑

i=1

vi

(
∂

∂xi

)
σ(p)

+
n∑

i=1

k∑
j=1

vi ∂σ
j

∂ui
(p)
(

∂

∂yj

)
σ(p)

,

and we have a completely analogous expression for (σ̃∗)p(v) (notice that
σ̃(p) = σ(p)). Hence

(σ̃∗)p(v)− (σ∗)p(v) =
n∑

i=1

k∑
j=1

vi ∂f

∂ui
(p)sj(p)

(
∂

∂yj

)
σ(p)

= (df)p(v)
k∑

j=1

sj(p)
(

∂

∂yj

)
σ(p)

,

and therefore

vprE
[
(σ̃∗)p(v)− (σ∗)p(v)

]
= (df)p(v)s(p) =

[
(df)p ⊗ s(p)

]
(v).

Definition. A nonlinear covariant derivative operator or simply a nonlinear
covariant derivative in the vector bundle (E, π,M) is a map

∇ : Γ(π) −→ A1(M,π) ∼= A1(M)⊗ Γ(π)
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which satisfies the following conditions:

If o is the zero section of π, then ∇o = 0.NCD 1.

If σ ∈ Γ(π) and, at a point p ∈M , σ(p) 6= 0, thenNCD 2.

∇σ is smooth in a neighbourhood of p.

For any sections σ1, σ2 in Γ(π) such that σ1(p) = σ2(p),NCD 3.

we have
(∇σ1)(p)− (∇σ2)(p) = vprE ◦

(
(σ1)∗(p)− (σ2)∗(p)

)
.

If, in addition,

NCD 4. ∇(tσ) = t∇σ for all σ ∈ Γ(π), t ∈ R

then ∇ is called a homogeneous nonlinear covariant derivative operator.

Example 1. If ∇ is a covariant derivative operator in π, then ∇ is a
homogeneous nonlinear covariant derivative as well.

Indeed, NCD 1 is satisfied according to Remark (2) in 1.41. NCD2
holds automatically, while NCD 4 is an immediate consequence of formula
(∗) in 1.41. To check NCD3, observe that σ1 may be written in the form

σ1 = σ2 + fs; f ∈ C∞(M), f(p) = 0; s ∈ Γ(π).

Now, using the cited formula (∗) and the preceding Lemma, we obtain

(∇σ1)(p)− (∇σ2)(p) =
[
∇(fs)

]
(p) = (df)p ⊗ s(p) + f(p)(∇σ)(p)

= (df)p ⊗ s(p) = vprE ◦
(
(σ1)∗(p)− (σ2)∗(p)

)
,

as was to be proved.

Proposition. If ∇ : Γ(π) −→ A1(M,π) is a homogeneous nonlinear covari-
ant derivative operator in π, then

∇(fσ) = df ⊗ σ + f ∇σ for all f ∈ C∞(M), σ ∈ Γ(π).

Proof. Let p be a point of M . Using the homogeneity of ∇ and NCD 3, it
follows at once that[

∇(fσ)
]
(p)− f(p)(∇σ)(p) =

[
∇(fσ)

]
(p)−

[
∇(f(p)σ)

]
(p) NCD3=

= vprE ◦
[
(fσ)∗(p)− (f(p)σ)∗(p)

]
.
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Since fσ = f(p)σ + (f − f(p))σ and (f − f(p))(p) = 0, the above lemma
yields the relation

vprE ◦
[
(fσ)∗(p)− (f(p)σ)∗(p)

]
=
[
d(f − f(p))

]
p
⊗ σ(p) = (df)p ⊗ σ(p),

thereby proving the proposition.

Example 2. Let H : π∗τM −→ τE be a horizontal map for π, and K the
connector belonging to H. Then

∇H : Γ(π) −→ A1(M,π), σ 7→ ∇Hσ := K ◦ σ∗

is a nonlinear covariant derivative operator for π.
Indeed, NCD 2 is satisfied automatically. According to the convention

declared in 2.13,

Ho(p)E := H0({o(p)} × TpM) := (o∗)p(TpM) for all p ∈M.

Thus for every vector v ∈ TpM we have

(∇Ho)p(v) = Ko(p)

[
(o∗)p(v)

]
= vprE ◦

(
1To(p)E −H0 ◦ j

)
(o∗)p(v)

= vprE
(
(o∗)p(v)−H0(o(p), v)

)
= vprE

(
(o∗)p(v)− (o∗)p(v))= 0.

This means that ∇Ho = 0, therefore NCD 1 also holds. Finally, let σ1 and
σ2 be two sections in Γ(π) such that σ1(p) = σ2(p). Denoting by v the
vertical projector belonging to H, we have

(∇Hσ1)(p)− (∇Hσ2)(p) = vprE ◦ v ◦
(
(σ1)∗(p)− (σ2)∗(p)

)
= vprE ◦

(
(σ1)∗(p)− (σ2)∗(p)

)
,

since, as can be seen from the proof of the lemma, (σ1)∗(p) − (σ2)∗(p) is
vertical-valued. Thus NCD3 is also valid for ∇H.

If, in addition,

(∗) (ctE)∗ ◦H = H ◦ ctπ∗TM for all t ∈ R,

then
ctE ◦K = K ◦ (ctE)∗ for all t ∈ R

also holds (and conversely). Therefore we get

∇H(tσ) = K ◦ (tσ)∗ = K ◦ (ctE ◦ σ)∗ = K ◦ (ctE)∗ ◦ σ∗

= ctE ◦K ◦ σ∗ = t∇Hσ
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for any section σ in Γ(π) and real number t. So we conclude that under the
homogeneity condition (∗) ∇H becomes a homogeneous nonlinear covariant
derivative.

Example 3. If ∇ is a covariant derivative operator in π, then the map

H∇ : (σ(p), v) ∈ E ×M TM 7→ H∇(σ(p), v)

:= (σ∗)p(v)−
(
vprE � Vσ(p)E

)−1((∇σ)p(v)
)
∈ TE

(σ ∈ Γ(π)) is a horizontal map for π and ∇H∇
= ∇. Then

H∇, h∇ := H∇ ◦ j, K∇ := vprE ◦ (1TE − h∇), H∇E := Im H∇

are called the horizontal map, the horizontal projector, the connector, and
the horizontal subbundle induced by ∇, respectively. These are clearly ho-
mogeneous in the sense discussed in 2.14, moreover they satisfy the ‘strong
homogeneity condition’ given by formula (∗) in the preceding Example.

2.16. Berwald derivative in V π.

Proposition 1. Let a horizontal map H be given in π. There is a unique
covariant derivative operator ∇ : X(E)× Xv(E) −→ Xv(E) in V π such that

∇σvsv = 0 for all σ, s ∈ Γ(π);

∇Xhsv = [Xh, sv] for all X ∈ X(M), s ∈ Γ(π)

where Xh is the H-horizontal lift of X ∈ X(M).

Proof. (1) Since X(E) = Xh(E) ⊕ Xv(E), and the C∞(E)-modules Xh(E)
and Xv(E) are locally generated by the H-horizontal lifts and the verti-
cal lifts of vector fields on M , ∇ is uniquely determined by the prescribed
conditions.

(2) Next, we show that there is a unique map

∇◦ : Xv(E)× Xv(E) −→ Xv(E)

satisfying formally the rules COVD1–COVD4 (i.e., ∇◦ is C∞(E)-linear in
its first variable, additive in its second variable, and obeys the Leibniz rule
∇◦ξfη = (ξf)η + f∇◦ξη for all ξ, η ∈ Xv(E), f ∈ C∞(E)) such that

∇◦σvsv = 0 for all σ, s ∈ Γ(π).



82 CHAPTER 2. CALCULUS OF VECTOR-VALUED FORMS. . .

By the above argument, the uniqueness statement is clear again. The
existence will be established by a local construction. Choose an adapted
chart (π−1(U), ((xi)n

i=1, (y
j)k

j=1)) for E. If

η ∈ Xv(E), η � π−1(U) =
k∑

j=1

ηj ∂

∂yj
,

then let

∇◦ξ(η � π−1(U)) :=
( k∑

j=1

ξηj
) ∂

∂yj
for all ξ ∈ Xv(E).

It can be seen at once that the operator

∇◦ : Xv(E)× Xv(π−1(U)) −→ Xv(π−1U))

satisfies the conditions COVD1–COVD4. In virtue of the definition and
2.4(2) it is also clear that

∇◦ξ(σv � π−1(U)) = 0 for all σ ∈ Γ(π), ξ ∈ Xv(E).

So it remains only to check that the construction of ∇◦ is consistent: if
(U, (ui)n

i=1) and (Ũ, (ũi)n
i=1) are overlapping charts, then∇◦ξ(η � π−1(U)) and

∇◦ξ(η � π−1(Ũ)) coincide on π−1(U∩Ũ). We may assume that Ũ is the domain
of a vector bundle chart as well; let ((x̃i)n

i=1, (ỹ
j)k

j=1) be the corresponding
adapted local coordinate system on π−1(Ũ). There exist unique smooth
functions

A`
j : U ∩ Ũ −→ R, (1 5 j, ` 5 k)

such that
∂

∂ỹj
=
(
A`

j ◦ π
) ∂

∂y`
(1 5 j 5 k).

(Here, and in the next short calculation, we use the summation convention:
for any pair of indices, if one is up and the other is down, we mean summation
from 1 to k.) The matrix (A`

j) is obviously invertible, let (Bj
` ) := (A`

j)
−1.

Suppose that η � π−1(Ũ) = η̃` ∂
∂ey` . Then η̃` =

(
B`

j ◦ π
)
ηj , and

∇◦ξ(η � π−1(Ũ)) :=
(
ξη̃`
) ∂

∂ỹ`
.

Over π−1(U ∩ Ũ) we have(
ξη̃`
) ∂

∂ỹ`
= ξ
[(
B`

j ◦ π
)
ηj
](
Am

` ◦ π
) ∂

∂ym
=
(
B`

jA
m
` ◦ π

)
(ξηj)

∂

∂ym
= (ξηj)

∂

∂yj
,
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as was to be checked.
(3) Having constructed the map ∇◦, let finally ∇ be defined as follows:

∇ξη := ∇◦vξη + v[hξ, η] for all ξ ∈ X(E), η ∈ Xv(E),

where h and v are the horizontal and the vertical projector belonging to
H. It may be seen at once that ∇ is additive in both its variables. For any
smooth function f ∈ C∞(E) we have

∇fξη := ∇◦v(fξ)η + v[h(fξ), η] = f∇◦vξη + fv[hξ, η]− v
(
(ηf)hξ

)
= f∇ξη;

∇ξfη := ∇◦vξfη + v[hξ, fη] = f∇◦vξη + fv[hξ, η] +
[
(vξ)f

]
η + v

[
(hξ)f

]
η

= f∇ξη +
[
(vξ + hξ)f

]
η = (ξf)η + f∇ξη,

so ∇ is indeed a covariant derivative operator in V π.

Remark. The covariant derivative operator described by Proposition 1 is
said to be the Berwald derivative induced by H in V π. The operator ∇◦
constructed in the course of the proof is called the canonical v-covariant
derivative in V π. In the case of the vertical bundle V τM to τM , the whole
tangent bundle τTM and the pull-back bundle τ∗MτM we shall present a direct
definition of ∇◦ later, see 2.33 and 2.42, Example 2.

Proposition 2. (Jaak Vilms) Let H be a horizontal map for π, v the
vertical projector belonging to H, and Ω the curvature of H. If ∇ is the
Berwald derivative induced by H in V π then

d∇v = Ω.

Proof. It is enough to check that the formula is true for pairs of vector fields
of the form

(σv, sv), (σv, Xh), (Xh, Y h); σ, s ∈ Γ(π); X,Y ∈ X(M).

In the first two cases the right-hand side vanishes automatically. The left-
hand side also gives zero, since, e.g.,

(d∇v)(σv, Xh)
1.43
:= ∇σvvXh −∇Xhvσv − v[σv, Xh] = −[Xh, σv] + [Xh, σv] = 0.

In the third case

(d∇v)(Xh, Y h) = ∇XhvY h −∇Y hvXh − v[Xh, Y h]

= −v[hXh,hY h] = Ω(Xh, Y h),

as was to be proved.
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C. Tensors along the tangent bundle projection.
Lifts

Basic conventions

(1) From now on the tangent bundle of a fixed n-dimensional manifold M
will be denoted by (TM, τ,M), abbreviated as τ . This τ will also be
mentioned as the tangent bundle projection.

(2) For coordinate calculations we choose a chart (U, (ui)n
i=1) on M and

employ the induced chart
(τ−1(U), (xi, yi)), xi := ui ◦ τ, yi : v ∈ τ−1(U) 7→ yi(v) := v(ui)
(1 5 i 5 n) on TM . The Einstein summation convention will be
used: an index occurring twice in a product, once as a subscript and
once as a superscript is to be summed from 1 to n (a superscript in a
denominator acts as a subscript).

(3) The big vertical morphism

τ∗τ −→ V τ, TM ×M TM −→ V TM

will be denoted by i, the strong bundle surjection

τTM −→ τ∗τ, w ∈ TTM 7→ (τTM (w), τ∗(w)) ∈ TM ×M TM

will be denoted by j, as in the general case discussed in 2.2 and 2.3.
Thus we can form the canonical short exact sequence

0 −→ τ∗τ
i−→ τTM

j−→ τ∗τ −→ 0,

or written otherwise,

0 −→ TM ×M TM
i−→ TTM

j−→ TM ×M TM −→ 0

arising from τ .

(4) C stands for the Liouville vector field on TM , fv := f ◦τ is the vertical
lift of a function f ∈ C∞(M) into C∞(TM).

2.17. Vector fields along τ . (1) A section of the transverse bundle τ∗τ
is called a vector field along τ . As we have learnt in 1.22 and 2.8, there is a
canonical isomorphism

Γ(τ∗τ) ∼= Γτ (τ).

We repeat how this isomorphism may be established.
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The fibres of τ∗τ are the n-dimensional real vector spaces

{v} × Tτ(v)M ∼= Tτ(v)M, v ∈ TM ;

therefore any section in Γ(τ∗τ) is of the form

X̃ : v ∈ TM 7→ X̃(v) = (v,X(v))

where X : TM −→ TM is a smooth map such that τ ◦X = τ :

TM M-τ

TM

6
X τ = X ◦ τ

�
�

�
��

In these terms, the map

X̃ ∈ Γ(τ∗τ) 7→ X ∈ Γτ (τ)

is an isomorphism of C∞(TM)-modules. We shall use the convenient,
‘neutral’ notation X(τ) for these isomorphic modules, so

X(τ) := Γ(τ∗τ) ∼= Γτ (τ).

(2) There is a distinguished section

δ : v ∈ TM 7→ δ(v) := (v, v) ∈ TM ×M TM

in Γ(τ∗τ), called the canonical vector field along τ . δ corresponds to the
identity map 1TM under the isomorphism Γτ (τ) ∼= Γ(τ∗τ) and it is in a
close relationship with the Liouville vector field, namely

i ◦ δ = C.

(3) For any vector field X on M , the map

X̂ : TM −→ TM ×M TM, v 7→ X̂(v) := (v,X ◦ τ(v))

is a section of τ∗τ , called the lift of X into X(τ) or a basic vector field along
the tangent bundle projection. X̂ may be identified with the map
X ◦ τ : TM −→ TM . Obviously, {X̂ | X ∈ X(M)} generates the C∞(TM)-
module X(τ) locally. In particular, the sections

∂̂
∂ui ←→ ∂

∂ui ◦ τ : v ∈ τ−1(U) 7→
(
v,
(

∂
∂ui

)
τ(v)

)
(1 5 i 5 n)
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form a local basis for X(τ).
(4) Let X ∈ X(M). Notice that for any tangent vector v ∈ TM ,

i ◦ X̂(v) := i(v,X ◦ τ(v)) = iv
(
X(τ(v))

) 2.4(4)
:=

[
X(τ(v))

]↑(v) 2.4(5)
:= Xv(v),

therefore
i ◦ X̂ = Xv.

(Less pedantically, instead of i ◦ X̂, j ◦ ξ (ξ ∈ X(TM)), etc., we shall also
write iX̂, jξ, etc.)

2.18. The vertical endomorphism. Consider the canonical short exact
sequence

0 −→ TM ×M TM
i−→ TTM

j−→ TM ×M TM −→ 0.

Due to its peculiarity, we may form the composition

J := i ◦ j : TTM −→ TTM

which is a particularly important canonical object. J is said to be the vertical
endomorphism of TTM or the canonical almost tangent structure on TM .
Obviously, J is a TM -morphism from τTM into τTM , i.e., J ∈ End(τTM ).
Since

End(τTM ) ∼= B1(TM) := A1(TM, τTM ) ∼= EndC∞(TM)(X(TM)) ∼= T1
1(TM),

we have an abundance of possibilities for an appropriate interpretation of
J . From the definition,

J2 = i ◦ j ◦ i ◦ j = i ◦ 0 ◦ j = 0,

i.e., J is a nilpotent endomorphism. Having a look at the diagrams

TTM TM×M TM-j

J

@
@

@
@

@@R
V TM ⊂ TTM

?

i and

X(TM) X(τ)-j

J

@
@

@
@

@@R
Xv(TM) ⊂ X(TM)

?

i

we see at once that

Im J = Im i = Ker j = KerJ = V TM
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and
Im J = KerJ = Xv(TM).

(As for the abuse of notation, see 2.8.) It follows that a vector field ξ on
TM is vertical if, and only if, Jξ = 0; in particular

JXv = 0 for all X ∈ X(M).

Coordinate description. Consider an induced chart (τ−1(U),((xi)n
i=1,(y

i)n
i=1))

on TM . If v ∈ τ−1(U) and w = wi
(

∂
∂xi

)
v

+ wn+i
(

∂
∂yi

)
v
∈ TvTM , then

J(w) = i ◦ j(w) = i
(
v, wi

(
∂

∂ui

)
τ(v)

)
=
(
wi

(
∂

∂ui

)
τ(v)

)↑
(v) = wi

(
∂

∂yi

)
v

,

therefore

J

(
∂

∂xi

)
=

∂

∂yi
, J

(
∂

∂yi

)
= 0 (1 5 i 5 n) .

Remark. With the help of the vertical endomorphism J the notion of a
semibasic form (see 2.7) on TM may be reformulated as follows:

α ∈ A(TM) is semibasic if iJξα = 0 for all ξ ∈ X(TM);

A ∈ B(TM) is semibasic if J ◦A = 0 and iJξA = 0 for all ξ ∈ X(TM).

2.19. Fundamental relations. Suppose that H is a horizontal map on
M and let V be the vertical map belonging to H (2.10). Then we have the
‘double exact sequence’

0 � TM ×M TM
i

�
V
TTM

j

�
H
TM ×M TM � 0.

The defining relations are

Im i = Ker j ⇒ j ◦ i = 0, j ◦H = 1TM×MTM ,

Im H = KerV ⇒ V ◦H = 0, V ◦ i = 1TM×MTM .

We recall that
h := H ◦ j and v = 1TTM − h
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are the horizontal and the vertical projectors belonging to H. We obtain
immediately that

v = i ◦ V,

J ◦ h = J, h ◦ J = 0

J ◦ v = 0, v ◦ J = J

.

It is also clear from the definitions (see 2.11(4) and 2.17(3)) that the
horizontal lift of a vector field X on M is just

Xh = H ◦ X̂.

For any vector fields X, Y on M we have

JXh = Xv, J [Xh, Y h] = [X,Y ]v.

Indeed,

JXh = i ◦ j ◦H ◦ X̂ = i ◦ X̂ 2.17(4)
= Xv.

As for the second relation, in the course of the proof of Lemma 2 in 2.11 we
have already shown that h[Xh, Y h] = [X,Y ]h. Hence

J [Xh, Y h] = J ◦ h[Xh, Y h] = J [X,Y ]h = [X,Y ]v.

Lemma. The map

F := H ◦ V− i ◦ j = H ◦ V− J

is an almost complex structure on the manifold TM , i.e,

F ∈ B1(TM) ∼= T1
1(TM) and F2 = −1TTM .

Proof. F2 = (H ◦V− i ◦ j) ◦ (H ◦V− i ◦ j) = H ◦ (V ◦H) ◦V− i ◦ (j ◦H) ◦V

−H ◦ (V ◦ i) ◦ j + J2 = −i ◦ V − H ◦ j = −(v + h) = −1TTM , and the
tensoriality of F is obvious.

The almost complex structure F is called the almost complex structure
associated to H. We obtain immediately from the definition and the pre-
ceding relations the following formulae:

F ◦ J = h, J ◦ F = v;

F ◦ h = −J, h ◦ F = F ◦ v = J + F,

v ◦ F = −J

.
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2.20. Complete lifts. The complete lift of a smooth function
f ∈ C∞(M) into C∞(TM) is the smooth function

f c : TM −→ R, v 7→ f c(v) := (df)τ(v)(v).

Then
(fh)c = f chv + fvhc for all f, h ∈ C∞(M).

Local description. f c � τ−1(U) = yi
(

∂f
∂ui ◦ τ

)
= yi

(
∂f
∂ui

)v
; in particular

(ui)c = yi (1 5 i 5 n).

Notice that (locally)

Cf c = C

(
yi

(
∂f

∂ui

)v)
2.4(2)
= C(yi)

(
∂f

∂ui

)v

= yi

(
∂f

∂ui

)v

= f c,

therefore the complete lift of a function is positive-homogeneous of degree 1.
By the same calculation we obtain that

Xvf c = (Xf)v for all f ∈ C∞(M) and X ∈ X(M).

Lemma 1. Any vector field on TM is uniquely determined by its action on
the complete lifts of smooth functions on M .

Proof. Let ξ be a vector field on TM . It is enough to check that if ξf c = 0
for any function f ∈ C∞(M), then ξ = 0. Applying this condition we have

0 =
1
2
ξ
(
(f2)c

)
=

1
2
ξ(2f cfv) = (ξf c)fv + f c(ξfv) = f c(ξfv).

Since f ∈ C∞(M) is arbitrary, we readily infer with the choices f := ui,
1 5 i 5 n that

ξ(xi) = 0 for all i ∈ {1, . . . , n}.
Hence ξ is vertical and, locally, we obtain that

ξ � τ−1(U) = ξ(yi)
∂

∂yi
= (ξ(ui)c)

∂

∂yi
= 0.

This proves the lemma.

Corollary 1 and definition. For any vector field X on M there is a
unique vector field Xc on TM such that

Xcf c = (Xf)c for all f ∈ C∞(M).

Xc is said to be the complete lift of X.
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Corollary 2. Let X be a vector field on M . Then

Xcfv = (Xf)v for all f ∈ C∞(M).

Proof. Using the same trick as above, we have on the one hand

1
2
Xc(f2)c = Xc(f cfv) = (Xcf c)fv + f c(Xcfv) = (Xf)cfv + f c(Xcfv).

On the other hand,

1
2
Xc(f2)c =

1
2
(Xf2)c =

[
f(Xf)

]c = f c(Xf)v + fv(Xf)c.

Comparing the right-hand sides of these relations, we obtain that
Xcfv = (Xf)v.

Coordinate expression. Let X � U = Xi ∂
∂ui , and suppose that

Xc � τ−1(U) = ξi ∂

∂xi
+ ξ̃i ∂

∂yi
.

Then

ξi = Xcxi = Xc(ui)v Cor. 2= (Xui)v = (Xi)v = Xi ◦ τ (1 5 i 5 n)

and

ξ̃i = Xcyi = Xc(ui)c := (Xui)c = (Xi)c = yj

(
∂X i

∂uj
◦ τ
)

(1 5 i 5 n),

therefore

Xc � τ−1(U) = (Xi ◦ τ) ∂

∂xi
+ yj

(
∂X i

∂uj
◦ τ
)
∂

∂yi
.

In particular, (
∂

∂ui

)c

=
∂

∂xi
(1 5 i 5 n).

Corollary 3. (1) JXc = Xv, jXc = X̂ for all X ∈ X(M).
(2) If H is a horizontal map on M with horizontal projector h, then

hXc = Xh for all X ∈ X(M).
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Proof. The first relation is obvious from the coordinate expressions. Writing
this in the form i ◦ jXc = iX̂, it follows that jXc = X̂. Thus

Xh 2.10= H ◦ X̂ = H ◦ jXc = hXc.

Corollary 4 (Local basis principles). If (Xi)n
i=1 is a frame field on a domain

U ⊂M , then (
(Xv

i )n
i=1, (Xc

i )
n
i=1

)
and

(
(Xv

i )n
i=1, (Xh

i )n
i=1

)
are frame fields on TM with domain τ−1(U).

This last observation provides a convenient tool for tensorial construc-
tions on TM . Namely, it may be stated that in order to determine uniquely
a tensor field on TM , it is sufficient to specify its action on the vertical and
on the complete (or on the horizontal) lifts of vector fields on M .

Example. Let a k-form α ∈ Ak(M) (k ∈ N∗) be given. The prescription

iXvαv := 0, αv(Xc
1, . . . , X

c
k) :=

[
α(X1, . . . , Xk)

]v
for all X,Xi ∈ X(M) (1 5 i 5 n)

determines uniquely a k-form αv on TM , called the vertical lift of α. The
vertical lift of a vector-valued k-form on M may be defined in the same way.
In particular, the vertical lift Av of a vector-valued one-form
A ∈ B1(M) ∼= T1

1(M) is given by

Av(Xv) = 0, Av(Xc) = bA(X)]v for all X ∈ X(M).

More specifically, for the vertical lift of the unit tensor field ιM ∈ T1
1(M) we

obtain:

ιvM (Xv) = 0, ιvM (Xc) = Xv for all X ∈ X(M).

In view of 2.18 and Corollary 3 this means that

J = ιvM .

Lemma 2. For any vector fields X, Y on M and function f ∈ C∞(M) we
have

(X + Y )c = Xc + Y c, (fX)c = fvXc + f cXv;

[X,Y ]c = [Xc, Y c], [Xv, Y c] = [X,Y ]v;

[C,Xv] = −Xv, [C,Xc] = 0.
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The proof is a routine verification. To convey a possible pattern, we
check the third and the last relation. Let f ∈ C∞(M). Then

[X,Y ]cf c :=
(
[X,Y ]f

)c =
[
X(Y f)

]c − [Y (Xf)
]c

= Xc(Y cf c)− Y c(Xcf c) = [Xc, Y c]f c,

hence, by Lemma 1, [X,Y ]c = [Xc, Y c]. Similarly,

[C,Xc]f c = C(Xcf c)−Xc(Cf c) = C(Xf)c −Xcf c = (Xf)c −Xcf c = 0,

and so [C,Xc] = 0.

2.21. One-forms along τ . (1) To make the relationship between the
investigated objects more transparent, first we have a look at the general
situation. Let (E, π,M) be a vector bundle, and consider the pull-back of
the cotangent bundle (T ∗M, τ∗,M) by π. Then we obtain the vector bundle
π∗τ∗ = (E ×M T ∗M,p1, E), displayed by the commutative diagram

E M-
π

E×M T ∗M T ∗M-p2

?

p1

?

τ∗

,

p1 := pr1 � E ×M T ∗M,

p2 := pr2 � E ×M T ∗M
.

π∗τ∗ is called the transverse cotangent bundle to π. This bundle is strongly
isomorphic to the dual of the transverse bundle π∗τ to π (2.3), i.e.,

π∗τ∗ ∼= (π∗τ)∗ .

Indeed, the fibres of π∗τ and π∗τ∗ over a point z ∈ E are the vector spaces

{z} × Tπ(z)M and {z} × T ∗π(z)M

which are dual to each other. Thus 1.23(1) can be applied to conclude

Γ(π∗τ∗) ∼=
[
Γ(π∗τ)

]∗ ∼= [X(π)
]∗
.

(2) Now we turn to the case when the role of the vector bundle (E, π,M)
is played by the tangent bundle (TM, τ,M). Then we obtain the transverse
cotangent bundle τ∗τ∗ = (TM ×M T ∗M, τ1, TM), diagrammatically
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TM M-
τ

TM×M T ∗M T ∗M-τ2

?

τ1

?

τ∗

;

τ1 := pr1 � TM ×M T ∗M,

τ2 := pr2 � TM ×M T ∗M.

In view of our preliminary remarks, τ∗τ∗ ∼= (τ∗τ)∗, therefore

Γ(τ∗τ∗) ∼=
[
Γ(τ∗τ)

]∗ ∼= bX(τ)]∗ =: X∗(τ) .

For either of these isomorphic C∞(TM)-modules we use the convenient
notation A1(τ); elements of A1(τ) are said to be one-forms along τ . As
in the dual case of vector fields along τ , a section α̃ ∈ Γ(τ∗τ∗) acts as
follows: {

α̃ : v ∈ TM 7→ α̃(v) := (v, α(v)) ∈ TM ×M T ∗M,

α ∈ C∞(TM,T ∗M), τ∗ ◦ α = τ.

We shall freely use the identification

α̃ ∈ Γ(τ∗τ∗)←→ α ∈ C∞(TM,T ∗M), τ∗ ◦ α = τ.

Example. Let α be a one-form on M . Then the map

α̂ : v ∈ TM 7→ α̂(v) :=
(
v, α[τ(v)]

)
∈ TM ×M T ∗M

is a section of τ∗τ∗ ∼= (τ∗τ)∗, which corresponds to the map
α ◦ τ ∈ C∞(TM,T ∗M) under the above identification. α̂ is called the lift of
α into A1(τ) or a basic one-form along τ . Clearly, A1(τ) is locally generated
by the set {α̂ | α ∈ A1(M)} of all basic one-forms along τ . In particular,
the sections

d̂ui ←→ dui ◦ τ : v ∈ τ−1(U) 7→ (v, (dui)τ(v)) (1 5 i 5 n)

form a local basis for A1(τ).

Lemma. The C∞(TM)-module of one-forms along τ is canonically isomor-
phic to the module of semibasic one-forms on TM , the canonical isomor-
phism being given by the map{

α̃ ∈ A1(τ) 7→ (α̃)0 ∈ A1(TM),
∀ξ ∈ X(TM) : (α̃)0(ξ) := α̃(jξ).
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Under this isomorphism the basic one-forms along τ and the vertical lifts of
one-forms on M correspond to each other:

(α̂)0 = αv for all α ∈ A1(M).

Proof. (1) For every vector field ξ on TM ,

(α̃)0(Jξ) := α̃(j ◦ i ◦ jξ) = α̃(0ξ) = 0,

so (α̃)0 is indeed semibasic.

(2) The map α̃ ∈ A1(τ) 7→ (α̃)0 ∈ A1
0(TM) is injective. In fact, if

(α̃)0 = (β̃)0, then α̃(jξ) = β̃(jξ) for all ξ ∈ X(TM). As j : X(TM) −→ X(τ)
is surjective, this implies that α̃ = β̃.

(3) We show that the map α̃ 7→ (α̃)0 is surjective as well. Let β be any
semibasic one-form on TM . Consider the map α̃ given by

α̃(X̃) := β(HX̃) for all X̃ ∈ X(τ),

where H is an arbitrary horizontal map on M . Then α̃ is well-defined.
Indeed, if H1 is another horizontal map on M , then

J(H1X̃ −HX̃) = i ◦ j ◦H1(X̃)− i ◦ j ◦H(X̃) = iX̃ − iX̃ = 0,

hence H1X̃ − HX̃ is vertical, and so β(H1X̃) = β(HX̃), therefore α̃(X̃)
does not depend on the choice of H. Since the C∞(TM)-linearity is obvious,
α̃ ∈ A1(τ). For every vector field ξ on TM we have

(α̃)0(ξ) := α̃(jξ) := β(H ◦ jξ) = β(hξ) = β(ξ − vξ) = β(ξ)− β(JFξ) = β(ξ)

(h and v are the projectors belonging to H, F is the almost complex struc-
ture associated to H), therefore (α̃)0 = β, which proves the surjectivity.

(4) Let, finally, α ∈ A1(M). For every vector field X on M ,

(α̂)0(Xc) := α̂(jXc) 2.20 Cor. 3= α̂(X̂) = α(X) ◦ τ =
(
α(X)

)v = (αv)(Xc),

whence (α̂)0 = αv.

2.22. Tensor fields and differential forms along τ . (1) In 1.23 we
introduced the terminology ‘π-tensor field’ and the notation Γr

s(π) for the
module of type (r, s) π-tensor fields. Thus, in particular, we may also speak
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of ‘τ∗τ -tensor fields’ and the C∞(TM)-module Γr
s(τ

∗τ). According to the
general case, Γr

s(τ
∗τ) is constituted by the C∞(TM)-multilinear maps

bΓ(τ∗τ)]∗ × · · · × [Γ(τ∗τ)]∗︸ ︷︷ ︸
r times

×Γ(τ∗τ)× · · · × Γ(τ∗τ)︸ ︷︷ ︸
s times

−→ C∞(TM).

In view of our previous considerations,

[Γ(τ∗τ)]∗ ∼= Γ(τ∗τ∗) ∼= [X(τ)]∗ =: A1(τ), Γ(τ∗τ) = X(τ),

so Γr
s(τ

∗τ) may be regarded as the C∞(TM)-module of multilinear maps

A1(τ)× · · · ×A1(τ)︸ ︷︷ ︸
r times

×X(τ)× · · · × X(τ)︸ ︷︷ ︸
s times

−→ C∞(TM).

By abuse of notation, we shall write Tr
s(τ) instead of Γr

s(τ
∗τ);

T••(τ) := ⊕
(r,s)∈N×N

Tr
s(τ). Elements of Tr

s(τ) will usually be mentioned as

tensor fields of type (r, s) along τ . As in the special cases discussed in 2.17
and 2.21, any tensor in Tr

s(τ) may be identified with a smooth map

A : TM −→ Tr
sM(:= Tr

sTM) satisfying τ r
s ◦A = τ

(τ r
s is the canonical projection of Tr

sM onto M). In particular, the basic
tensor fields along τ are of the form A ◦ τ , A ∈ T••(M), denoted by Â. Â is
also called the lift of A into T••(τ).

(2) In view of 1.23(4b),

Ak(τ) := Ak(τ∗τ) := Γ(∧k(τ∗τ)∗) ∼= ∧k
C∞(TM)Γ(τ∗τ)

∼= ∧k
C∞(TM)(Γ(τ∗τ))∗ = ∧k

C∞(TM)bX(τ)]∗ ∼=
(
Lk

skew

)
C∞(TM)

X(τ)

(k ∈ N, A0(τ) := C∞(TM)), so elements of Ak(τ) may be regarded as
skew-symmetric C∞(TM)-multilinear maps

X(τ)× · · · × X(τ)︸ ︷︷ ︸
k times

−→ C∞(TM).

Ak(τ) is called the module of k-forms along τ , A(τ) :=
n
⊕

k=1
Ak(τ) is the

Grassmann algebra of differential forms along τ (with multiplication given
by the wedge product). B(τ) := A(τ)⊗X(τ) is the C∞(TM)-module of τ∗τ -
valued forms, or simply vector-valued forms along τ . So a vector-valued k-
form along τ may be interpreted as a skew-symmetric C∞(TM)-multilinear
map

X(τ)× · · · × X(τ)︸ ︷︷ ︸
k times

−→ X(τ),
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if k ∈ N∗; B0(τ) := X(τ).

Lemma 1. Let k ∈ N∗. Ak(τ) is canonically isomorphic to the C∞(TM)-
module Ak

0(TM) of semibasic k-forms on TM , the canonical isomorphism
being given by{

α̃ ∈ Ak(τ) 7→ (α̃)0 ∈ Ak
0(TM),

(α̃)0(ξ1, . . . , ξk) := α̃(jξ1, . . . , jξk) (ξi ∈ X(TM), 1 5 i 5 k).

In the same way, there is a canonical isomorphism

Bk(τ) ∼= Bk
0(TM) ,

given byÃ ∈ Bk(τ) 7→ (Ã)0 ∈ Bk
0(TM)

(Ã)0(ξ1, . . . , ξk) := iÃ(jξ1, . . . , jξk) (ξi ∈ X(TM), 1 5 i 5 k).

Finally, the elements of T0
s(τ) and T1

s(τ) may be identified with the semibasic
tensors in T0

s(TM) and T1
s(TM) respectively, by the same construction.

The proof is essentially the same as the proof of the analogous Lemma
in 2.21 and is omitted. Notice, carrying on the analogy, that under the
isomorphism Ak(τ) ∼= Ak

0(TM) the basic k-forms along τ and the vertical
lift of k-forms on M correspond to each other:

(α̂)0 = αv for all α ∈ Ak(M).

Lemma 2. Let k ∈ N∗. For any (k + 1)-form α ∈ Ak+1(M), the map{
ᾱ : TM −→ Ak(TM), v 7→ ᾱv ∈ Ak(Tτ(v)M)

ᾱv(v1, . . . , vk) := ατ(v)(v, v1, . . . , vk) (vi ∈ Tτ(v)M, 1 5 i 5 k)

is a k-form along τ . In particular, if k = 1 then

ᾱ : TM −→ R, v 7→ ᾱ(v) := ατ(v)(v)

is a smooth function on TM . More specifically,

df = f c for all f ∈ C∞(M).

Similarly, for any vector-valued (k + 1)-form A ∈ Bk+1(M), the map{
Ā : v ∈ TM 7→ Āv ∈ Lk

skew(Tτ(v)M,Tτ(v)M),

Āv(v1, . . . , vk) := Aτ(v)(v, v1, . . . , vk)

is a vector-valued k-form along τ .
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Proof. Routine verification.

Note. Tensor fields along the tangent bundle projection are also called
Finsler tensor fields, see e.g. Z. I. Szabó’s paper [71]. This concept of
Finsler tensor fields is essentially the same as M. Matsumoto’s concept in
the principal bundle framework.

2.23. Finsler metrics, Sasaki lift, Kähler lift.

Definition 1. A Finsler metric on a manifold M is a pseudo-Riemannian
or Riemannian metric in the pull-back bundle τ∗τ , i.e., a type (0, 2) tensor
field along τ , having the following properties:

F1. g is symmetric, i.e., g(X̃, Ỹ ) = g(Ỹ , X̃) for any vector fields X̃, Ỹ
along τ .

F2. g is non-degenerate, i.e., if g(X̃, Ỹ ) = 0 for any vector field Ỹ along τ ,
then X̃ = 0

or

F∗ 2. g is positive definite, i.e., for any v ∈ TM , gv : Tτ(v)M × Tτ(v)M −→ R
is a positive definite bilinear form.

If g satisfies the stronger condition F∗ 2, we say that g is a positive definite
Finsler metric on M . A manifold endowed with a Finsler metric is said to
be a generalized Finsler manifold . If g is a positive definite Finsler metric
on M , the (M, g) – or simply M – is called a positive definite generalized
Finsler manifold . In a generalized Finsler manifold (M, g) the real number

‖w‖v :=
√
|gv(w,w)|

is said to be the norm or length of the vector

w ∈ (TM ×M TM)v = {v} × Tτ(v)M

with respect to the ‘supporting element’ v; ‖w‖ := ‖w‖w is also mentioned
as the absolute length of w.

Example. If (M, gM ) is a pseudo-Riemannian manifold then (M, ĝM ) is a
generalized Finsler manifold. From another direction, if (M, g) is a gener-
alized Finsler manifold and there is a pseudo-Riemannian metric gM on M
such that g = ĝM , then we say that (M, g) reduces to a pseudo-Riemannian
manifold.
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Remark. In accordance with a more systematic view on generalized Finsler
manifolds and Finsler manifolds in Chapter 3, smoothness of a Finsler metric
will be required, only over the deleted bundle

◦
τ∗τ .

Definition 2 and lemma. Suppose that H is a horizontal map on the
manifold M . Let V and F be the vertical map and the almost complex
structure belonging to H, respectively. Consider a symmetric tensor field
g ∈ T0

2(τ) along τ .

(i) The map gS given by

gS(ξ, η) := g(Vξ,Vη) + g(jξ, jη) for all ξ, η ∈ X(TM)

is a symmetric tensor field of type (0, 2) on TM , called the Sasaki lift
of g. If g is a Finsler metric on M , then gS is a pseudo-Riemannian
metric on TM .

(ii) Let
gK(ξ, η) := gS(ξ,Fη) for all ξ, η ∈ X(TM).

Then gK is a two-form on TM , called the Kähler lift of g.

Concerning the Sasaki lift and the Kähler lift, we have the following rela-
tions:

(1) gS(Xv, Y v) = gS(Xh, Y h) = g(X̂, Ŷ ), gS(Xv, Y h) = 0
for all X,Y ∈ X(M).

(2) gS(ξ, η) = gS(Fξ,Fη) (ξ, η ∈ X(TM)), i.e., gS is ‘Hermitian’ with
respect to the almost complex structure F.

(3) gK(Xv, Y v) = gK(Xh, Y h) = 0, gK(Xv, Y h) = −gK(Y h, Xv)
(X,Y ∈ X(M)), therefore gK is indeed a two-form on TM .

Proof. It is enough to verify that the formulae (1)–(3) are valid. Applying
the results collected in 2.19, we get

gS(Xv, Y v) = g(V ◦ iX̂,V ◦ iŶ ) + g(j ◦ iX̂, j ◦ iŶ ) = g(X̂, Ŷ ),

gS(Xh, Y h) = g(V ◦HX̂,V ◦HŶ ) + g(j ◦HX̂, j ◦HŶ ) = g(X̂, Ŷ ),

gS(Xv, Y h) = g(V ◦ iX̂,V ◦HŶ ) + g(j ◦ iX̂, j ◦HŶ ) = 0,

whence (1). Taking into account that

FXv = F ◦ JXh = hXh = Xh and FXh = F ◦ hXh = −JXh = −Xv,
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we obtain

gS(FXv,FY v) = gS(Xh, Y h) = g(Xv, Y v),

gS(FXh,FY h) = gS(−Xv,−Y v) = gS(Xv, Y v),

gS(FXv,FY h) = gS(Xh,−Y v) = 0 = gS(Xv, Y h),

which proves (2). In a similarly way,

gK(Xv, Y v) := gS(Xv,FY v) = gS(Xv, Y h) = 0, gK(Xh, Y h) = 0.

Finally,

gK(Xv, Y h) := gS(Xv,FY h) = −gS(Xv, Y v) = −gS(Y v, Xv)
(1)
=

= −gS(Y h, Xh) = −gS(Y h,FXv) =: −gK(Y h, Xv).

This concludes the proof of the lemma.
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D. The theory of A. Frölicher and A. Nijenhuis

In this section E is an m-dimensional manifold
satisfying the conditions fixed in 1.4.

2.24. Generalities on graded derivations of A(E). The purely alge-
braic concept of a graded derivation of a graded algebra is presented in
the Appendix, see A.7. In the case of the Grassmann algebra A(E) the
smooth structure of E involves some important analytical consequences to
be compared with properties (1) and (2) of tensor derivations in 1.32.

Lemma 1. Graded derivations of the Grassmann algebra A(E) are local
operators: if D : A(E) −→ A(E) is a graded derivation, then for each open
subset U of E and each differential form α ∈ A(E) such that α � U = 0, we
have (Dα) � U = 0.

The proof is identical with the proof of the analogous statement for
tensor derivations.

Lemma 2. Graded derivations of the Grassmann algebra A(E) are natural
with respect to restrictions in the sense of 1.32(2).

Strategy of proof. Let D : A(E) −→ A(E) be a graded derivation. Suppose
that U is a nonempty open subset of E and let α be a differential form on
U. Choose a point p ∈ U. Let f ∈ C∞(E) be a ‘bump function’ at p such
that {

Im f = [0, 1], supp(f) ⊂ U,

f is identically 1 in a neighbourhood of p.

Define the operator DU as follows:{
(DUα)(p) := (Dβ)(p), where

β := (f � U)α over U, and β := 0 outside U.

Then:

(1) DU is well-defined, i.e., it does not depend on the choice of the bump
function f . (This is a consequence of Lemma 1.)

(2) DU is a graded derivation of A(U).

(3) DU has the desired naturality property.
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(4) DU is uniquely determined by the naturality condition.

The operator DU is called the restriction of D to U. By a less confusing
abuse of notation, instead of DU we shall also write D.

Proposition. Every graded derivation on A(E) is determined by its action
on A0(E) = C∞(E) and A1(E) ∼= [X(E)]∗ = X∗(E).

Proof. Let D be a graded derivation of degree r on A(E). Due to Lemma 2,
we can restrict ourselves to a chart (U, (xi)m

i=1) on E. Since D is additive,
it is sufficient to consider only k-forms of the form

α = fdxi1 ∧ · · · ∧ dxik , f ∈ C∞(U).

Then, taking into account Appendix A.7, Lemma 1,

D(fα) = (Df) ∧ dxi1∧ · · · ∧ dxik+fD(dxi1 ∧ · · · ∧ dxik)=(Df) ∧ dxi1∧ · · · ∧ dxik

+ f
k∑

j=1

(−1)r(j−1)dxi1 ∧ · · · ∧Ddxij ∧ · · · ∧ dxik ,

which proves the Proposition.

Corollary. Every map A0(E)⊕A1(E) −→ A(E) satisfying the formal rules
for a graded derivation can be uniquely extended to a graded derivation of
A(E).

2.25. Algebraic derivations.

Definition. A graded derivation D of A(E) is said to be algebraic or of type
i∗ if it acts trivially on the smooth functions, i.e., D � C∞(E) = 0.

Note. Substitution operators iξ (ξ ∈ X(E), see 1.38) are the prototypes of
algebraic graded derivations, hence the term ‘type i∗’.

Lemma. Any algebraic derivation is determined by its action on the module
of one-forms.

Proof. Let D : A(E) −→ A(E) be an algebraic derivation of degree r. First
observe that D is C∞(E)-linear: for every function f ∈ C∞(E) and differ-
ential form α ∈ A(E) we have

D(fα) = D(f ∧ α) = (Df) ∧ α+ (−1)0·rf ∧ (Dα) = f ∧ (Dα) = f(Dα).

Since every differential form may be represented locally as a C∞(E)-linear
combination of one-forms and D is natural with respect to restrictions, the
assertion immediately follows.
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Note. We see that the algebraic derivations have a tensorial character, hence
the attribute ‘algebraic’.

Proposition. If L ∈ B`(E) is a vector-valued `-from on E then the map

iL : A(E) −→ A(E), α 7→ iLα := α ∧̄L

(see 1.37(4)) is an algebraic derivation of degree `− 1 of A(E). Conversely,
if D : A(E) −→ A(E) is an algebraic derivation of degree ` − 1 = −1, then
there is a unique vector-valued `-from L on E such that D = iL.

Proof. Using the definition of the wedge-bar product introduced in 1.37(4),
a somewhat lengthy but straightforward calculation shows that

iL(α ∧ β) := (α ∧ β) ∧̄L = (α ∧̄L) ∧ β + (−1)k(l−1)α ∧ (β ∧̄L)

for every α ∈ Ak(E), β ∈ A(E); therefore iL is a graded derivation of degree
`− 1 of A(E).

Conversely, suppose that D : A(E) −→ A(E) is a graded derivation of
degree `−1 = −1. Define a map L : A1(E)× [X(E)]` −→ C∞(E) by the rule

L(α, ξ1, . . . , ξ`) := (Dα)(ξ1, . . . , ξ`); α ∈ A1(E), ξi ∈ X(E) (1 5 i 5 `).

Then L is automatically C∞(E)-multilinear and skew-symmetric in its vec-
tor field variables. Since D is algebraic and hence tensorial, for any function
f ∈ C∞(E) we have

L(fα, ξ1, . . . , ξ`) := [D(fα)](ξ1, . . . , ξ`) = f(Dα)(ξ1, . . . , ξ`) =:
= fL(α, ξ1, . . . , ξ`),

therefore L ∈ A`(E, τE) = B`(E).
Now, in view of 1.37(4), Example (2) for any one-form α ∈ A1(E) and

vector fields ξ1, . . . , ξ` on E we have

iLα(ξ1, . . . , ξ`) = α ∧̄L(ξ1, . . . , ξ`) = α(L(ξ1, . . . , ξ`)) = L(α, ξ1, . . . , ξ`)
= (Dα)(ξ1, . . . , ξ`);

consequently iLα = Dα, as was to be proved. The uniqueness of the desired
vector-valued `-form is clear.

2.26. The main theorem.

Lemma and definition. (1) Let K be a vector-valued k-form on E. Then

dK := [iK , d] := iK ◦ d− (−1)k−1d ◦ iK
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is a graded derivation of degree k on A(E), called the Lie derivative with
respect to K or a (graded) derivation of type d∗ of A(E).

(2) The map K ∈ A(E) 7→ dK ∈ Der A(E) is an injective map from the
Grassmann algebra A(E) into the graded Lie algebra of graded derivations
of A(E).

Proof. The purely algebraic first assertion is a consequence of A.7, Lemma 2.
As for the second assertion, for any function f ∈ C∞(E) we have

dKf = (iK ◦ d− (−1)kd ◦ iK)f = iKdf := df ∧̄K = df ◦K

(see 1.37(4), Example (2)). Now it is readily seen that dK1 = dK2 , implies
K1 = K2.

Theorem. (A. Frölicher and A. Nijenhuis). (1) Every graded derivation D

of A(E) of degree k can be written uniquely as D = dK + iL, where K is a
vector-valued k-form, L is a vector-valued k + 1-form on E.

(2) In a decomposition D = dK+iL L vanishes if, and only if, [D, d] = 0;
K vanishes if, and only if, D is an algebraic derivation.

(3) If K ∈ B0(E), i.e., if K is a vector field ξ on E, then dK coincides
with the ‘ordinary’ Lie derivative dξ; if L ∈ B0(E), i.e., if L is a vector field
η on E, then iL coincides with the substitution operator induced by L.

(4) If L is a vector-valued one-form on E, i.e.
L ∈ B1(E) := A1(E, τE) ∼= T1

1(E), then for every k-form α on E we have

iLα(ξ1, . . . , ξk) =
k∑

j=1

α(ξ1, . . . , Lξj , . . . , ξk) (ξi ∈ X(E), 1 5 i 5 k).

In particular, iιEα = kα.

Proof. (1) Let ξi ∈ X(E) (1 5 i 5 k) be fixed but arbitrarily chosen vector
fields on E. The map

f ∈ C∞(E) 7→ (Df)(ξ1, . . . , ξk) ∈ C∞(E)

is obviously a derivation of the real algebra C∞(E), so by 1.26 it comes from
a unique vector field on E. It is reasonable to denote this vector field by
K(ξ1, . . . , ξk). Then

(Df)(ξ1, . . . , ξk) = K(ξ1, . . . , ξk)f = df(K(ξ1, . . . , ξk)) for all f ∈ C∞(E).
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Thus we obtain a map

K : [X(E)]k −→ X(E), (ξ1, . . . , ξk) 7→ K(ξ1, . . . , ξk),

which is clearly C∞(E)-multilinear and skew-symmetric; therefore K is a
vector-valued k-form on E. By the construction of K, for any function
f ∈ C∞(E) we have Df = df ◦ K = dKf (see the proof of the Lemma).
From this it follows that D − dK is an algebraic derivation of degree k of
A(E). Thus, in view of the Proposition in 2.25, there is a unique vector-
valued (k + 1)-form L on E such that D − dK = iL. Hence D = dK + iL;
this proves that D has the desired decomposition. The uniqueness of the
vector-valued forms K and L is clear from the argument.

(2) Now we turn to the second assertion. Using the graded Jacobi iden-
tity (see A.7 (3)), the fact [d, d] = 0 (1.40(6)), the definition of dK , and the
graded anticommutativity, we have

0 = (−1)k−1[iK , [d, d]] + (−1)k−1[d, [d, iK ]] + (−1)1·1[d, [iK , d]]

= (−1)k−1 · (−1)k[d, [iK , d]]− [d, dK ] = −2[d, dK ] = 2(−1)k[dK , d].

Hence
[D, d] = [dK , d] + [iL, d] = [iL, d] =: dL.

In view of the preparatory Lemma, the map L 7→ dL is injective. So we may
conclude that [D, d] = 0 if, and only if, L = 0.

IfK = 0, then D = dK+iL is obviously an algebraic derivation. Suppose,
conversely, that D is algebraic. Then for any function f ∈ C∞(E) we have

0 = Df = dKf + iLf = dKf = iKdf.

In virtue of the Proposition in 2.24, this implies that iK = 0, whence K = 0.
This concludes the proof of assertion (2).

(3) If L := η ∈ X(E) = B0(E), then, in view of Example (2) of 1.37(4),

iηα := α ∧̄η = α(η) for any one-form α on E,

so we obtain the substitution operator induced by η. If
K := ξ ∈ X(E) = B0(E), then dξ := [iξ, d] is the usual Lie derivative with
respect to ξ, cf. 1.40(3).

(4) Our last assertion is merely a restatement of the result 1.37(4),
Example (1).
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Remark. dιE = d. Indeed, for any k-form α on E we have

dιEα := [iιE , d]α = iιEdα− diιEα = (k + 1)dα− kdα = dα.

2.27. Summary. For the reader’s convenience and for easy reference, we
summarize the main results of subsections 2.24–2.26.

1. The graded derivations of the Grassmann algebra A(E) are local and,
with respest to restrictions, natural operators.

2. Every graded derivation is determined by its action on the ring of
smooth functions and on their differentials.

3. Each graded derivation D of degree ` − 1 = −1 that acts trivially on
A0(E) = C∞(E) is uniquely determined by a vector-valued form L of
degree ` over E, namely D = iL. If α is a one-form on E, then

iLα(ξ1, . . . , ξ`) = α
(
L(ξ1, . . . , ξ`)

)
(ξi ∈ X(E), 1 5 i 5 `),

and iL is determined by this rule.

4. Each graded derivation D of degree k which commutes with d, i.e.
satisfies D◦d = (−1)kd◦D, is uniquely determined by a vector-valued
form K of degree k such that

D = dK = [iK , d] = iK ◦ d− (−1)k−1d ◦ iK .

For any function f ∈ C∞(E) we have dKf = iK ◦ df , and dK is
determined by this relation.

5. Every graded derivation of degree k of A(E) is the sum of two graded
derivations of degree k, one of each of the kinds mentioned in 3 and 4.

2.28. The Frölicher–Nijenhuis bracket.

Lemma. The graded commutator of two algebraic (resp. Lie) derivations
is also an algebraic (resp. Lie) derivation.

Proof. Let K ∈ Bk(E), L ∈ B`(E). In view of 2.27,3,4 it is enough to show
that

[iK , iL] � C∞(E) = 0 and
[
[dK , dL], d

]
= 0.

The first of these relations is obvious. Applying the graded Jacobi identity
and 2.27,4, we obtain that

0 = (−1)`[d, [dK , dL]
]
+ (−1)k

[
dK , [dL, d]

]
+ (−1)k`

[
dL, [d, dK ]

]
= (−1)`

[
d, [dK , dL]

]
.

This proves the second relation.



106 CHAPTER 2. CALCULUS OF VECTOR-VALUED FORMS. . .

Corollary 1 and definition. For any two vector-valued forms K ∈ Bk(E),
L ∈ B`(E) there exists a unique vector-valued (k+ `)-form [K,L] on E such
that

[dK , dL] = d[K,L].

The vector-valued form [K,L] is said to be the Frölicher–Nijenhuis bracket
of K and L.

Proof. In view of the previous Lemma, [dK , dL] is a Lie derivation of degree
k + ` of A(E). Then 2.27, 4 guarantees that there exists a unique vector-
valued (k + `)-form F ∈ Bk+`(E) such that [dK , dL] = dF . Now with the
only possible choice [K,L] := F our claim follows.

Proposition. (1) The real vector space B(E) :=
m
⊕

k=0
Bk(E) of vector-valued

forms on E is a graded Lie algebra with the multiplication given by the
Frölicher–Nijenhuis bracket. Thus for any vector-valued forms Ki ∈ Bki(E)
(1 5 i 5 3) we have the graded anticommutativity

[K1,K2] = −(−1)k1k2 [K2,K1]

and the graded Jacobi identity

(−1)k1k3 [K1, [K2,K3]] + (−1)k2k1 [K2, [K3,K1]] + (−1)k3k2 [K3, [K1,K2]] = 0.

(2) The unit tensor field ιE ∈ T1
1(E) ∼= B1(E) is in the centre of the

algebra B(E), i.e.,

[K, ιE ] = 0 for all K ∈ B(E).

(3) The map K ∈ B(E) 7→ dK ∈ Der A(E) is an injective homomorphism
of graded Lie algebras.

(4) If K,L ∈ B0(E) = X(E), then [K,L] is the usual Lie bracket of
vector fields.

(5) If K ∈ B0(E) = X(E), L ∈ B`(E), then [K,L] is the Lie derivative
of L with respect to K.

Proof. (1) d[K1,K2] := [dK1 , dK2 ] = dK1 ◦ dK2 − (−1)k1k2dK2 ◦ dK1 =
−(−1)k1k2(dK2 ◦ dK1 − (−1)k2k1dK1 ◦ dK2) = −(−1)k1k2 [dK2 , dK1 ] =:
d−(−1)k1k2 [K2,K1], whence the graded anticommutativity. The graded Jacobi
identity may be obtained in the same way.

(2) Taking into account the Remark in 2.26, we have

d[K,ιE ] = [dK , dιE ] = [dK , d]
2.27, 4

= 0.
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(3) This property is an immediate consequence of the definitions.
(4) For the moment let us denote [ , ]FN and [ , ]Lie the Frölicher–

Nijenhuis bracket and the Lie-bracket, respectively. Then for any vector-
valued null-forms K := ξ, L := η on E we have

dKf
2.27, 4

= iK ◦ df = df(K) = ξf,

and similarly, dLf = ηf , d[K,L]FNf = [ξ, η]FNf . On the other hand,

d[K,L]FNf = [dK , dL]f = [dξ, dη]f = dξ(dηf)− dη(dξf)

= dξ(ηf)− dη(ξf) = ξ(ηf)− η(ξf) =: [ξ, η]Lief,

therefore [ξ, η]FN = [ξ, η]Lie.
(5) Again, let ξ ∈ X(E) and K := ξ. Then, on the one hand, for any

function f ∈ C∞(E) we have

d[ξ,L]f = i[ξ,L]df = df ◦ [ξ, L].

Hence, for any `-tuple (ξ1, . . . , ξ`) (ξi ∈ X(E), 1 5 i 5 `),(
d[ξ,L]f

)
(ξ1, . . . , ξ`) = df([ξ, L](ξ1, . . . , ξ`)) = ([ξ, L](ξ1, . . . , ξ`))f.

On the other hand,

d[ξ,L]f = [dξ, dL]f = dξ(iLdf)− dL(ξf) = dξ(iLdf)− iLd(ξf)

=dξ(iLdf)− d(ξf) ∧̄L.

Applying 1.33, Corollary (2) and 1.37(4), Example (2), we evaluate the right-
hand side on the `-tuple (ξ1, . . . , ξ`). We obtain:

(dξ(iLdf)− d(ξf) ∧̄L)(ξ1, . . . , ξ`) = ξ((iLdf)(ξ1, . . . , ξ`))

−
∑̀
j=1

(iLdf)(ξ1, . . . , [ξ, ξj ], . . . , ξ`)− d(ξf)(L(ξ1, . . . , ξ`))

= ξ[df(L(ξ1, . . . , ξ`))]−L(ξ1, . . . , ξ`)(ξf)− df
(∑̀

j=1

L(ξ1, . . . , [ξ, ξj ], . . . , ξ`)
)

= ξ(L(ξ1, . . . , ξ`)f)− L(ξ1, . . . , ξ`)(ξf)−
(∑̀

j=1

L(ξ1, . . . , [ξ, ξj ], . . . , ξ`)
)
f

=
(
[ξ, L(ξ1, . . . , ξ`)]−

∑̀
j=1

L(ξ1, . . . , [ξ, ξj ], . . . , ξ`)
)
f = (dξL)(ξ1, . . . , ξ`)f.

Comparing the two results we conclude that [ξ, L] = dξL.
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Corollary 2. If ξ is a vector-valued 0-form, i.e., a vector field, and K is a
vector-valued one-form on E, then for all η ∈ X(E) we have

[ξ,K]η = (dξK)η = [ξ,K(η)]−K[ξ, η], [K, ξ]η = [K(η), ξ]−K[η, ξ].

2.29. Fundamental formulae.

Theorem. Let K, L and Q be vector-valued forms on E, of degree k, ` and
q respectively. Then the following relations hold:

1 [iK , iL] = iL ∧̄K − (−1)(k−1)(`−1)iK ∧̄L

2 [iK , dL] = dL ∧̄K + (−1)`i[K,L]

3 [K,L] ∧̄Q = [K ∧̄Q,L]− (−1)`(k−1)K ∧̄ [Q,L]

+(−1)k`+1([L ∧̄Q,K]− (−1)k(`−1)L ∧̄ [Q,K])

Proof. (1) Since the graded commutator of two algebraic derivations is al-
gebraic (2.28, Lemma), it is enough to check that both sides of 1 act in the
same way on A1(E). This may be seen as follows.

For any one-form α on E we have on the one hand

[iK , iL]α = iK(iLα)− (−1)(k−1)(`−1)iL(iKα)
2.27, 3

= iK(α ◦ L)

− (−1)(k−1)(`−1)iL(α ◦K).

On the other hand, taking into account 1.37, Lemma,

iL ∧̄Kα := α ∧̄ (L ∧̄K) = (α ∧̄L) ∧̄K = (α ◦ L) ∧̄K = iK(α ◦ L).

Similarly, iK ∧̄Lα = iL(α ◦K), so we obtain the desired formula.
(2) To verify formula 2, observe first that for any function f ∈ C∞(E),

[iK , dL]f = iK(dLf)− (−1)(k−1)`dL(iKf) = iK(iLdf) = iK(df ∧̄L)

= (df ∧̄L) ∧̄K
1.37, Lemma

= df ∧̄ (L ∧̄K) = iL ∧̄Kdf = dL ∧̄Kf,

therefore [iK , dL] − dL ∧̄K acts trivially on C∞(E), hence this operator is
an algebraic derivation. On the other hand, applying in the first step the
graded Jacobi identity and graded anticommutativity, we have[
[iK , dL], d

]
=
[
iK , [dL, d]

]
+ (−1)k`−`−1

[
dL, [iK , d]

] 2.27, 4
= (−1)k`−`−1[dL, dK ]

= (−1)`[dK , dL] = (−1)`d[K,L] = (−1)`
[
i[K,L], d

]
.
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In virtue of the main theorem in 2.26, [iK , dL] can be written uniquely as

[iK , dL] = dF + iG; F,G ∈ B(E);

hence
[
[iK , dL], d

]
= [iG, d]. Since the map

G ∈ B(E) 7→ dG := [iG, d] ∈ Der A(E)

is injective, we may conclude that the algebraic part of [iK , dL] is (−1)`i[K,L].
This ends the proof of formula 2.

(3) For a proof of relation 3 the reader is referred to our main source,
the Frölicher–Nijenhuis paper [33].

Corollary. Let ξ and η be vector fields, K and L vector-valued one-forms
on the manifold E. Then we have:

[iξ, iL] = iL(ξ),(i)

[iK , iL] = iL◦K − iK◦L,(ii)

[iξ, dL] = dL(ξ) − i[ξ,L],(iiii)

[iK , dL] = dL◦K − i[K,L].(iv)
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2.30. The Nijenhuis torsion.

Lemma. The Frölicher–Nijenhuis bracket of two vector-valued one-forms
K, L on E acts by the rule

[K,L](ξ, η) = [Kξ,Lη] + [Lξ,Kη] + (K ◦ L+ L ◦K)[ξ, η]
−K[Lξ, η]−K[ξ, Lη]− L[Kξ, η]− L[ξ,Kη]

(ξ, η ∈ X(E)).

Proof. We start with the definition

d[K,L] := [dK , dL] = dK ◦ dL + dL ◦ dK .

The graded derivation dK ◦ dL + dL ◦ dK is of type d∗, so it is determined
by its action on the smooth functions on E. For any function f ∈ C∞(E)
we have

dK ◦ dL(f) + dL ◦ dK(f) = dK(iLdf) + dL(iKdf) = dK(df ◦ L) + dL(df ◦K)

= dKα+ dLβ := [iK , d]α+ [iL, d]α = iKdα− diKα+ iLdβ − diLβ,

where α := df ◦ L and β := df ◦ K are one-forms on E. We evaluate the
four terms on the right-hand side on a pair (ξ, η) ∈ X(E)× X(E).

(iKdα)(ξ, η) := (dα ∧̄K)(ξ, η) = dα(Kξ, η) + dα(ξ,Kη)

= (Kξ)α(η)− ηα(Kξ)− α[Kξ, η] + ξα(Kη)− (Kη)α(ξ)− α[ξ,Kη]

= (Kξ)df(Lη)− ηdf(L ◦K(ξ))− df(L[Kξ, η]) + ξdf(L ◦K(η))

− (Kη)df(Lξ)− df(L[ξ,Kη]) = Kξ[Lη(f)]− η((L ◦K(ξ)f)

− L[Kξ, η]f + ξ(L ◦K(η)f)−Kη[Lξ(f)]− L[ξ,Kη]f

(we used 1.37(4), Example (1) and the definition of the operator d, see 1.39).
So we have obtained

(iKdα)(ξ, η) = (Kξ)[(Lη)f ]− (Kη)[(Lξ)f ]− (L[Kξ, η] + L[ξ,Kη])f(1)
− η(L ◦K(ξ)f) + ξ(L ◦K(η)f).

A similar calculation yields the following relations:

− d(iKα)(ξ, η) = (L ◦K[ξ, η])f − ξ(L ◦K(η)f) + η(L ◦K(ξ)f),(2)

(iLdβ)(ξ, η) = (Lξ)[(Kη)f ]− (Lη)[(Kξ)(f)](3)
− (K[Lξ, η] +K[ξ, Lη])f − η(K ◦ L(ξ)f) + ξ(K ◦ L(η)f),

− d(iLβ)(ξ, η) = (K ◦ L[ξ, η])f − ξ(K ◦ L(η)f) + η(K ◦ L(ξ)f).(4)
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Adding both sides of (1)–(4), the last two terms on the right-hand side cancel
in pairs, and we obtain the right-hand side of the desired relation. As for
the left-hand side, we have(

d[K,L]f
)
(ξ, η) =

(
i[K,L]df

)
(ξ, η) = df([K,L](ξ, η)) = ([K,L](ξ, η))f.

Comparing the two results, the assertion follows.

Note. Applying the fundamental formula 2.29,3, a shorter proof of the
Lemma is also available. However, we did not prove that formula, so we
felt more convincing to provide an independent deduction.

Definition. Let K be a vector-valued one-form on E. The vector-valued
two-form

NK :=
1
2
[K,K]

is said to be the Nijenhuis torsion of K.

Remark. Let K ∈ B1(E). NK = 0 if, and only if, d2
K = 0.

Indeed, on the one hand, [dK , dK ] = dK ◦ dK − (−1)1·1dK ◦ dK = 2d2
K ,

on the other hand [dK , dK ] =: d[K,K], therefore

d2
K = d 1

2
[K,K] = dNK

.

Corollary. For the Nijenhuis torsion NK of a vector-valued one-form
K ∈ B1(E) we have

NK(ξ, η) = [Kξ,Kη] +K2[ξ, η]−K[Kξ, η]−K[ξ,Kη] for all ξ, η ∈ X(E) .

Example. Suppose that (E, π,M) is a vector bundle and H is a horizontal
map for π. Let h, v and Ω be the horizontal and the vertical projector
belonging to H and the curvature of H, respectively (see (1), (2) and (5) in
2.11). Then

Ω = −Nh = −1
2
[h,h] .

Indeed, for any vector fields ξ, η on E we have

Nh(ξ, η) = [hξ,hη] + h[ξ, η]− h[hξ, η]− h[ξ,hη] = [hξ,hη]

+ h[vξ,hη + vη]− h[ξ,hη] = [hξ,hη] + h[vξ,hη]− h[ξ,hη]

= [hξ,hη]− h[hξ,hη] = v[hξ,hη] = −Ω(ξ, η).
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Due to the graded Jacobi identity for the Frölicher–Nijenhuis bracket, it
follows immediately that

[h,Ω] = 0 .

This relation is called the general Bianchi identity for the nonlinear con-
nection given by H. (It may be easily shown that if h arises from a covari-
ant derivative operator in π according to 2.15, Example 3, then the general
Bianchi identity reduces to the differential Bianchi identity deduced in 1.44.)

For the tension (see 2.14, Lemma 3) of H, as an immediate consequence
of 2.28, Proposition (5) and 2.28, Corollary 2, we obtain the relation

t = [h, CE ] .

2.31. Vertical apparatus.

In this subsection we work on the tangent bundle (TM, τ,M) of
an n-dimensional manifold M .

(1) We begin by summarizing some further basic facts about the vertical
endomorphism J of TTM which we shall need.
1. The Nijenhuis torsion NJ of J vanishes.

To prove this, it is enough to check that NJ vanishes when its arguments
are a pair of complete lifts; a vertical lift and a complete lift; and a pair of
vertical lifts, respectively. Taking into account that for any vector fields X,
Y on M :

JXc = Xv, JXv = 0, J [Xv, Y c] = J [X,Y ]v = 0, etc.

(see 2.20), and applying 2.30, Corollary, we obtain

NJ(Xc, Y c) = [JXc, JY c] + J2[Xc, Y c]− J [JXc, Y c]− J [Xc, JY c]

= [Xv, Y v]− J [Xv, Y c]− J [Xc, Y v] = 0.

Similarly,

NJ(Xv, Y c) = [JXv, JY c]− J [JXv, Y c]− J [Xv, JY c] = −J [Xv, Y v] = 0,

and finally NJ(Xv, Y v) = 0, as was to be shown.

2. d2
J = 0

This is obvious, since d2
J = dNJ

(see 2.30, Remark).
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3. For any vector field X on M we have

[J,Xc] = [J,Xv] = 0 .

Indeed, in virtue of 2.28, Corollary 2 and 2.20, Lemma 2,

[J,Xc]Y c = [JY c, Xc]− J [Y c, Xc] = [Y v, Xc]− J [Y,X]c

= [Y,X]v − [Y,X]v = 0,

[J,Xc]Y v = [JY v, Xc]− J [Y v, Xc] = 0, therefore [J,Xc] = 0.

A similar calculation verifies the second relation.

4. [J,C] = J

The straightforward proof is left to the reader.
5. If η ∈ X(TM) and Jη = C, then J [Jξ, η] = Jξ for all ξ ∈ X(TM).

Indeed, the vanishing of NJ leads to

0 =
1
2
[J, J ](ξ, η) = [Jξ, Jη]− J [Jξ, η]− J [ξ, Jη] = [Jξ, C]− J [Jξ, η]− J [ξ, C],

hence J [Jξ, η] = [Jξ, C]− J [ξ, C].
On the other hand, applying property 4, we get

Jξ = [J,C]ξ
2.28, Cor. 2

= [Jξ, C]− J [ξ, C];

whence the desired relation.

(2) According to the main results of the Frölicher–Nijenhuis theory
(see 2.27), two graded derivations are associated to the vertical endomor-
phism
J ∈ B1(TM) ∼= A1(M, τ): the algebraic derivation iJ of degree 0 and the
Lie derivation

dJ := [iJ , d] = iJ ◦ d+ d ◦ iJ
of degree 1. iJ and dJ are said to be the vertical derivation and the vertical
differentiation on TM , respectively. In view of 2.27, these operators have
the following characteristic properties:

iJ � C∞(TM) = 0, (iJα)(ξ1, . . . , ξk) =
k∑

i=1

α(ξ1, . . . , Jξi, . . . , ξk)

(α ∈ Ak(TM), ξi ∈ X(TM), 1 5 i 5 k)

dJf = iJdf = df ◦ J for all f ∈ C∞(TM)
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Corollary 1. [iC , iJ ] = 0, [iC , dJ ] = iJ , [dJ , dC ] = dJ , [iJ , dJ ] = 0.

Proof. We apply relations 2.29, (i)–(iv), and the definition of the Frölicher–
Nijenhuis bracket. Then we get

[iC , iJ ] = iJC = 0, [iC , dJ ] = dJC − i[C,J ]
4= iJ ,

[dJ , dC ] =: d[J,C] = dJ , [iJ , dJ ] = dJ2 − i[J,J ] = 0.

Coordinate expression. Let (τ−1(U), ((xi)n
i=1, (y

i)n
i=1)) be an induced chart

on TM . For any function f ∈ C∞(TM) and for all i ∈ {1, . . . , n} we have

dJf

(
∂

∂xi

)
= iJdf

(
∂

∂xi

)
= df

(
J
∂

∂xi

)
= df

(
∂

∂yi

)
, dJf

(
∂

∂yi

)
= 0,

therefore

dJf � τ−1(U) =
n∑

i=1

∂f

∂yi
dxi.

Lemma. (i) A function F ∈ C∞(TM) is the vertical lift of a smooth func-
tion on M if, and only if, dJF = 0.

(ii) A vertical vector field ξ ∈ X(TM) is the vertical lift of a vector field
on M if, and only if, [Y v, ξ] = 0 for all Y ∈ X(M).

Proof. (i) The assertion is an immediate consequence of the above local
formula.

(ii) Necessity is evident. For the converse implication suppose that
[Y v, ξ] = 0 for any vector field Y on M . Since ξ is vertical, by 2.4(2)
we find for any function f ∈ C∞(M) that:

0 = [Y v, ξ]f c = Y v(ξf c)− ξ(Y vf c) 2.20= Y v(ξf c)− ξ(Y f)v = Y v(ξf c).

From this it follows that dJ(ξf c) = 0, hence, according to part (i), the
function ξf c is a vertical lift. Applying 2.20, Lemma 1 and the fact that
Xvf c (X ∈ X(M)) is always a vertical lift, we conclude that the vector field
ξ ∈ Xv(TM) is indeed a vertical lift of a vector field on M .

Corollary 2. A vertical vector field ξ ∈ Xv(TM) is the vertical lift of a
vector field on M if, and only if, [J, ξ] = 0.

Proof. In view of the above property 3 the necessity of the condition is
obvious. Conversely, suppose that [J, ξ] = 0. Then for any vector field Y on
M we have

0 = [J, ξ]Y c 2.28, Cor. 2
= [JY c, ξ]− J [Y c, ξ] = [Y v, ξ]− J [Y c, ξ].
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Since Y c ∼
τ
Y (see e.g. the coordinate expression given in 2.20) and ξ ∼

τ
0,

it follows that [Y c, ξ] ∼
τ

0 (see 1.27), hence J [Y c, ξ] = 0 and we conclude
that

[Y v, ξ] = 0 for all Y ∈ X(M).

By the preceding lemma this implies that ξ is the vertical lift of a vector
field on M .

Definition. (1) The map J∗ given by
J∗f := f, f ∈ C∞(TM);

J∗α(ξ1, . . . , ξk) := α(Jξ1, . . . , Jξk); α ∈ Ak(TM), ξi ∈ X(TM),
(1 5 i 5 k)

is said to be the adjoint operator of J .
(2) Let

θJL := [J, L] for all L ∈ B`(TM), ` = 1.

Then L is called θJ -closed if θJL = 0; θJ -exact if there is a vector-valued
(`− 1)-form K ∈ B`−1(TM) such that L = θJK.

Theorem (E. Ayassou). Let L ∈ B`(TM) (` = 1) be a θJ -closed vector-
valued form. The necessary and sufficient condition for L to be locally
θJ -exact is that

(`− 1)!J∗L+ J ◦ (iJ)`−1L = 0.

For a proof the reader is referred to Ayassou’s thesis [6].
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2.32. Applications to nonlinear connections on a manifold.

Suppose that H is a horizontal map on a manifold M and consider

the horizontal projector h := H ◦ j (2.11/(1))

the almost complex structure F := H ◦ V− i ◦ j (2.19, Lemma)

the curvature Ω = −1
2 [h,h] (2.11/(5); 2.30,

Example)

the tension t = [h, C] (2.14 Lemma 3; 2.30,
Example)

belonging to H. First of all we attach a further geometric object to H.

Definition. The vector-valued two-form

T := [J,h] ∈ B2(TM)

is said to be the torsion of H (or of the nonlinear connection ‘represented’
by H).

Lemma. The torsion of a nonlinear connection is a semibasic vector-valued
two-form. More precisely, if T is the torsion of a horizontal map H on M ,
then for any vector fields X, Y on M we have

T(Xc, Y c) = [Xh, Y v]− [Y h, Xv]− [X,Y ]v ∈ Xv(TM)

(Xh and Y h are the H-horizontal lifts of X and Y ) and T is completely
determined by this formula.

Proof. Applying the first box-formula from 2.30 and taking into account
that J ◦ h + h ◦ J = J (see the first box in 2.19), for any vector fields ξ, η
on TM we have

T(ξ, η) = [Jξ,hη] + [hξ, Jη] + J [ξ, η]− J [hξ, η]− J [ξ,hη]

− h[Jξ, η]− h[ξ, Jη].

From this it follows at once that T vanishes if one of its arguments is vertical;
therefore T is determined by its action on pairs of the form (Xc, Y c), where
(X,Y ) ∈ X(M)× X(M). Since

JXc = Xv, hXc = Xh, J [Xc, Y c] = J [X,Y ]c = [X,Y ]v, etc.
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(see 2.20), we obtain that

T(Xc, Y c) = [Xv, Y h] + [Xh, Y v] + [X,Y ]v − J [Xh, Y c]− J [Xc, Y h]
− h[Xv, Y c]− h[Xc, Y v].

The last two terms on the right-hand side vanish automatically because
[Xv, Y c] and [Xc, Y v] are vertical vector fields. Observe that

0
2.31,3

= [J, Y c]Xh = [Xv, Y c]− J [Xh, Y c] = [X,Y ]v − J [Xh, Y c].

Hence J [Xh, Y c] = [X,Y ]v, J [Xc, Y h] = −J [Y h, Xc] = −[Y,X]v = [X,Y ]v,
and we obtain the desired formula.

Coordinate expressions. According to our basic conventions (see the begin-
ning of section C), let (τ−1(U), ((xi)n

i=1, (y
i)n

i=1)) be an induced chart on

TM . Consider the holonomic frame
((

∂
∂xi

)n

i=1
,
(

∂
∂yi

)n

i=1

)
over τ−1(U) and

the local base
(

∂̂
∂ui

)n

i=1
for X(τ).

1. For all i ∈ {1, . . . , n} we have

H
(

∂̂
∂ui

)
= Aj

i
∂

∂xj +Bj
i

∂
∂yj , Aj

i , B
j
i ∈ C∞(

◦
τ−1(U)) (1 5 i, j 5 n).

(Recall that the smoothness of H is not required on the zero section; see the
box at the end of 2.13.) Since j ◦H = 1TTM , it follows that (Aj

i ) = (δj
i ).

Let, as usual, Γj
i := −Bj

i (1 5 i, j 5 n). Then we have

H
(

∂̂
∂ui

)
=
(

∂
∂ui

)h
= ∂

∂xi − Γj
i

∂
∂yj (1 5 i 5 n) .

The functions Γj
i are called the Christoffel symbols of H with respect to the

chart (U, (ui)n
i=1).

h
(

∂

∂xi

)
= h

((
∂

∂ui

)h

+ Γj
i

∂

∂yj

)
=
(

∂

∂ui

)h

+ Γj
ih ◦ J

(
∂

∂xj

)
2.19=2.

=
∂

∂xi
− Γj

i

∂

∂yj
,

h
(
∂

∂yi

)
= 0, v

(
∂

∂xi

)
=

∂

∂xi
− h

(
∂

∂xi

)
= Γj

i

∂

∂yj
, v
(
∂

∂yi

)
=

∂

∂yi
;
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thus the projectors h and v have the following matrix representations:

h←→

(
(δj

i ) 0

−(Γj
i ) 0

)
, v←→

(
0 0

(Γj
i ) (δj

i )

)
.

F
(

∂

∂xi

)
= F ◦ h

(
∂

∂xi

)
+ F ◦ v

(
∂

∂xi

)
= −J

(
∂

∂xi

)
+ Γj

iF ◦ J
(

∂

∂xj

)
3.

= − ∂

∂yi
+ Γj

ih
(

∂

∂xj

)
= Γj

i

∂

∂xj
− (δj

i + Γk
i Γj

k)
∂

∂yj
,

F
(
∂

∂yi

)
= F ◦ J

(
∂

∂xi

)
= h

(
∂

∂xi

)
=

∂

∂xi
− Γj

i

∂

∂yj
;

therefore F has the following matrix description:

F←→

(
(Γj

i ) (δj
i )

(Γk
i Γ

j
k)− (δj

i ) −(Γj
i )

)
.

4. t
(
∂

∂ui

)h

=
[
∂

∂xi
− Γj

i

∂

∂yj
, yk ∂

∂yk

]
= yk ∂Γj

i

∂yk

∂

∂yj
− Γj

i

∂

∂yj
,

thus, since t is semibasic, for the tension we obtain the coordinate represen-
tation

t =

(
yk ∂Γj

i

∂yk
− Γj

i

)
dxi ⊗ ∂

∂yj
.

5. In view of the previous lemma, for all i, j ∈ {1, . . . , n} we have

T
((

∂

∂ui

)c

,

(
∂

∂uj

)c)
=

[(
∂

∂ui

)h

,
∂

∂yj

]
−

[(
∂

∂uj

)h

,
∂

∂yi

]

=

(
∂Γk

i

∂yj
−
∂Γk

j

∂yi

)
∂

∂yk
,

hence, locally,

T =

(
∂Γk

i

∂yj
−
∂Γk

j

∂yi

)
dxi ∧ dxj ⊗ ∂

∂yk
.
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6. The curvature vector-valued two-form Ω of H has the coordinate expres-
sion

Ω =

(
∂Γk

j

∂xi
− ∂Γk

i

∂xj
+ Γ`

j

∂Γk
i

∂y`
− Γ`

i

∂Γk
j

∂y`

)
dxi ∧ dxj ⊗ ∂

∂yk
,

as may be obtained by an immediate calculation.
7. Let D be the nonlinear covariant derivative induced by H. Recall
(see 2.15, Example 2) that

DXY = K ◦ Y∗ ◦X for all X,Y ∈ X(M),

where K is the connector belonging to H. If X � U = Xi ∂
∂ui ,

Y � U = Y i ∂
∂ui , and (Γj

i ) is the matrix of the Christoffel symbols of H with
respect to (U, (ui)n

i=1), then we have:

(DXY ) � U = Xi

(
∂Y j

∂ui
+ Γj

i ◦ Y
)

∂

∂uj
.

Indeed,

(DXY ) � U = K ◦ Y∗ ◦Xi ∂

∂ui
= Xi

(
vprTM ◦ v ◦ Y∗ ◦

∂

∂ui

)
= Xi

(
vprTM ◦ v

(
∂

∂xi
◦ Y +

∂Y j

∂ui

(
∂

∂yj
◦ Y
)))

= XivprTM

((
Γj

i

∂

∂yj

)
◦ Y +

∂Y j

∂ui

(
∂

∂yj
◦ Y
))

= Xi

(
∂Y j

∂ui
+ Γj

i ◦ Y
)

∂

∂uj
.

Proposition 1. For the horizontal projector, the curvature two-form, the
torsion two-form and the tension of a nonlinear connection the following
relations hold:

[h,Ω] = 0
[J,Ω] = [h,T]

}
general Bianchi identities ; [C,Ω] = [h, t].

Proof. The first relation has been obtained in 2.30. To verify the remain-
ing two formulae, we apply the graded Jacobi identity for the Frölicher–
Nijenhuis bracket in both cases.

(1) [J, [h,h]] + [h, [h, J ]] + [h, [J,h]] = 0, hence −2[J,Ω] = −2[h, [h, J ]],
which yields [J,Ω] = [h,T].
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(2) [C, [h,h]]+ [h, [h, C]]− [h, [C,h]] = 0, hence [C, [h,h]] = −2[h, [h, C]],
and [C,Ω] = [h, t].

Corollary 1. If a nonlinear connection is homogeneous then its curvature
two-form is also homogeneous of degree 1.

Proposition 2. For any vector fields X, Y on M we have

[J,F](Xv, Y v) = 0, [J,F](Xv, Y h) = T(Xh, Y h),

[J,F](Xh, Y h) = −(Ω + F ◦T)(Xh, Y h).

Proof. We check only the third relation, the calculations in the other two
cases are similar but shorter. Applying the last box in 2.19, the first box-
formula in 2.30 yields the following:

[J,F](Xh, Y h) = [JXh,FY h] + [FXh, JY h] + [Xh, Y h]− J [FXh, Y h]

− J [Xh,FY h]− F[JXh, Y h]− F[Xh, JY h] = −[Xv, Y v]− [Xv, Y v]

+ [Xh, Y h] + J [Xv, Y h] + J [Xh, Y v]− F[Xv, Y h]− F[Xh, Y v]

= [Xh, Y h]− F([Xv, Y h] + [Xh, Y v]) = [Xh, Y h]− [X,Y ]h

− F
(
[Xh, Y v]− [Y h, Xv]− [X,Y ]v

)
= −(Ω + F ◦T)(Xh, Y h)

(in the last step the preliminary lemma and 2.11, Lemma 2 were applied).

Corollary 2. (1) The following properties are equivalent for a nonlinear
connection:

[J,F] = 0,(i)

Ω = 0 and T = 0.(ii)

(2) If the torsion of a nonlinear connection vanishes then its curvature two-
form may be expressed as the Frölicher–Nijenhuis bracket of the associated
almost complex structure and the vertical endomorphism. Formally,

Ω = [F, J ].

Proposition 3. Suppose that the horizontal map H is of class C1 on its
whole domain. Let D be the nonlinear covariant derivative operator induced
by H. Then H is homogeneous, if and only if,

(DXY )v = [Xh, Y v] for all X,Y ∈ X(M).

In this case D becomes a covariant derivative operator on M .
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Proof. We apply a local argument. If X � U = Xi ∂
∂ui , Y � U = Y i ∂

∂ui , and
(Γj

i ) is the matrix of the Christoffel symbols with respect to (U, (ui)n
i=1),

then we have the following chain of equivalent statements:

[Xh, Y v] = (DXY )v ⇐⇒ ∂Γj
i

∂yk
(yk ◦ Y ◦ τ) = Γj

i ◦ Y ◦ τ (1 5 i, j 5 n)

⇐⇒ ∀ v ∈ TpU :
∂Γj

i

∂yk
(v)yk(Y (p)) = Γj

i (Y (p)) (1 5 i, j 5 n)

⇐⇒ Γj
i � TpM = yk ∂Γj

i

∂yk
(v) (p ∈ U; 1 5 i, j 5 n)

⇐⇒ Γj
i � TpM are linear functions (1 5 i, j 5 n)

(∗)⇐⇒ the functions Γj
i are positive-homogeneous of degree 1

⇐⇒ yk ∂Γj
i

∂yk
= Γj

i (1 5 i, j 5 n) 4⇐⇒ t = 0 ⇐⇒ H is homogeneous.

(At the step (∗) we used 2.6, Lemma 2 (2).)
Now, applying 2.11, Lemma 1, we infer immediately thatD is a covariant

derivative operator on M .

Corollary 3. Under the conditions of Proposition 3, the torsion and the
curvature of the covariant derivative operator D and the horizontal map H

are related as follows:

(TD(X,Y ))v =T(Xc, Y c), (RD(X,Y ))v = [Ω(Xc, Y c), Zv]; X,Y ∈ X(M).

2.33. The induced Berwald derivative in τTM .

In this subsection we continue to assume that H is a horizontal map on
a manifold M . h and v denote the horizontal and the vertical projectors
belonging to H, F is the associated almost complex structure; Ω and T are
the curvature and the torsion of H, respectively; t is the tension of H.

(1) The Berwald derivative induced by H in V τM according to Proposition 1
in 2.16 may be explicitly given as follows:

∇ξJη = J [vξ, η] + v[hξ, Jη] for all ξ, η ∈ X(TM).
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In fact, the map ∇ : X(TM) × Xv(TM) −→ Xv(TM) is indeed a covariant
derivative operator and for any vector fields X, Y on M we have

∇XvY v = ∇XvJY h = J [Xv, Y h] + v[hXv, Y v] = 0,

∇XhY v = ∇XhJY h = J [vXh, Y h] + v[Xh, JY h] = [Xh, Y v];

therefore the requirements of 2.16, Proposition 1 are satisfied. Notice that
the canonical v-covariant derivative ∇◦ in V τM is the map given by

∇◦JξJη = J [Jξ, η] for all ξ, η ∈ X(TM).

This is an immediate consequence of the general rule because v ◦ J = J ,
h ◦ J = 0 (see the first box in 2.19). Observe that we may also write

∇◦JξJη = [J, Jη]ξ for all ξ, η ∈ X(TM).

Indeed, on the one hand

[J, Jη]ξ
2.28, Cor. 2

= [Jξ, Jη]− J [ξ, Jη],

on the other hand

0
2.31,1

=
1
2
[J, J ](ξ, η) = [Jξ, Jη]− J [Jξ, η]− J [ξ, Jη],

therefore J [Jξ, η] = [J, Jη]ξ.
We also remark that in this case the well-definedness of ∇◦ may easily

be deduced. Indeed, suppose that Jη̃ = Jη, η̃ ∈ X(TM). Then η̃ − η is
vertical, therefore η̃ = η + Jξ, ξ ∈ X(TM), and so

∇◦JξJη̃ := J [Jξ, η̃] = J [Jξ, η + Jξ] = J [Jξ, η] = ∇◦JξJη.

Lemma 1. For any vector fields ξ, η on TM we have

∇ξJη = −J [F, Jη]ξ = v[ξ, Jη]− J [Fξ, Jη].

Proof. 0 =
1
2
[J, J ](Fξ, η) = [J ◦ Fξ, Jη]− J [J ◦ Fξ, η]− J [Fξ, Jη] =

[vξ, Jη]−J [vξ, η]−J [Fξ, Jη], hence v[ξ, Jη]−J [Fξ, Jη] = v[ξ, Jη]−[vξ, Jη]+
J [vξ, η] = J [vξ, η] + v[hξ, Jη].

We have obtained the defining relation for ∇ξJη.
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(2) Now we prolong the operator ∇ into a covariant derivative operator
∇̃ in τTM . For any two vector fields ξ, η on TM let

∇̃ξη := ∇ξvη + F∇ξJη.

Then ∇̃ is indeed a covariant derivative operator in τTM and it extends ∇
since ∇̃ξJη := ∇ξvJη + F∇ξJ

2η = ∇ξJη. ∇̃ is said to be the Berwald
derivative in τTM (or on the manifold TM) induced by H. For simplicity,
the extended operator will also be denoted by ∇ from now on.

Summing up, the Berwald covariant derivative ∇ induced by H in τTM

operates by the following rules of calculation:

∇JξJη = J [Jξ, η] =⇒ ∇XvY v = 0

∇hξJη = v[hξ, Jη] =⇒ ∇XhY v = [Xh, Y v]

∇Jξhη = h[Jξ, η] =⇒ ∇XvY h = 0

∇hξhη = h ◦ F[hξ, Jη] =⇒ ∇XhY h = F[Xh, Y v]

(ξ, η ∈ X(TM); X,Y ∈ X(M)).

Remark. Other equivalent formulations are also possible and may be useful.
For example, the first box-formula yields

∇Jξvη = J [Jξ,Fη] or ∇vξvη = J [vξ,Fη]

since v = J ◦ F. From the second box-formula we obtain

∇hξvη = ∇hξJFη = v[hξ,vη] = v[hξ, η]− v[hξ,hη]
2.11(5)

=

= v[hξ, η] + Ω(ξ, η),

and so on.

Basic properties.

1. The Berwald derivative ∇ induced by H on TM is ‘almost tangent’,
i.e. ∇J = 0.

2. ∇ is an ‘almost complex’ derivative, i.e. ∇F = 0.

3. The horizontal and the vertical projector are parallel with respect to ∇,
i.e., ∇h = ∇v = 0.

4. ∇C = v + t.
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5. The torsion tensor field T∇ of ∇ may be represented in the form

T∇ = Ω + F ◦T.

In particular, if the horizontal map H has vanishing torsion then
its curvature two-form coincides with the torsion tensor field of the
Berwald derivative induced by H in τTM :

T = 0 =⇒ Ω = T∇ .

Properties 1–3 may be verified without any difficulty. Now we prove
relations 4 and 5.

(i) Choose a vector field η ∈ X(TM) such that Jη = C. Then for any
vector field ξ on TM we have

(∇C)(ξ) = ∇ξJη:=J [vξ, η] + v[hξ, C].

In view of property 5 in 2.31 and Remark 2 in 2.14, the right-hand side is
just vξ + tξ, which proves formula 4.

(ii) Let X and Y be any two vector fields on M . Using the above box-
formulae and the box-formulae in 2.19, we obtain:

T∇(Xv, Y v) = ∇XvY v −∇Y vXv − [Xv, Y v] = 0,

T∇(Xv, Y h) = ∇XvY h −∇Y hXv − [Xv, Y h] = −[Y h, Xv]− [Xv, Y h] = 0,

T∇(Xh, Y h) = ∇XhY h −∇Y hXh − [Xh, Y h] = F
(
[Xh, Y v]− [Y h, Xv]

)
− h[Xh, Y h]− v[Xh, Y h] = F

(
[Xh, Y v]− [Y h, Xv]− J [Xh, Y h]

)
+ Ω(Xh, Y h) = (Ω + F ◦T)(Xh, Y h);

whence property 5.
(3) We define the vertical Berwald differential (or briefly v-Berwald

differential ) ∇J : Tr
s(TM) −→ Tr

s+1(TM) and the horizontal (briefly h-)
Berwald differential ∇h : Tr

s(TM) −→ Tr
s+1(TM) as follows:

iξ(∇JA) := ∇JξA, iξ(∇hA) := ∇hξA for all A ∈ Tr
s(TM), ξ ∈ X(TM).

Notice that, in particular,

∇JJη = [J, Jη] ∈ T1
1(TM) for all η ∈ X(TM),

so ∇J is just the canonical v-covariant derivative in V τM ; cf. 2.16, Remark.
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Example. ∇JC = v, ∇hC = t, as a consequence of property 4. From this
it follows that a nonlinear connection is homogeneous if, and only if, the
induced h-Berwald differential ∇h satisfies the condition ∇hC = 0.

Lemma 2. Suppose that A ∈ T1
s(TM) is a semibasic (symmetric or skew-

symmetric) tensor field on TM . Then

(∇JA)(Xc) = dXvA for all X ∈ X(M);

explicitly, for any vector fields X1, . . . , Xs on M we have

(∇XvA)(Xc
1, . . . , X

c
s) = (dXvA)(Xc

1, . . . , X
c
s) = [Xv, A(Xc

1, . . . , X
c
s)].

Proof. Since the vector fields [Xv, Xc
i ] (1 5 i 5 s) are vertical and A is

semibasic, 1.22 Corollary (2) leads to

dXvA = [Xv, A(Xc
1, . . . , X

c
s)].

On the other hand, according to the above Remark,

∇XvXc
i = ∇XvvXc

i +∇XvhXc
i = J [Xv,FXc

i ] +∇XvXh
i

= J [Xv,FXc
i ] ∈ Xv(TM) (1 5 i 5 s),

therefore

(∇XvA)(Xc
1 , . . . , X

c
s)

1.32(3)
= ∇Xv(A(Xc

1 , . . . , X
c
s))

−
s∑

i=1

A(Xc
1 , . . . ,∇XvXc

i , . . . , X
c
s) = ∇Xv(A(Xc

1 , . . . , X
c
s))

= ∇Xv(J ◦ FA(Xc
1 , . . . , X

c
s)) = J [Xv,FA(Xc

1 , . . . , X
c
s)]

= [J,Xv]FA(Xc
1 , . . . , X

c
s)− [J ◦ FA(Xc

1 , . . . , X
c
s), Xv] = [Xv, A(Xc

1 , . . . , X
c
s)]

(we applied in the last steps the final box-formula in 2.19; 2.28, Corollary 2;
and 2.31, 3). This concludes the proof.

(4) Now we turn to the curvature tensor R∇ and the torsion tensor T∇

of the Berwald derivative ∇ on TM . By the following table we define three
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‘partial curvatures’ and five ‘partial torsions’.

R(ξ, η)ζ := R∇(hξ,hη)Jζ horizontal or Riemann curvature

P(ξ, η)ζ := R∇(hξ, Jη)Jζ mixed or Berwald curvature

Q(ξ, η)ζ := R∇(Jξ, Jη)Jζ vertical curvature

T(ξ, η) := hT∇(hξ,hη) h-horizontal torsion

S(ξ, η) := hT∇(hξ, Jη) h-mixed torsion

R1(ξ, η) := vT∇(hξ,hη) v-horizontal torsion

P1(ξ, η) := vT∇(hξ, Jη) v-mixed torsion

Q1(ξ, η) := vT∇(Jξ, Jη) v-vertical torsion

(ξ, η, ζ ∈ X(TM)). Evidently, R, P, Q, R1, P1, Q1 are semibasic tensors;
R∇ is uniquely determined by the three partial curvatures, T∇ is uniquely
determined by the five partial torsions.
Basic properties (continued).

6. The Riemann curvature of the Berwald derivative ∇ induced by H on
TM is related to the curvature of H by the formula

R(ξ, η)ζ = (∇JΩ)(ζ, ξ, η)

(ξ, η, ζ ∈ X(TM)).

Proof. Applying the box-formulae for the Berwald derivative ∇, the second
observation in the above Remark, Lemma 1, and some elementary properties
of Ω and F, we obtain:

R(ξ, η)ζ := ∇hξ∇hηJζ −∇hη∇hξJζ −∇[hξ,hη]Jζ = v[hξ, [hη, Jζ]]

+ Ω(ξ, [hη, Jζ])− v[hη, [hξ, Jζ]]− Ω(η, [hξ, Jζ])

− v[[hξ,hη], Jζ] + J [F[hξ,hη], Jζ] = v([hξ, [hη, Jζ]]

+ [hη, [Jζ,hξ]] + [Jζ, [hξ,hη]]) + J [F ◦ v[hξ,hη], Jζ]

+ J [F ◦ h[hξ,hη], Jζ]− Ω(h[Jζ, ξ], η)− Ω(ξ,h[Jζ, η])

= J [Jζ,FΩ(ξ, η)]− Ω(∇Jζξ, η)− Ω(ξ,∇Jζη) = (∇JζΩ)(ξ, η);
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this verifies the assertion.

7. Suppose that H is homogeneous. In this case

(i) if Jζ = C then R(ξ, η)ζ = Ω(ξ, η) for all ξ, η ∈ X(TM);

(ii) ∇CΩ = Ω;

(iii) the vanishing of R is equivalent to the vanishing of Ω.

Proof. From the preceding calculation we get

R(ξ, η)ζ = J [C,FΩ(ξ, η)]− Ω([C, ξ], η)− Ω(ξ, [C, η]).

Since [J,C] = J , J ◦ F = v and v ◦ Ω = Ω, the first term on the right-hand
side is

[J,C]FΩ(ξ, η)− [Ω(ξ, η), C] = [C,Ω(ξ, η)] + Ω(ξ, η),

therefore

R(ξ, η)ζ = Ω(ξ, η) + [C,Ω(ξ, η)]− Ω([C, ξ], η)− Ω(ξ, [C, η])

= Ω(ξ, η) + (dCΩ)(ξ, η).

Due to the homogeneity of H, Ω is also homogeneous of degree 1 (2.32,
Corollary 1), so dCΩ = 0 and R(ξ, η)ζ = Ω(ξ, η). Then

(∇CΩ)(ξ, η) = (∇JζΩ)(ξ, η) 6= R(ξ, η)ζ = Ω(ξ, η) (ξ, η ∈ X(TM)),

whence ∇CΩ = Ω. Finally, we infer immediately that in the homogeneous
case R = 0 ⇐⇒ Ω = 0.

8. The Berwald curvature of the Berwald derivative ∇ induced by H on
TM acts by the rule

P(Xc, Y c)Zc = [[Xh, Y v], Zv] for all X,Y, Z ∈ X(M).

P is symmetric in its second and third argument. If, in addition, the
torsion of H vanishes then P is (totally) symmetric.

Proof. P(Xc, Y c)Zc := R∇(hXc, JY c)JZc = R∇(Xh, Y v)Zv = ∇Xh∇Y vZv−
∇Y v∇XhZv −∇[Xh,Y v]Z

v = −∇Y v [Xh, Zv]−∇[Xh,Y v]Z
v.

The second term on the right-hand side vanishes, since the vector field
[Xh, Y v] is vertical and so it may be combined from vertically lifted vector
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fields. Applying Lemma 1 and the Jacobi identity, the first term may be
formed as follows:

−∇Y v [Xh, Zv] = −∇Y vJF[Xh, Zv] = −v[Y v, [Xh, Zv]] + J [FY v, [Xh, Zv]]

= −[Y v, [Xh, Zv]] + J [Y h, [Xh, Zv]] = −[Y v, [Xh, Zv]]

= [Xh, [Zv, Y v]] + [Zv, [Y v, Xh]] = [[Xh, Y v], Zv];

hence P(Xc, Y c)Zc = [[Xh, Y v], Zv], as we claimed. We see at the same
time that

P(Xc, Zc)Y c = [[Xh, Zv], Y v] = P(Xc, Y c)Zc.

If the torsion vanishes, then [Xh, Y v] − [Y h, Xv] − [X,Y ]v = 0 (see 2.32,
Lemma) and we conclude that

P(Xc, Y c)Zc = [[Xh, Y v], Zv] = [[Y h, Xv], Zv] + [[X,Y ]v, Zv]

= [[Y h, Xv], Zv] = P(Y c, Xc)Zc,

thus proving the (total) symmetry of P.

9. Suppose that H is homogeneous and has vanishing torsion, i.e.,

[h, C] = 0 and [J,h] = 0.

Then the Berwald curvature of the Berwald derivative ∇ induced by H

has the following further properties:

(i) iηP = 0 for any vector field η ∈ X(TM) satisfying Jη = C;

(ii) dCP = −2P, i.e. P is homogeneous of degree 2,

(iii) ∇JP is (totally) symmetric.

Proof. Let X, Y , Z be arbitrary vector fields on M .
(i) Due to the symmetry of P, to verify the first relation it is enough

to check that P(Xc, η)Y c = 0. Applying the rules of calculation for ∇,
the homogeneity of the horizontally lifted vector fields (2.14, Corollary) and
Lemma 1, we obtain that

P(Xc, η)Y c := R∇(hXc, Jη)JY c = R∇(Xh, C)Y v = ∇Xh∇CY
v −∇C∇XhY v

−∇[Xh,C]Y
v = −∇CJF[Xh, Y v] = −v[C, [Xh, Y v]]

+ J [F ◦ C, [Xh, Y v]] = [[Xh, Y v], C] + J [F ◦ C, [Xh, Y v]].
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Since F := H ◦ V− J and C = i ◦ δ, we have

F ◦ C = H ◦ V ◦ i ◦ δ − J ◦ C = H ◦ δ =: η̃.

Clearly, the vector field η̃ also has the property Jη̃ = C, therefore, in view
of 2.31, Property 5, we conclude that

J [F ◦ C, [Xh, Y v]] = −J [JF[Xh, Y v], η̃] = −JF[Xh, Y v] = −[Xh, Y v].

Hence

P(Xc, η)Y c = [[Xh, Y v], C]− [Xh, Y v] = −[[Y v, C], Xh]− [[C,Xh], Y v]

− [Xh, Y v]
2.20, Lemma 2

= −[Y v, Xh] + [Y v, Xh] = 0.

This concludes the proof of the first relation.
(ii) Next we check the homogeneity property of P. Since the Lie bracket

of the Liouville vector field and a complete lift vanishes, we have the follo-
wing simple expression for the Lie derivative dCP:

(dCP)(Xc, Y c, Zc) = [C,P(Xc, Y c, Zc)] 8= [C, [[Xh, Y v], Zv]].

By a repeated use of the Jacobi identity; 2.20, Lemma 2 and the homogeneity
of H, the right-hand side may be formed as follows:

[C, [[Xh, Y v], Zv]] = −[[Xh, Y v], [Zv, C]]−
[
Zv, [C, [Xh, Y v]]

]
= −[[Xh, Y v], Zv] +

[
Zv, [Xh, [Y v, C]]

]
+
[
Zv, [Y v, [C,Xh]]

]
= −[[Xh, Y v], Zv]− [[Xh, Y v], Zv] = −2P(Xc, Y c)Zc.

Thus, dCP = −2P, as we claimed.
(iii) The proof of the symmetry of ∇JP is very similar to the preceding

argument and is left to the reader (or consult with [77]).
10. The vertical curvature Q of ∇ vanishes.

This is an immediate consequence of the definition.

11. For the partial torsions of the Berwald derivative ∇ induced by H on
TM we have

T = F ◦T, S = 0, R1 = Ω, P1 = 0, Q1 = 0 .

Proof. In view of property 5, T∇ = Ω+F ◦T. Since Ω and T are semibasic
and h ◦ F = F ◦ v, v ◦ F = −J (see the last box in 2.19), it follows that
h ◦ T∇ = F ◦T and v ◦ T∇ = Ω, which imply the stated relations.
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E. The theory of E. Mart́ınez, J. F. Cariñena and
W. Sarlet

In this section the main arena of our considerations is the pull-back vector
bundle τ∗τ of the tangent bundle (TM, τ,M) of an n-dimensional manifold M .
According to 2.17(1) and 2.21(2), X(τ) and A1(τ) denote the C∞(TM)-modules of
vector fields and one-forms along τ ; A(τ) is the Grassmann algebra of differential
forms along τ , B(τ) = A(τ)⊗X(τ) is the C∞(TM)-module of vector-valued forms
along τ . All the basic conventions fixed at the beginning of section C will be
preserved; in particular, the Einstein summation convention will be applied. For
the convenience of the reader, we collect here some basic notational conventions
concerning τ∗τ -tensor fields and vector fields on TM .

ξ, η, ζ, . . . vector fields on TM

Xv, Xc the vertical and the complete lift of X ∈ X(M)

X̃, Ỹ , Z̃, . . . general sections in X(τ)

X̂, Ŷ , Ẑ, . . . basic vector fields in X(τ)

δ : v 7→ (v, v) the canonical vector field along τ

α̃, β̃, γ̃, . . . general sections in A1(τ)

α̂, β̂, γ̂, . . . basic one-forms along τ

K̃, L̃, . . . vector-valued forms along τ

(α̃)0, (K̃)0 the semibasic form and the vector-valued form
on TM associated to α̃ and K̃, respectively

ᾱ ∈ Ak(τ) the k-form along τ associated to α ∈ Ak+1(M)

Ā ∈ Bk(τ) the vector-valued k-form along τ associated
to A ∈ Bk+1(M)

2.34. The vertical exterior derivative on A(τ). A Frölicher-Nijenhuis
type theory of graded derivations of A(τ) was elaborated by E. Mart́ınez,
J. F. Cariñena and W. Sarlet in the early nineties of the last century, and
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our brief account is based on their fundamental paper [50]. There are strict
analogies to the classical theory, but interesting new phenomena also appear.

The first steps are the same as in 2.24.

Lemma 1. The graded derivations of A(τ)

(1) are local operators in the sense of 2.24, Lemma 1;

(2) are natural with respect to restrictions (cf. 2.24, Lemma 2).
Every graded derivation of A(τ) is determined by its action on
A0(τ) = C∞(TM) and on the basic one-forms along τ .

The proof parallels that of Lemmas 1, 2 and the Proposition in 2.24.

Proposition. The action of a graded derivation of A(τ) over C∞(TM) is
completely determined by its action on the vertical and the complete lifts of
smooth functions on M .

Proof. Let D : A(τ) −→ A(τ) be a graded derivation. Choose a point
v ∈ TM . Let (U, (ui)n

i=1) be a chart around τ(v), and consider at the same
time the induced chart (τ−1(U), ((xi)n

i=1), (y
i)n

i=1)). We may suppose that
xi(v) = yi(v) = 0 (1 5 i 5 n). Shrinking U if necessary, any function
f ∈ C∞(TM) may be represented locally in the form

f � τ−1(U) = f(v)1 + fix
i + fn+iy

i,

where 1 : M −→ R, q 7→ 1(q) := 1; fi, fn+i ∈ C∞(τ−1(U)), fi(v) = ∂f
∂xi (v),

fn+i(v) = ∂f
∂yi (v) (1 5 i 5 n). (For a standard proof of this basic result the

reader is referred to [61], p. 8.) Since xi = (ui)v, yi = (ui)c (1 5 i 5 n), we
may also write

f � τ−1(U) = f(v)1 + fi(ui)v + fn+i(ui)c.

Now

Df � τ−1(U) Lemma 1= D(f � τ−1(U)) = (Dfi)(ui)v + fiD(ui)v

+ (Dfn+i)(ui)c + fn+iD(ui)c,

hence

Df(v) =
∂f

∂xi
(v)
(
D(ui)v

)
(v) +

∂f

∂yi
(v)
(
D(ui)c

)
(v),

which proves our claim.
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Lemma 2 and definition. There is a unique graded derivation
dv : A(τ) −→ A(τ) of degree 1 such that{

(dvf)(X̃) := df(iX̃) for all f ∈ C∞(TM), X̃ ∈ X(τ);

dvα̂ := 0 for all α ∈ A1(M).

dv is said to be the vertical exterior derivative (or briefly v-exterior deriva-
tive) on A(τ) (or in τ∗τ).

Proof. It may be seen at once that dv � C∞(TM) is a graded derivation of
degree 1. Thus the assertion is an immediate consequence of Lemma 1.

Coordinate expression. Let (τ−1(U), ((xi)n
i=1, (y

i)n
i=1)) be an induced

chart on TM . For every function f ∈ C∞(TM) we have df � τ−1(U) =
∂f
∂xidx

i + ∂f
∂yidy

i, therefore

dvf
(

∂̂
∂ui

)
:= df

(
i ∂̂
∂ui

)
= df

(
∂

∂yi

)
= ∂f

∂yi (1 5 i 5 n),

hence

dvf � τ−1(U) =
∂f

∂yi
d̂ui .

Properties.

1. dvα = kα̂ for all α ∈ Ak(M) (k ∈ N∗); in particular, for every function
f ∈ C∞(M) we have dvf c = d̂f .

Proof. (1) First we check the statement for one-forms. Since the question is
local, it is sufficient to consider a differential df (f ∈ C∞(M)). According
to 2.22, Lemma 2, df = f c, hence for any basic vector field X̂ along τ we
have

dvdf(X̂) = (dvf c)(X̂) := df c(iX̂) = df c(Xv) = Xvf c 2.20=

= (Xf)v = df(X) ◦ τ = d̂f(X̂).

This proves that dvf c = d̂f .

(2) Now we turn to the general case. Due to the local character of the
problem, our reasoning may also be local. Suppose that α ∈ Ak(M), k ∈ N∗.
Choose a chart (U, (ui)n

i=1) on M . At any point p ∈ U and for any vectors
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v, v1, . . . , vk−1 ∈ TpM we have

αv(v1, . . . , vk−1) := αp(v, v1, . . . , vk−1)

= αi1...ik(p)(dui1)p ∧ · · · ∧ (duik)p(v, v1, . . . , vk−1)

= k!αi1...ik(p) Alt(dui1)p ⊗ · · · ⊗ (duik)p(v, v1, . . . , vk−1)

= (k − 1)!
k∑

j=1

(−1)j−1αi1...ik(p)v(uij ) Alt(dui1)p ⊗ · · · ⊗ (duij−1)p

⊗ (duij+1)p ⊗ · · · ⊗ (duik)p(v1, . . . , vk−1)

=
k∑

j=1

(−1)j−1αi1...ik(p)d̂ui1 ∧ · · · ∧ duij ∧ · · · ∧ d̂uik(v, v1, . . . vk),

therefore

α � τ−1(U) =
k∑

j=1

(−1)j−1(αi1...ik ◦ τ)d̂ui1 ∧ · · · ∧ duij ∧ · · · ∧ d̂uik .

From this, taking into account that dv(duij ) = d̂uij , and applying A.7,
Lemma 1 we conclude the desired result.

2. dv ◦ dv = 0

Proof. dv ◦ dv = 1
2 [dv, dv] is a graded derivation of degree 2, which kills the

basic one-forms by the definition of dv. Since for any function f on M and
vector field X in X(M) we have

dv ◦ dv(f c) 1= dvd̂f := 0, (dvfv)(X̂) = (iX̂)fv 2.17(4)
= Xvfv 2.4(2)

= 0,

it follows from Lemma 1 and the above Proposition that dv ◦ dv = 0.

2.35. Algebraic derivations on A(τ).

Definition. A graded derivation of A(τ) is said to be algebraic or of type
i∗ if it vanishes on the smooth functions on TM .

Remark. To characterize the algebraic derivations of A(τ) we need the
concept of wedge-bar product of a form and a vector-valued form along τ .
This may be introduced in the same way as in the classical case (cf. 1.37(4)).
Namely, let α̃ ∈ Ak(τ), L̃ ∈ B`(τ).
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(1) If k = 0, then α̃ ∧̄ L̃ := 0.

(2) If k > 0, then α̃ ∧̄ L̃ ∈ Ak+`−1 is given by

α̃ ∧̄ L̃(X̃1, . . . , X̃k+`−1)

:=
1

`!(k−1)!

∑
σ∈Sk+`−1

ε(σ)α̃
(
L̃(X̃σ(1), . . . , X̃σ(`)), X̃σ(`+1), . . . , X̃σ(`+k−1)

)
(X̃i ∈ X(τ), 1 5 i 5 k + `− 1).

In particular,

(3) α̃ ∧̄ L̃ = α̃ ◦ L̃, if α̃ ∈ A1(τ);

(4) α̃ ∧̄ L̃ = α̃(L̃), if α̃ ∈ A1(τ), L̃ ∈ B0(τ) := X(τ);

(5) α̃ ∧̄ L̃(X̃1, . . . , X̃k) =
k∑

i=1

α̃(X̃1, . . . , L̃(X̃i), . . . , X̃k),

if α̃ ∈ Ak(τ) (k > 0) and L̃ ∈ B1(τ).

Keeping these in mind, the next result may be proved by the same ar-
gument as the analogous Proposition in 2.25.

Proposition. If L̃ ∈ B`(τ) is a vector-valued `-form along τ then the map

ieL : A(τ) −→ A(τ), α̃ 7→ ieLα̃ := α̃ ∧̄ L̃

is an algebraic derivation of degree ` − 1 of A(τ). Conversely, for every
algebraic derivation D of degree ` − 1 = −1 there exists a unique vector-
valued `-form L̃ along τ such that D = ieL.

2.36. v-Lie derivations of A(τ).

Lemma 1. Suppose that D is a graded derivation of A(τ) which vanishes
on the vertical lifts of smooth functions on M . Then there exist unique
graded derivations D1, D2 of A(τ) such that D1 is algebraic, [D2, d

v] = 0
and D = D1 + D2.

Proof. Let D be of degree k. In view of 2.34, Lemma 1 it follows immediately
that the prescription{

D2f := Df for all f ∈ C∞(TM)

D2α̂ := (−1)kdv(Dᾱ) for all α ∈ A1(M)
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determines a graded derivation D2 : A(τ) −→ A(τ) of degree k. Let
D1 := D − D2. Then, evidently, D1 is an algebraic derivation of A(τ).
We show that D2 satisfies the condition [D2, d

v] = 0. For this it is enough
to check that [D2, d

v] kills the vertical and the complete lifts of smooth
functions on M and the basic one-forms. For every smooth function f and
one-form α on M we have

[D2, d
v]fv = D2(dvfv)− (−1)kdv(D2f

v) = −(−1)kdv(Dfv) = 0,

[D2, d
v]f c = D2(dvf c)− (−1)kdv(D2f

c)
2.34,1

= D2d̂f − (−1)kdvDf c

= (−1)kdvDdf − (−1)kdvDdf = 0,

[D2, d
v]α̂ = Ddvα̂− (−1)kdvD2α̂ = −(−1)2kdv ◦ dv(Dα)

2.34,2
= 0.

Thus the property [D2, d
v] = 0 indeed holds, and the existence of the desired

graded derivations is proved. It may easily be seen that the definition of D2

(and hence D1) is forced by the requirements, so the uniqueness is obvious.

Lemma 2 and definition. Let K̃ be a vector-valued k-form along τ . Then

dveK := [i eK , dv] = i eK ◦ dv − (−1)k−1dv ◦ i eK
is a graded derivation of degree k of A(τ), called the v-Lie derivation with
respect to K̃. Then we also speak of a (graded) derivation of type dv

∗ of A(τ).

Lemma 3. A graded derivation D of A(τ) is a v-Lie derivation if, and only
if, it vanishes on the vertical lifts of smooth functions on M and [D, dv] = 0.

Proof. (a) Necessity. Let K̃ ∈ Bk(τ). For every function f ∈ C∞(M) we
have [

i eK , dv
]
fv = i eKdvfv − (−1)k−1dvi eKfv = 0− 0 = 0.

The other condition is also satisfied: applying the graded Jacobi identity,
property 2 in 2.34 and the graded anticommutativity, we obtain

0 = (−1)k−1
[
[i eK , dv], dv

]
+ (−1)k−1

[
[dv, dv], i eK

]
−
[
[dv, i eK ], dv

]
= 2(−1)k−1

[
[i eK , dv], dv

]
,

whence [d eK , dv] = 0.
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(b) Sufficiency. Suppose that D : A(τ) −→ A(τ) is a graded derivation
of degree k which vanishes on the basic functions and obeys the condition
[D, dv] = 0. Then the requirements{

DF := 0 for all F ∈ C∞(TM)

Dα̂ := Dα for all α ∈ A1(TM)

define an algebraic derivation of degree k−1. Thus, according to the Propo-
sition in 2.35, there is a unique vector-valued k-form K̃ along τ such that
D = i eK . Next we show that d eK = D. We have to check that the two deriva-
tions coincide on the vertical and the complete lifts of smooth functions onM
and on the basic one-forms. Let f ∈ C∞(M). Evidently, d eKfv = 0 = Dfv,
while

d eKf c = i eKdvf c − (−1)k−1dvi eKf c = i eK d̂f = Dd̂f := Df c.

Finally, for any one-form α ∈ A1(M) we have

d eK α̂ = i eKdvα̂− (−1)k−1dvi eK α̂ = −(−1)k−1dvDα̂ = (−1)kdvDα

= Ddvα = Dα̂,

because (−1)kdv ◦D = D ◦ dv by the condition [D, dv] = 0. This concludes
the proof.

Theorem. (Preliminary classification). Let D be a graded derivation of
degree ` of A(τ). If D vanishes on the basic functions, then there exist
unique vector-valued forms K̃ ∈ B`+1(τ) and L̃ ∈ B`(τ) such that

D = i eK + dveL .

Proof. (a) Existence. In view of Lemma 1, D may be decomposed as
D = D1 + D2, where D1 is an algebraic derivation, and [D2, d

v] = 0. 2.35,
Proposition, and Lemma 3 above guarantee that there exist vector-valued
forms K̃ ∈ B`+1(τ), L̃ ∈ B`(τ) such that D1 = i eK , D2 = dveL. Thus D =
i eK + dveL.

(b) Uniqueness. Suppose that D = i eK1
+dveL1

= i eK2
+dveL2

. From Lemma 1

and 2.35, Proposition it follows at once that i eK1
= i eK2

and hence K̃1 = K̃2.
The remaining relation dveL1

= dveL2
may be written in the form [ieL1−eL2

, dv] = 0,

thus the derivation D̃ := ieL1−eL2
is both an algebraic and a v-Lie derivation.

Hence D̃ � C∞(TM) = 0, further

D̃α̂ = D̃dvα = (−1)`dvD̃α = 0 for all α ∈ A1(M);
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therefore D̃ = ieL1−eL2
= 0, L̃1 = L̃2. This finishes the proof.

2.37. h-Lie derivations of A(τ).

In this subsection we assume that a horizontal map
H : TM ×M TM −→ TTM is given.

Lemma 1 and definition. (1) There is a unique graded derivation
dh : A(τ) −→ A(τ) of degree 1 such that{

(dhf)(X̃) := df(HX̃) for all f ∈ C∞(TM), X̃ ∈ X(τ);

dhα̂ = d̂α for all α ∈ A1(M).

dh is said to be the horizontal exterior (or briefly h-exterior) derivative on
A(τ) (or in τ∗τ) with respect to the horizontal map H.

(2) For every vector-valued k-form K̃ along τ the map dheK := [i eK , dh]
is a graded derivation of A(τ) of degree k, called the h-Lie derivation with
respect to K̃. Then we also speak of a (graded) derivation of type dh

∗ of
A(τ).

Lemma 2. dhfv = dvf c for all f ∈ C∞(M).

Proof. It is enough to check that for any vector field X on M we have
(dhfv)(X̃) = (dvf c)(X̂). But this is immediate. On the one hand

(dhfv)(X̂) := (HX̂)fv = Xhfv = Xcfv = (Xf)v,

using in the last step 2.20, Corollary 2, and taking into account in the
preceding step that Xh −Xc is obviously vertical. On the other hand,

(dvf c)(X̂) := (iX̂)f c = Xvf c 2.20= (Xf)v

which concludes the proof.

Lemma 3. For every one-form α̃ ∈ A1(τ) and vector fields X̃, Ỹ along τ
we have

dhα̃(X̃, Ỹ ) = (HX̃)α̃(Ỹ )− (HỸ )α̃(X̃)− α̃
(
j[HX̃,HỸ ]

)
.

Proof. (1) We shall use a local argument. Choose a chart (U, (ui)n
i=1) on M

and consider the induced chart (τ−1(U), ((xi)n
i=1, (y

i)n
i=1)) on TM . Then α̃,

X̃ and Ỹ may be represented in the form

α̃ � τ−1(U) = α̃id̂ui, X̃ � τ−1(U) = X̃i ∂̂
∂ui , Ỹ � τ−1(U) = Ỹ i ∂̂

∂ui
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respectively, where α̃i, X̃i, Ỹ i (1 5 i 5 n) are smooth functions on τ−1(U).
Notice that

j ∂
∂xi = j

(
∂

∂ui

)c
= ∂̂

∂ui (1 5 i 5 n)

(see 2.20, Corollary 3).
(2) Observe that

(HX̃)xi = X̃i, (HỸ )xi = Ỹ i (1 5 i 5 n).

Indeed, if X is a vector field on M and X � U = Xi ∂
∂ui , then

(HX̂)xi = Xhxi = Xc(ui)v = (Xui)v = Xi ◦ τ (1 5 i 5 n)

which implies the desired relations.

(3) [HX̃,HỸ ] � τ−1(U) =
(
[HX̃,HỸ ]xi

) ∂
∂xi

+ ([HX̃,HỸ ]yi)
∂

∂yi
,

therefore

j[HX̃,HỸ ] � τ−1(U)
(1)
=
(
[HX̃,HỸ ]xi

)
∂̂

∂ui

(2)
= [(HX̃)Ỹ i − (HỸ )X̃i] ∂̂

∂ui .

(4) After these preparations, we now see that

dhα̃ � τ−1(U) = dhα̃i ∧ d̂ui + α̃id
hd̂ui = dhα̃i ∧ d̂ui + α̃id̂2ui = dhα̃i ∧ d̂ui,

therefore, over τ−1(U),

dhα̃(X̃, Ỹ ) = (dhα̃i)(X̃)d̂ui(Ỹ )− (dhα̃i)(Ỹ )d̂ui(X̃) =
[
(HX̃)α̃i

]
Ỹ i

−
[
(HỸ )α̃i

]
X̃i = (HX̃)(α̃iỸ

i)− α̃i(HX̃)Ỹ i − (HỸ )(α̃iX̃
i)

+ α̃i(HỸ )X̃i (3)
= (HX̃)α̃(Ỹ )− (HỸ )α̃(X̃)− α(j[HX̃,HỸ ]).

This concludes the proof.

Proposition. Let α̃ be a k-form along τ . Then

(dhα̃)(X̃1, . . . , X̃k+1) =
k+1∑
i=1

(−1)i+1(HX̃i)
[
α̃(X̃1, . . . ,

∗
X̃i, . . . , X̃k+1)

]
+

∑
15i<j5k

(−1)i+jα̃
(
j[HX̃i,HX̃j ], X̃1, . . . ,

∗
X̃i, . . . ,

∗
X̃j , . . . , X̃k+1

)

(X̃i ∈ X(τ), 1 5 i 5 k + 1;
∗
X̃i means that X̃i has to be deleted.)
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Strategy of proof. We define a “new” operator d̃h by the box formula
and check that d̃h is a graded derivation of A(τ) of degree 1. The operators
d̃h and dh obviously coincide on C∞(TM), moreover, due to Lemma 3, they
are also indentical on A1(τ). Then 2.34, Lemma 1 guarantees that d̃h = dh,
thus proving the Proposition.

Theorem. (Fine classification). Let D be a graded derivation of degree k
of A(τ). There exist unique vector-valued forms K̃1 ∈ Bk+1(τ) and
K̃2, K̃3 ∈ Bk(τ) such that

D = i eK1
+ dveK2

+ dheK3
.

Proof. (a) Existence. Let X̃1, . . . , X̃k be arbitrarily chosen and temporarily
fixed vector fields along τ . In view of 2.20, Lemma 1 the map

f c ∈ C∞(TM) 7→ (Dfv)(X̃1, . . . , X̃k) ∈ C∞(TM) (f ∈ C∞(M))

determines a unique vector field on TM ; we denote this vector field by
ϕ(X̃1, . . . , X̃k). Our first claim is that

ϕ(X̃1, . . . , X̃k) ∈ Xv(TM).

To show this, let ξ := ϕ(X̃1, . . . , X̃k) for brevity. Then for any function
f ∈ C∞(M) we have

ξ
(
(f2)c

)
= 2ξ(f cfv) = 2fvξ(f c) + 2f cξ(fv)

(cf. 2.20, proof of Lemma 1). On the other hand,

ξ
(
(f2)c

)
:= [D(f2)v](X̃1, . . . , X̃k) = [D(fv)2](X̃1, . . . , X̃k)

= 2fv(Dfv)(X̃1, . . . , X̃k) = 2fvξ(f c).

Comparing the two results we conclude that ξ vanishes on the vertical lifts
of smooth functions on M , therefore it is indeed vertical.

Now let the map K̃3 be defined by

K̃3(X̃1, . . . , X̃k) := Vϕ(X̃1, . . . , X̃k),

where V is the vertical map belonging to H. Then K̃3 is obviously C∞(TM)-
multilinear and skew-symmetric, hence K̃3 ∈ Bk(τ). We show that the op-
erators dheK3

and D coincide on the basic functions. Indeed, for any function
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f ∈ C∞(M) we have

(dheK3
fv)(X̃1, . . . , X̃k):=

(
[i eK3

, dh]fv
)
(X̃1, . . . , X̃k)=

(
i eK3

(dhfv)
)
(X̃1, . . . , X̃k)

2.35(3)
= (dhfv)K̃3(X̃1, . . . , X̃k)

Lemma 2= (dvf c)K̃3(X̃1, . . . , X̃k)

:= [iK̃3(X̃1, . . . , X̃k)]f c = [i ◦ Vϕ(X̃1, . . . , X̃k)]f c = [vϕ(X̃1, . . . , X̃k)]f c

= ϕ(X̃1, . . . , X̃k)f c := (Dfv)(X̃1, . . . , X̃k)

(using the fact that ϕ(X̃1, . . . , X̃k) is vertical). Since D− dheK3
kills the basic

functions, the theorem of preliminary classification in 2.36 guarantees the
existence of unique vector-valued forms K̃1 ∈ Bk+1(τ) and K̃2 ∈ Bk(τ) such
that D− dheK3

= i eK1
+ dveK2

, whence

D = i eK1
+ dveK2

+ dheK3
.

Thus the desired decomposition of D indeed exists.
(b) Uniqueness. Suppose that we have two decompositions for D:

D = i eK1
+ dveK2

+ dheK3
= ieL1

+ dveL2
+ dheL3

.

Then
i eK1−eL1

+ dveK2−eL2
= dheL3

− dheK3
.

Since the left-hand side operator kills the basic functions, so does the right-
hand side operator. Thus for any function f ∈ C∞(M) and vector fields
X̃1, . . . , X̃k along τ we have[

(dheL3
− dheK3

)fv
]
(X̃1, . . . , X̃k) =

[
(ieL3
− i eK3

)dhfv
]
(X̃1, . . . , X̃k)

=
[
H(L̃3(X̃1, . . . , X̃k)− K̃3(X̃1, . . . , X̃k))

]
fv = 0.

From this it follows that the horizontal vector field H(L̃3(X̃1, . . . , X̃k) −
K̃3(X̃1, . . . , X̃k)) is also vertical, therefore it is the zero vector field. Since
H is injective, we conclude that L̃3 = K̃3. As we have already seen, the
uniqueness of the other two vector-valued forms is assured by the theorem
of preliminary classification.

2.38. Relations with the classical theory.

We assume that a horizontal map H is specified in for τ .
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Lemma. If β is a semibasic form on TM , then dJβ and dhβ are also
semibasic.

Proof. Since (locally) every semibasic form may be expressed as a C∞(TM)-
linear combination of wedge products of semibasic one-forms, it is sufficient
to verify the assertion for a semibasic one-form β ∈ A1

0(TM). Due to the
fact that β is semibasic, we have

iJβ = 0, ihβ = β,

therefore
dJβ = iJdβ, dhβ = ihdβ − dβ.

Now an immediate calculation shows that iJdβ and ihdβ − dβ both kill the
pairs of the form

(Xv, Y v), (Xv, Y h), (Xh, Y v) (X,Y ∈ X(M))

thus proving the lemma.

Proposition 1. For every form α̃ along τ we have

(dvα̃)0 = dJ(α̃)0 .

Proof. It is sufficient to show that the relation is true for 0-forms and one-
forms along τ . If α̃ := f ∈ C∞(TM) =: A0(τ), then

(α̃)0 := f ∈ C∞(TM) =: A0
0(TM),

while for any vector field ξ on TM we have

(dvf)0(ξ) := (dvf)(jξ) := df(i ◦ jξ) = df(Jξ) = (dJf)(ξ) = (dJ(f)0)(ξ),

therefore (dvf)0 = dJ(f)0.
As for the second case, it is enough to check the relation for basic one-

forms. If α ∈ A1(M), then dvα̂ := 0. On the other hand, (α̂)0 = αv

(see 2.22(2)), thus for any vector fields X, Y on M we have

(dJ(α̂)0)(Xc, Y c) = (dJα
v)(Xc, Y c) = (iJdαv)(Xc, Y c) = dαv(Xv, Y c)

+ dαv(Xc, Y v) =Xvαv(Y c)−Y cαv(Xv)−αv([Xv, Y c])+Xcαv(Y v)−Y vαv(Xc)

− αv([Xc, Y v]) = Xv(α(Y ))v − αv([X,Y ]v)− Y v[α(X)]v − α([X,Y ]v) = 0.

(We applied some frequently used relations from 2.20.)
This concludes the proof of Proposition 1.
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Corollary 1. For any k-form α̃ along τ we have

dvα̃(X̃1, . . . , X̃k+1) =
k+1∑
i=1

(−1)i+1(iX̃i)α̃(X̃1, . . . ,
∗
X̃i, . . . , X̃k+1)

+
∑

15i<j5k

(−1)i+jα̃(V[iX̃i, iX̃j ], . . . ,
∗
X̃i, . . . ,

∗
X̃j , . . . , X̃k+1)

where V is the vertical map belonging to an arbitrarily chosen horizontal

map; X̃i ∈ X(τ), 1 5 i 5 k + 1;
∗
X̃i means that X̃i has to be deleted.

Proof. Any section X̃i may be represented in the form X̃i = jξi, ξi ∈ X(TM);
then Jξi = iX̃i (1 5 i 5 k+ 1). Applying repeatedly that (α̃)0 is semibasic,
we obtain:

(dvα̃)(X̃1, . . . , X̃k+1) = (dvα̃)(jξ1, . . . , jξk+1) = (dvα̃)0(ξ1, . . . , ξk+1)
Prop. 1

=

= (dJ(α̃)0)(ξ1, . . . , ξk+1) = (iJd(α̃)0)(ξ1, . . . , ξk+1)

=
k+1∑
i=1

d(α̃)0(ξ1, . . . , Jξi, . . . , ξk+1)=
k+1∑
i=1

(−1)i+1(Jξi)[(α̃)0(ξ1, . . . ,
∗
ξi, . . . , ξk+1)

+
∑

15i<j5k+1

(−1)i+j(α̃)0([Jξi, ξj ] + [ξi, Jξj ], ξ1, . . . ,
∗
ξi, . . . ,

∗
ξj , . . . , ξk+1)

=
k+1∑
i=1

(−1)i+1(iX̃i)α̃(X̃1, . . . ,
∗
X̃i, . . . , X̃k+1)

+
∑

15i<j5k+1

(−1)i+jα̃(j[Jξi, ξj ] + j[ξi, Jξj ], X̃1, . . . ,
∗
X̃i, . . . ,

∗
X̃j , . . . X̃k+1).

Since NJ = 0, we have

0 = [Jξi, Jξj ]− J [Jξi, ξj ]− J [ξi, Jξj ] = i(V[iX̃i, iX̃j ]− j[Jξi, ξj ]− j[ξi, Jξj ],

hence j[Jξi, ξj ] + j[ξi, Jξj ] = V[iX̃i, iX̃j ]. This concludes the proof.

Proposition 2. For any k-form α̃ and vector-valued form L̃ along τ we
have

i
F◦eL0

(α̃)0 = (ieL α̃)0

where F is the almost complex structure associated to an arbitrarily chosen
horizontal map.
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Proof. The equality holds trivially if α̃ is a 0-form, i.e. a smooth function
on TM . Consider a one-form α̃ along τ , and suppose that L̃ is of degree `.
Let F be associated to a horizontal map H; then by 2.19, Lemma

F ◦ i = H ◦ V ◦ i− i ◦ j ◦ i = H.

For any vector fields ξ1, . . . ξ` on TM we have(
i
F◦eL0

(α̃)0
)
(ξ1, . . . , ξ`) = (α̃)0

(
FL̃0(ξ1, . . . , ξ`)

)
= (α̃)0

(
F ◦ iL̃(jξ1, . . . , jξ`)

)
= (α̃)0

(
HL̃(jξ1, . . . , jξ`)

)
= α̃

(
j ◦HL̃(jξ1, . . . , jξ`)

)
= α̃

(
L̃(jξ1, . . . , jξ`)

)
= (ieLα̃)(jξ1, . . . , jξ`) = (ieL α̃)0(ξ1, . . . , ξ`),

whence the assertion.

Corollary 2. Under the preceding condition,(
dveL α̃

)
0

=
[
i
F◦eL0

, dJ

]
(α̃)0 .

Proof. (dveL α̃)0 =
(
(ieL ◦ dv − (−1)`−1dv ◦ ieL)α̃

)
0

= (ieL dvα̃)0−

(−1)`−1
(
dv(ieL α̃)

)
0

= i
F◦eL0

(dvα̃)0 − (−1)`−1dJ(ieL α̃)0 =

i
F◦eL0

◦ dJ(α̃)0 − (−1)`−1dJ ◦ iF◦eL0
(α̃)0 = [i

F◦eL0
, dJ ](α̃)0.

Proposition 3. Let h be the horizontal projector belonging to the horizontal
map H. For every form α̃ along τ we have

(dhα̃)0 = dh(α̃)0 .

Proof. Due to the preparatory Lemma, the asserted relation makes sense. All
we need to check is that for every 0-form f ∈ C∞(TM) and basic one-form
α̂ ∈ A1(τ) (α ∈ A1(M)) the relation is true. The first case is immediate:
for any vector field ξ on TM we have

(dhf)0ξ := dhf(jξ) := df(H ◦ jξ) = df(hξ) = (ihdf)(ξ)

= (dhf)(ξ) = (dh(f)0)(ξ).

To verify the relation for a basic one-form α̂, let X and Y be any two vector
fields on M . On the one hand, we have

(dhα̂)0(Xh, Y h) = dhα̂(jXh, jY h) = d̂α(X̂, Ŷ ) = (dα(X,Y ))v.
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On the other hand,(
dh(α̂)0

)
(Xh, Y h) = (dhαv)(Xh, Y h) = (ihdαv)(Xh, Y h)− (dαv)(Xh, Y h)

= (dαv)(Xh, Y h) = Xhαv(Y h)− Y hαv(Xh)− αv
(
[Xh, Y h]

)
= Xh

(
α(Y )

)v − Y h
(
α(X)

)v − αv
(
[X,Y ]h

)
=
(
Xα(Y )− Y α(X)− α([X,Y ])

)v =
(
(dα)(X,Y )

)v
(taking into account some frequently used relations).

We conclude that (dhα̂)0 = (dhα̂)0, which finishes the proof.

Corollary 3. Keeping the hypothesis of Proposition 3, let a vector-valued
form L̃ ∈ B`(τ) be given. Then

(
dheL α̃

)
0

=
[
i
F◦eL0

, dh
]
(α̃)0 .

Proof. (dheLα̃)0 =
(
(ieL ◦ dh − (−1)`−1dh ◦ ieL)α̃

)
0

= (ieL dhα̃)0−

(−1)`−1
(
dh(ieL α̃)

)
0

= i
F◦eL0

(dhα̃)0 − (−1)`−1dh(ieL α̃)0 =(
i
F◦eL0

◦ dh − (−1)`−1dh ◦ iF◦eL0

)
(α̃)0 = [i

F◦eL0
, dh](α̃)0.

2.39. Lie derivatives on the mixed tensor algebra along τ .

We continue to assume that a horizontal map H is specified in τ .

Let a vector field ξ on TM be given. Applying a ‘reasonable’ version
of Willmore’s theorem on tensor derivations (see 1.32) we may define three
tensor derivations of ‘Lie-type’ on the mixed tensor algebra T••(τ):

(1) Vertical Lie derivative with respect to ξ:

Lv
ξf := ξf for all f ∈ C∞(TM),

Lv
ξ Ỹ := V[ξ, iỸ ] for all Ỹ ∈ X(τ)

.

(2) Horizontal Lie derivative with respect to ξ:

Lh
ξ f := ξf for all f ∈ C∞(TM),

Lh
ξ Ỹ := j[ξ,HỸ ] for all Ỹ ∈ X(τ)

.
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(3) Total Lie derivative with respect to ξ:

Lξf := ξf for all f ∈ C∞(TM),

LξỸ := V[vξ, iỸ ] + j[hξ,HỸ ] for all Ỹ ∈ X(τ)
.

Remark. (1) It is immediate to check that these operators indeed obey the
condition of Willmore’s theorem, i.e. Lv

ξ(fỸ ) = (ξf)Ỹ + fLv
ξ Ỹ , etc.

(2) If, in particular, α̃ ∈ A(τ), i.e. α̃ is skew-symmetric, then so are Lv
ξ α̃,

Lh
ξ α̃ and Lξα̃. Moreover, the Lie derivatives with respect to ξ are graded

derivations of A(τ) of degree zero. The operators Lv, Lh and L are related to
the exterior derivatives dv and dh via ‘H. Cartan’s magic formulae’; namely,
the following relations are true:

Lv
i eX = i eX ◦ dv + dv ◦ i eX =

[
i eX , dv

]
=: dveX ,

Lh
H eX = i eX ◦ dh + dh ◦ i eX =

[
i eX , dh

]
=: dheX ,

L
i eX = i eX ◦ dv + dv ◦ i eX = dveX ,

L
H eX = i eX ◦ dh + dh ◦ i eX = dheX

(X̃ ∈ X(τ)); cf. 1.40(3).
(3) The operator Lh

ξ was introduced by H. Akbar-Zadeh in the context
of Finsler geometry in terms of local coordinates; see his fundamental paper
[3]. The operators Lv

ξ and Lξ were proposed by R. L. Lovas recently; see [47].

2.40. Torsion and curvature revisited.

Lemma. Let a horizontal map H : τ∗τ −→ τTM be given. There exist unique
vector-valued forms T̃ ∈ B2(τ), Ω̃ ∈ B2(τ) and Ψ̃ ∈ B3(τ) such that

dveT = [dh, dv], ieΨ + dveΩ = −1
2
[dh, dh] .

Proof. (1) First we show that [dh, dv] satisfies the conditions of Lemma 3
in 2.36. Taking into account Lemma 2 in 2.37, for any function f ∈ C∞(M)
we have

[dh, dv]fv = dh(dvfv) + dv(dhfv) = dv(dvf c)
2.34, 2

= 0.

Next, according to the graded Jacobi identity for graded derivations,

0 =
[
dh, [dv, dv]

]
+
[
dv, [dv, dh]

]
+
[
dv, [dh, dv]

]
= 2
[
dv, [dv, dh]

]
,



146 CHAPTER 2. CALCULUS OF VECTOR-VALUED FORMS. . .

hence
[
[dh, dv], dv

]
= 0, as was to be checked. We conclude that [dh, dv] is a

v-Lie derivation of degree 2 of A(τ), and this proves the first assertion.

(2) For any smooth function f on M we have

[dh, dh]fv = 2dh(dhfv) = 2dh(dvf c)
2.34, 1

= 2dhd̂f := 2 d̂df = 0,

i.e., [dh, dh] vanishes on basic functions. Now the theorem on preliminary
classification in 2.36 guarantees the existence and uniqueness of the desired
vector-valued forms Ω̃ and Ψ̃ along τ .

Corollary. Keeping the hypothesis and notation of the Lemma, consider the
torsion T = [h, J ] and the curvature Ω = −1

2 [h,h] of H. Then

T = (T̃)0, Ω = (Ω̃)0 .

Proof. (1) Notice first that(
dveT α̃

)
0

= dT(α̃)0 for all α̃ ∈ A(τ).

Indeed, applying the Lemma and the results of 2.38 we get(
dveT α̃

)
0

=
(
dh(dvα̃)

)
0
+
(
dv(dhα̃)

)
0

= dh(dvα̃)0 + dJ(dhα̃)0

= dhdJ(α̃)0 + dJdh(α̃)0 = [dh, dJ ](α̃)0 = d[h,J ](α̃)0 = dT(α̃)0.

Now, on the one hand, for any smooth function f and vector fields ξ, η
on TM we have

(dT(f)0)(ξ, η) = (dTf)(ξ, η) = (iTdf)(ξ, η) = df(T(ξ, η)) = T(ξ, η)(f).

On the other hand,(
dveTf

)
0
(ξ, η) =

(
dveTf

)
(jξ, jη) =

(
ieTdvf

)
(jξ, jη) = dvf(T̃(jξ, jη))

= iT̃(jξ, jη)(f) = T̃0(ξ, η)(f).

Comparing the two results, it follows that T = (T̃)0.

(2) Arguing as above, observe first that(
ieΨ α̃

)
0
+
(
dveΩ α̃

)
0

= dΩ(α̃)0 for all α̃ ∈ A1(τ).

Indeed, (ieΨ α̃)0 + (dveΩ α̃)0 = −1
2

(
[dh, dh]α̃

)
0

= −(dh(dhα̃))0 = −dh(dhα̃)0 =
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−dh ◦ dh(α̃)0 = −1
2 [dh, dh](α̃)0 = d− 1

2
[h,h](α̃)0 = dΩ(α̃)0. Next we operate

with both sides of the relation on a smooth function f ∈ C∞(TM) =:
A0(τ) = A0

0(TM), and evaluate the resulting two-forms on a pair of vector
fields (ξ, η) ∈ X(TM)× X(TM). We have on the one hand

(dΩ(f)0)(ξ, η) = (dΩf)(ξ, η) = (iΩdf)(ξ, η) = df(Ω(ξ, η)) = Ω(ξ, η)(f).

On the other hand,(
(ieΨf)0 + (dveΩf)0

)
(ξ, η) = (dveΩf)(jξ, jη) = (ieΩdvf)(jξ, jη)

= dvf(Ω̃(jξ, jη)) = [iΩ̃(jξ, jη)](f);

therefore Ω(ξ, η) = iΩ̃(jξ, jη) for any vector fields ξ, η on TM . Hence
Ω = Ω̃0, which concludes the proof of the corollary.

Remark. In the light of the last result, the τ∗τ -tensors T̃ and Ω̃ defined by

dveT = [dh, dv] and ieΨ + dveΩ = −1
2
[dh, dh]

respectively, may also be regarded as the torsion and the curvature of the
nonlinear connection defined by the horizontal map H : τ∗τ −→ τTM .

2.41. Summary. We survey the main results of this section.

1. The graded derivations of the Grassmann algebra A(τ) of forms along
τ are local and, with respect to restrictions, natural operators.

2. Every graded derivation of A(τ) is determined by its action on the
vertical and the complete lifts of smooth functions on M , and on the
basic one-forms along τ .

3. Every graded derivation of degree ` − 1 = −1 that acts trivially on
C∞(TM) is uniquely determined by a vector-valued form L̃ of degree
` along τ , namely D = ieL. If α̃ is a one-form along τ , then ieL α̃ = α̃◦L̃,
and ieL is determined by this rule.

4. Specifying a horizontal map H for τ , we have two exterior deriva-
tive operators on A(τ), the v-exterior derivative dv and the h-exterior
derivative dh. These are graded derivations of degree 1 of A(τ) defined
by

dvf = df ◦ i, dvα̂ = 0 (f ∈ C∞(TM), α ∈ A1(M))
and

dhf = df ◦H, dhα̂ = d̂α (f ∈ C∞(TM), α ∈ A1(M)),
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respectively. Their action on an arbitrary k-form α̃ along τ is given by
the second box-formula in 2.38 and the box-formula in 2.37, respec-
tively.

5. Each graded derivation D of degree k of A(τ) which vanishes on the ba-
sic functions and commutes with dv, i.e., satisfies D ◦ dv=(−1)kdv◦D,
is uniquely determined by a vector-valued form K̃ ∈ Bk(τ) such that

D = dveK :=
[
i eK , dv

]
= i eK ◦ dv − (−1)k−1dv ◦ i eK .

6. Each graded derivation D of A(τ) which acts trivially on the basic
functions may be uniquely represented in the form D = i eK + dveL;

K̃ ∈ B`+1(τ), L̃ ∈ B`(τ), ` is the degree of D. (Preliminary classifica-
tion theorem of Mart́ınez, Cariñena and Sarlet.)

7. Every graded derivation D of degree k of A(τ) may be uniquely rep-
resented in the form

D = i eK1
+ dveK2

+ dheK3
,

where K̃1 ∈ Bk+1(τ); K̃2, K̃3 ∈ Bk(τ) and dheK3
:=
[
i eK3

, dh
]
.

(Fine classification theorem of Mart́ınez, Cariñena and Sarlet.)
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F. Covariant derivative operators along the
tangent bundle projection

In this section we assume that a horizontal map H is specified for τ and consider
the ‘double exact’ sequence

0 → TM ×M TM
i

�
V
TTM

j

�
H
TM ×M TM → 0.

As in the foregoing, our canonical objects are
δ : v ∈ TM 7→ δ(v) := (v, v) – the canonical field along τ ,
C := i ◦ δ – the Liouville vector field on TM ,
J := i ◦ j – the vertical endomorphism on TTM .

We shall need the basic geometric data associated to H:

h := H ◦ j, v := 1TTM − h, F := H ◦ V− i ◦ j = H ◦ V− J ;

t = [h, C] (tension), T = [J,h] (torsion),Ω = −1
2
[h,h] (curvature);

some of these will be re-interpeted later.

2.42. v- and h-covariant derivatives.

Definition 1. A v-covariant derivative operator , or briefly a v-covariant
derivative in τ∗τ is a map

Dv : X(τ)× X(τ) −→ X(τ), (X̃, Ỹ ) 7→ DveX Ỹ

which, for any vector fields X̃, Ỹ , Z̃ along τ and any function f in C∞(TM),
satisfies

DveX+eY Z̃ = DveX Z̃ +DveY Z̃.v-COVD1.

Dv
f eX Ỹ = fDveX Ỹ .v-COVD2.

DveX(Ỹ + Z̃) = DveX Ỹ +DveX Z̃.v-COVD3.

DveXfỸ =
[
(iX̃)f

]
Ỹ + fDveX Ỹ =

[
(dvf)(X̃)

]
Ỹ + fDveX Ỹ .v-COVD4.

Remark 1. Let a vector field X̃ along τ be given. The map

Ỹ ∈ X(τ) 7→ DveX Ỹ ∈ X(τ)

can be extended to a unique tensor derivation of T••(τ) such that

DveXf := (dvf)(X̃) := (iX̃)f for all f ∈ C∞(TM).
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As a matter of fact, axioms v-COVD3 and v-COVD4 are exatly what
is needed to apply a ‘reasonable’ variant of Willmore’s theorem (see 1.32,
(4), (5)) to obtain the desired extension.

If Ã ∈ Tr
s(τ), then the map X̃ 7→ DveXÃ is C∞(TM)-linear since the

tensor derivations

Dv
f eX+heY and fDveX + hDveY (f, h ∈ C∞(TM))

agree on C∞(TM) and X(τ).

These observations justify the following

Definition 2. Let a v-covariant derivative operator Dv in τ∗τ be given.
The v-covariant differential of a tensor field Ã ∈ Tr

s(τ) is the tensor field
DvÃ ∈ Tr

s+1(τ) given by

(DvÃ)(X̃, α̃1, . . . , α̃r, X̃1, . . . , X̃s) :=
(
DveXÃ

)
(α̃1, . . . , α̃r, X̃1, . . . , X̃s)

for all X̃, X̃i ∈ X(τ) and α̃j ∈ A1(τ); 1 5 i 5 s, 1 5 j 5 r. Ã is said to be
v-parallel if DvÃ = 0.

Definition 3. The maps Tor(Dv) and Curv(Dv) given by

Tor(Dv)(X̃, Ỹ ) := DveX Ỹ −DveY X̃ − V[iX̃, iỸ ] and

Curv(Dv)(X̃, Ỹ , Z̃) :=DveXDveY Z̃ −DveYDveX Z̃ −Dv
V[i eX,ieY ]

Z̃ (X̃, Ỹ , Z̃ ∈X(τ)),

where V is the vertical map belonging to an arbitrarily chosen horizontal
map, are called the torsion and the curvature of the v-covariant derivative
operator Dv.

Remark 2. It may immediately be seen that Tor(Dv) ∈ T1
2(τ),

Curv(Dv) ∈ T1
3(τ). Since [iX̃, iỸ ] is vertical, i is injective, and iV[iX̃, iỸ ] =

v[iX̃, iỸ ] = [iX̃, iỸ ], Tor(Dv) and Curv(Dv) do not depend on the choice
of the horizontal map.

Example 1. If D is a covariant derivative operator in τ∗τ and

DveX Ỹ := D
i eX Ỹ for all X̃, Ỹ ∈ X(τ),

then Dv is a v-covariant derivative operator in τ∗τ , called the v-covariant
derivative induced by D.
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Example 2. The map

∇v : (X̃, Ỹ ) 7→ ∇veX Ỹ := j[iX̃,HỸ ],

where H is an arbitrarily chosen horizontal map for τ , is a v-covariant deriv-
ative operator, called the canonical v-covariant derivative in τ∗τ . If ∇ is
the Berwald derivative induced by H in τTM (see 2.33), then we have

∇JξJη = i∇v
jξjη or, equivalently, ∇

i eX iỸ = i∇veX Ỹ

(ξ, η ∈ X(TM); X̃ = jξ, Ỹ = jη). Indeed,

i∇v
jξjη = i ◦ j[Jξ,H ◦ jη] = J [Jξ,hη] = J [Jξ, η] = ∇JξJη

(see the first box in 2.33). An immediate consequence is that∇v has a purely
‘vertical character’, i.e., ∇v does not depend on the choice of the horizontal
map. Moreover, for any vector fields ξ, η, ζ on TM we have

(Tor(Dv))0(ξ, η) = Q1(ξ, η) := vT∇(Jξ, Jη)
2.33, 11

= 0,

(Curv(Dv))0(ξ, η, ζ) = Q(ξ, η)ζ := R∇(Jξ, Jη)Jζ
2.33, 10

= 0;

therefore the canonical v-covariant derivative in τ∗τ has vanishing torsion
and curvature.

Notice finally that
∇vδ = 1X(τ) .

Indeed, for any vector field ξ on TM we have

(∇vδ)(jξ) = ∇v
jξδ = j[Jξ,Hδ]

2.31, 5
= jξ,

since JHδ = i ◦ j ◦Hδ = i ◦ δ = C.

Definition 4. An h-covariant derivative operator , or briefly an h-covariant
derivative in τ∗τ is a map

Dh : X(τ)× X(τ) −→ X(τ), (X̃, Ỹ ) 7→ DheX Ỹ

which, for any vector fields X̃, Ỹ , Z̃ along τ and any function f in C∞(TM),
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satisfies

DheX+eY Z̃ = DheX Z̃ +DheY Z̃.h-COVD1.

Dh
f eX Ỹ = fDheX Ỹ .h-COVD2.

DheX(Ỹ + Z̃) = DheX Ỹ +DheX Z̃.h-COVD3.

DheXfỸ = [(HX̃)f ]Ỹ + fDheX Ỹ = [(dhf)(X̃)]Ỹ + fDheX Ỹ .h-COVD4.

Remark 3. We may copy the chain of ideas in Remark 1 to obtain tensor
derivations DheX : T••(τ) −→ T••(τ) (X̃ ∈ X(τ)), and define the h-covariant

differential DhÃ ∈ Tr
s+1(τ) of a tensor field Ã ∈ Tr

s(τ). Notice that
Dh � C∞(TM) = dh � C∞(TM). A tensor field Ã along τ is called h-parallel
if DhÃ = 0.

Example 3. IfD : X(TM)×X(τ) −→ X(τ) is a covariant derivative operator
in τ∗τ and

DheX Ỹ := D
H eX Ỹ for all X̃, Ỹ ∈ X(τ)

then Dh is an h-covariant derivative operator in τ∗τ , called the h-covariant
derivative induced by D and H.

Example 4. The map

∇h : (X̃, Ỹ ) 7→ ∇heX Ỹ := V[HX̃, iỸ ]

is an h-covariant derivative operator in τ∗τ , called the Berwald h-covariant
derivative in τ∗τ induced by H. If ∇ is the Berwald derivative in τTM

determined by H then we have

∇hξJη = i∇h
jξjη for all ξ, η ∈ X(TM).

In particular,

(∇hδ)0 = t := the tension of H .

Indeed, for any vector field ξ on TM we have

(∇hδ)0(ξ) := i
[
(∇hδ)jξ

]
= i∇h

jξδ = v[hξ, C] = t(ξ);

see 2.22, Lemma 1, and cf. 2.14, Remark 2.
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By reason of this relation, the (1, 1) tensor field

t̃ := ∇hδ

along τ will also be called the tension of the horizontal map H. Notice that

t̃(X̃) = V[HX̃, C] for all X̃ ∈ X(τ).

2.43. Relations with the exterior derivatives dv and dh.

Proposition 1. If ∇v is the canonical v-covariant derivative in T••(τ), then
for any k-form α̃ along τ we have

dvα̃ = (k + 1) Alt∇vα̃ .

Proof. Let X̃1, . . . , X̃k+1 be arbitrary vector fields along τ . Then

(k + 1)(Alt∇vα̃)(X̃1, . . . , X̃k+1) =
1
k!

∑
σ∈Sk+1

ε(σ)(∇vα̃)(X̃σ(1), . . . , X̃σ(k+1))

=
1
k!

∑
σ∈Sk+1

ε(σ)
(
∇v

eXσ(1)
α̃
)
(X̃σ(2), . . . , X̃σ(k+1))

1.32(3)
=

=
1
k!

∑
σ∈Sk+1

ε(σ)
[
(iX̃σ(1))α̃(X̃σ(2), . . . , X̃σ(k+1))

−
k+1∑
i=2

α̃(X̃σ(2), . . . ,∇v
eXσ(1)

X̃σ(i), . . . , X̃σ(k+1))
]

=
k+1∑
i=1

(−1)i+1(iX̃i)
[
α̃(X̃1, . . . ,

∗
X̃i, . . . , X̃k+1)

]
− 1
k!

∑
σ∈Sk+1

k+1∑
i=2

ε(σ)α̃(X̃σ(2), . . . , j[iX̃σ(1),HX̃σ(i)], . . . , X̃σ(k+1)).

Using elementary combinatorial tricks, the second expression on the
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right-hand side can be formed as follows:

2nd term

=
1
k!

∑
σ∈Sk+1

k+1∑
i=2

(−1)σ(i)ε(σ)α̃(j[iX̃σ(1),HX̃σ(i)], X̃σ(2), . . . ,
∗
X̃σ(i), . . . , X̃σ(k+1))

=
∑

15i<j5k+1

(−1)i−1(−1)jα̃(j[iX̃i,HX̃j ], X̃1, . . . ,
∗
X̃i, . . . ,

∗
X̃j , . . . , X̃k+1)

+
∑

15j<i5k+1

(−1)i(−1)jα̃(j[iX̃i,HX̃j ], X̃1, . . . ,
∗
X̃j , . . . ,

∗
X̃i, . . . , X̃k+1)

= −
∑

15i<j5k

(−1)i+jα̃(j[iX̃i,HX̃j ] + j[HX̃i, iX̃j ], X̃1, . . . ,
∗
X̃i, . . . ,

∗
X̃j , . . . , X̃k+1).

Here, as we have learnt in the proof of 2.38, Corollary 1,

j[iX̃i,HX̃j ] + j[HX̃i, iX̃j ] = V[iX̃i, iX̃j ];

so we obtain the desired formula.

Proposition 2. Suppose that the torsion of the horizontal map H vanishes,
and let ∇h be the Berwald h-covariant derivative induced by H. Then for
every k-form α̃ along τ we have

dhα̃ = (k + 1) Alt∇hα̃ .

Proof. The proof is by induction on k. The case k = 0 is trivial, since
dh � C∞(TM) = Dh � C∞(TM) is true for every h-covariant derivative
operator Dh.

(1) Let k = 1. In view of 2.37, Lemma 3, for any vector fields X, Y on
M we have

dhα̃(X̂, Ŷ ) = Xhα̃(Ŷ )− Y hα̃(X̂)− α̃(j[Xh, Y h]).

Since T = 0, [Xh, Y v]− [Y h, Xv]− [X,Y ]v = 0. Hence

i(j[Xh, Y h]) 2.19= [X,Y ]v = [Xh, Y v]− [Y h, Xv] = i(V[Xh, Y v]− V[Y h, Xv]),

therefore

j[Xh, Y h] = V[Xh, Y v]− V[Y h, Y v] = ∇hbX Ŷ −∇hbY X̂.
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From this it follows that for any vector fields X̃, Ỹ along τ we have

(dhα̃)(X̃, Ỹ ) = (HX̃)α̃(Ỹ )− α̃
(
∇heX Ỹ

)
− (HỸ )α̃(X̃) + α̃

(
∇heY X̃

)
= (∇hα̃)(X̃, Ỹ )− (∇hα̃)(Ỹ , X̃) = [2(Alt∇h)α̃](X̃, Ỹ ).

Thus the formula is valid for one-forms along τ .
(2) Next, let k = 2 and suppose that the assertion holds for positive

integers less than k. Then α̃, at least locally, can be written as the sum
of terms of the form β̃ ∧ γ̃ with deg β̃ < k, deg γ̃ < k. For simplicity we
may assume that α̃ = β̃ ∧ γ̃. Let ` := deg β̃. Then for any vector fields
X̃1, . . . , X̃k+1 along τ we have

(dhα̃)(X̃1, . . . , X̃k+1) = [dh(β̃ ∧ γ̃)](X̃1, . . . , X̃k+1)

=
(
(dhβ̃) ∧ γ̃ + (−1)`β̃ ∧ dhγ̃

)
(X̃1, . . . , X̃k+1)

=
1

(`+ 1)!(k − `)!
∑

σ∈Sk+1

ε(σ)(dhβ̃)(X̃σ(1), . . . , X̃σ(`+1))γ̃(X̃σ(`+2), . . . , X̃σ(k+1))

+
1

`!(k − `+ 1)!
(−1)`

∑
σ∈Sk+1

ε(σ)β̃(X̃σ(1), . . . , X̃σ(`))(dhγ̃)(X̃σ(`+1), . . . , X̃σ(k+1))

=
1

`!(k − `)!
∑

σ∈Sk+1

ε(σ)Alt(∇hβ̃)(X̃σ(1), . . . , X̃σ(`+1))γ̃(X̃σ(`+2), . . . , X̃σ(k+1))

+
1

`!(k − `)!
(−1)`

∑
σ∈Sk+1

ε(σ)β̃(X̃σ(1), . . . , X̃σ(`)) Alt(∇hγ̃)(X̃σ(`+1), . . . , X̃σ(k+1))

=
1

`!(k − `)!
∑

σ∈Sk+1

ε(σ)(∇h(β̃ ⊗ γ̃))(X̃σ(1), . . . , X̃σ(k+1))

=
(k + 1)!
`!(k − `)!

Alt(∇h(β̃ ⊗ γ̃))(X̃1, . . . , X̃k+1).

Thus

dhα̃ = dh(β̃ ∧ γ̃) =
(k + 1)!
`!(k−`)!

Alt(∇h(β̃ ⊗ γ̃))=
(k + 1)!
`!(k−`)!

Alt(∇h Alt(β̃ ⊗ γ̃))

= (k + 1) Alt(∇h(β̃ ∧ γ̃)) = (k + 1) Alt∇hα̃,

as was to be shown.
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2.44. Covariant derivatives in τ∗τ .

Example 1. Let a v-covariant derivative operator Dv and an h-covariant
derivative operator Dh be given in τ∗τ . Then the map

D : (ξ, X̃) ∈ X(TM)× X(τ) 7→ DξX̃ := Dv
VξX̃ +Dh

jξX̃ ∈ X(τ)

is a covariant derivative operator in τ∗τ which induces the starting v- and
h-covariant derivatives Dv and Dh, respectively (see 2.42, Examples 1,3).
Suppose, in particular, that the canonical v-covariant derivative ∇v and the
Berwald h-covariant derivative ∇h are given. Then the resulting covariant
derivative operator

∇̃ : (ξ, X̃) ∈ X(TM)× X(τ) 7→ ∇̃ξX̃ := ∇v
VξX̃ +∇h

jξX̃ ∈ X(τ)

is called the Berwald derivative in τ∗τ induced by H. It is related with the
Berwald derivative induced by H in τTM by the following formula:

∇ξJη = i∇̃ξjη for all ξ, η ∈ X(TM).

Indeed, taking into account 2.42, Examples 2,4, we get

i∇̃ξjη = i∇v
Vξiη + i∇h

jξjη = i∇v
j◦H◦Vξjη + i∇h

jξjη

= ∇vξJη +∇hξJη = ∇ξJη.

By a slight abuse of notation, the Berwald derivative in τ∗τ will also be
denoted by ∇ in what follows. For a convenient reference, we present the
basic rules for calculation in the next box:

∇
i eX Ỹ = j[iX̃,HỸ ], ∇

H eX Ỹ = V[HX̃, iỸ ]; X̃, Ỹ ∈ X(τ) .

Another formulation: for any vector fields ξ, η ∈ X(TM) we have

∇Jξjη = j[Jξ, η], ∇hξjη = V[hξ, Jη].

If, in particular, ξ = Xc, η = Y c (X,Y ∈ X(M)), it follows that

∇Xv Ŷ = 0, ∇Xh Ŷ = V[Xh, Y v].

(Compare this list of formulae with the first box in 2.33 !)

Definition. A covariant derivative operatorD in τ∗τ is said to be associated
to the horizontal map H if Dδ = V.
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Remark. The type (1, 1) tensor field Dδ along τ is said to be the deflec-
tion of D; Dvδ and Dhδ are called the v-deflection and the h-deflection,
respectively. It can be seen at once that D is associated to H if, and only
if, Dhδ = 0 and Dvδ = 1X(τ).

Example 2. Let ∇ be the Berwald derivative induced by H in τ∗τ . Then

∇δ = t̃ ◦ j + V ,

where t̃ is the tension of H (see 2.42, Example 4). From this it follows that
∇ is associated to H if, and only if, H is homogeneous.

2.45. Torsions and partial curvatures.

Definition 1. Let D be a covariant derivative operator in τ∗τ .
(1) The τ∗τ -valued two-forms

T h(D) := dDj and T v(D) := dDV

are said to be the horizontal and the vertical torsion of D, respectively.
(2) The maps T and S given by

T(X̃, Ỹ ) := T h(D)(HX̃,HỸ ) and S(X̃, Ỹ ) := T h(HX̃, iỸ ) (X̃, Ỹ ∈ X(τ))

are called the h-horizontal and the h-mixed torsion ofD (with respect to H),
respectively. T will also be mentioned as the torsion of D, while for S we
use the term Finsler torsion as well. D is said to be symmetric if T = 0 and
S is symmetric.

(3) The maps R1, P1 and Q1 given by

R1(X̃, Ỹ ) := T v(D)(HX̃,HỸ ), P1(X̃, Ỹ ) := T v(D)(HX̃, iỸ ) and

Q1(X̃, Ỹ ) := T v(D)(iX̃, iỸ ) for all X̃, Ỹ ∈ X(τ)

are called the v-horizontal , the v-mixed and the v-vertical torsion of D,
respectively.

Remark 1. We have learnt in 2.2 that j can be interpreted as a τ∗τ -valued
one-form on TM , i.e., j ∈ A1(TM, τ∗τ). Hence T h(D) and T v(D) belong to
A2(TM, τ∗τ). T h(D) does not depend on any horizontal map, while T v(D)
strongly depends on H, so the naming of these forms seems to be illogical
at first sight. The terms ‘torsion’ for T and ‘Finsler torsion’ for S, as well as
the notion of symmetry of D are borrowed from [27].
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Remark 2. In view of 1.43, for any vector fields ξ, η on TM we have

T h(D)(ξ, η) =Dξjη−Dηjξ − j[ξ, η], T v(D)(ξ, η) =DξVη−DηVξ−V[ξ,η] .

Lemma 1. All of the partial torsions of a covariant derivative operator D
in τ∗τ are tensorial, namely T, S, R1, P1, Q1 are tensor fields of type (1, 2)
along τ . For any vector fields X̃, Ỹ along τ we have

T(X̃, Ỹ ) = D
H eX Ỹ −DHeY X̃ − j[HX̃,HỸ ],

S(X̃, Ỹ ) = −D
ieY X̃ − j[HX̃, iỸ ] = −D

ieY X̃ +∇
ieY X̃,

R1(X̃, Ỹ ) = −V[HX̃,HỸ ],

P1(X̃, Ỹ ) = D
H eX Ỹ − V[HX̃, iỸ ] = D

H eX Ỹ −∇H eX Ỹ ,
Q1(X̃, Ỹ ) = −D

i eX Ỹ −DieY X̃ − V[iX̃, iỸ ] = Tor(Dv),

(R1)0 = Ω

where ∇ is the Berwald derivative in τ∗τ induced by H, Dv is the v-covariant
derivative arising from D, and Ω is the curvature of H.

Proof. The verifications are all easy, and even trivial.

Corollary. A covariant derivative operator in τ∗τ is the Berwald derivative
induced by a given horizontal map if, and only if, its Finsler torsion and v-
mixed torsion vanish.

Lemma 2. The horizontal torsion T h(D) is completely determined by the
torsion T and the Finsler torsion S. Explicitly, for any vector fields ξ, η on
TM we have

T h(D)(ξ, η) = T(jξ, jη) + S(jξ,Vη)− S(jη,Vξ).

Proof. This follows from Remark 1 and Lemma 1 by an immediate calcula-
tion.

Lemma 3. Let D be a covariant derivative operator in τ∗τ . If D is asso-
ciated to the horizontal map H, then for every vector field X̃ along τ we
have

S(δ, X̃) = 0, P1(X̃, δ) = t̃(X̃).

If, in addition, H is homogeneous then P1( · , δ) = 0.
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Proof. Applying Lemma 1 and the condition Dδ = V, we obtain:

S(δ, X̃) = −D
i eXδ − j[Hδ, iX̃] = −X̃ + j[iX̃,Hδ].

In the second term of the right-hand side J ◦H(δ) = C, therefore
2.31,5 implies that j[iX̃,Hδ] = X̃. This proves the first relation. Similarly,

P1(X̃, δ) Lemma1= D
H eXδ −∇H eXδ = (Dhδ)(X̃)− (∇δ)(HX̃)

2.44, Remark& Ex. 2
= −(t̃ ◦ j + V)(HX̃) = −t̃(X̃),

thus the second relation is also true. In the homogeneous case t̃ vanishes,
and hence P1( · , δ) = 0.

Proposition 1. Under our basic assumption that a horizontal map H is
specified for τ , let two type (1, 2) tensor fields S̃ and P̃ be given along τ .
Suppose that

S̃(δ, · ) = 0 and P̃ ( · , δ) = −t̃.

Then there is a unique covariant derivative operator D in τ∗τ such that

(1) D is associated to H,

(2) the Finsler torsion of D is S̃,

(3) the v-mixed torsion of D is P̃ .

Proof. Prescribing the Finsler torsion and the v-mixed torsion for a covariant
derivative operator in τ∗τ , the rules for calculation are forced by Lemma 1
(see the second and the fourth relation there). So we have at most one
possibility to define the desired operator, namely: let, for any vector fields
X̃ and Ỹ along τ ,

D
i eX Ỹ := ∇

i eX Ỹ − S̃(X̃, Ỹ ),

D
H eX Ỹ := ∇

H eX Ỹ + P̃ (X̃, Ỹ ).

Then D is clearly a covariant derivative operator in τ∗τ (cf. 1.41 (3)); our
only task is to check that the requirements (1)–(3) are satisfied by D. But
this is immediate:

(a) For any vector field X̃ along τ we have

(Dvδ)(X̃) = Dv
eX
δ := Di eXδ := ∇i eXδ − S̃(δ, X̃) = X̃,

(Dhδ)(X̃) = Dh
eX
δ := DH eXδ := ∇H eXδ + P̃ (X̃, δ) = −t(X̃) + t(X̃) = 0,

therefore Dδ = V, i.e. D is associated to H.
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(b) Let, as above, S and P1 be the Finsler torsion and the v-mixed torsion
of D, respectively. For any vector fields X̃, Ỹ along τ we have

S(X̃, Ỹ ) Lemma 1= −DieY X̃ +∇ieY X̃ = −∇ieY X̃ + S̃(X̃, Ỹ ) +∇ieY X̃ = S̃(X̃, Ỹ ),

P1(X̃, Ỹ ) Lemma 1= DH eX Ỹ−∇H eX Ỹ=∇H eX Ỹ + P̃ (X̃, Ỹ )−∇H eX Ỹ= P̃ (X̃, Ỹ ),

which proves the Proposition.

Definition 2. Let D be a covariant derivative operator in τ∗τ . Then the
maps R, P and Q given by

R(X̃, Ỹ )Z̃ := RD(HX̃,HỸ )Z̃,

P(X̃, Ỹ )Z̃ := RD(HX̃, iỸ )Z̃,

Q(X̃, Ỹ )Z̃ := RD(iX̃, iỸ )Z̃,

are said to be the horizontal or Riemann curvature, the mixed or Berwald
curvature and the vertical or Berwald-Cartan curvature of D (with respect
to H), respectively.

Remark 3. It may be seen at once that R, P and Q are type (1, 3) tensor
fields along τ and RD is completely determined by them.

Note. For a good, systematic study on the geometric interpretation of the
‘partial curvatures’ R, P and Q in Finslerian case the reader is referred to
the thesis [25] and the short communication [26] of J.-G. Diaz; see also [27].
The best recent account on the subject in a geometric flavour is probably
Z. Shen’s monograph [69].

Lemma 4. Let D be a covariant derivative operator in τ∗τ . If D is asso-
ciated to the horizontal map H, then for any vector fields X̃, Ỹ along τ we
have the following relations:

R(X̃, Ỹ )δ = R1(X̃, Ỹ ), P(X̃, Ỹ )δ = P1(X̃, Ỹ ), Q(X̃, Ỹ )δ = Q1(X̃, Ỹ ),

If, in addition, the Finsler torsion is symmetric, then Q( · , · )δ = Q1 = 0.

Proof. Since Dδ = V and therefore

D
H eXδ = 0, D

V eXδ = X̃, for all X̃ ∈ X(τ),
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the first three relations may be obtained by an easy calculation. To prove
the remaining assertion, start from the relation

Q(X̃, Ỹ )δ = Q1(X̃, Ỹ ) = D
i eX Ỹ −DieY X̃ − V[iX̃, iỸ ].

If the Finsler torsion S is symmetric, then

0 = S(X̃, Ỹ )− S(Ỹ , X̃) = D
i eX Ỹ −DieY X̃ − j[HX̃, iỸ ] + j[HỸ , iX̃].

Hence
Q(X̃, Ỹ )δ = j[HX̃, iỸ ]− j[HỸ , iX̃]− V[iX̃, iỸ ].

Representing X̃ and Ỹ in the form X̃ = jξ, Ỹ = j η (ξ, η ∈ X(TM)), it
follows that

i
(
Q(jξ, jη)δ

)
= J [hξ, Jη]− J [hη, Jξ]− v[Jξ, Jη]

= J [ξ, Jη] + J [Jξ, η]− [Jξ, Jη] = −NJ(ξ, η) = 0,

which completes the proof of the lemma.

Proposition 2. Let D be a covariant derivative operator τ∗τ . Assume that
D is associated to the horizontal map H and that D is symmetric. Then for
any vector fields X̃, Ỹ along τ we have the following relations:

[iX̃, iỸ ] = i(D
i eX Ỹ −DieY X̃),(1)

[HX̃, iỸ ] = i(D
H eX −P1(X̃, Ỹ ))−H(S(X̃, Ỹ ) +D

ieY X̃),(2)

[HX̃,HỸ ] = −iR1(X̃, Ỹ ) + H(D
H eX Ỹ −DHeY X̃).(3)

Proof. (a) In virtue of Lemma 4, Q1 = 0. This yields immediately rela-
tion (1).

(b) The vanishing of T implies by Lemma 2 and Remark 2 that for any
vector fields ξ, η on TM we have

(∗) Dξjη −Dηjξ − j[ξ, η] = S(jξ,Vη)− S(jη,Vξ).

With the choice ξ := HX̃, η := iỸ from this it follows that

−D
ieY X̃ − j[HX̃, iỸ ] = S(X̃, Ỹ ),

hence

(∗∗) h[HX̃, iỸ ] = −H(S(X̃, Ỹ ) +D
ieY X̃).
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On the other hand, according to Lemma 1,

P1(X̃, Ỹ ) = D
H eX Ỹ − V[HX̃, iỸ ],

and so

(∗ ∗ ∗) v[HX̃, iỸ ] = i(D
H eX Ỹ −P1(X̃, Ỹ )).

Adding the relations (∗∗) and (∗ ∗ ∗), the desired formula (2) drops out.

Next, let in (∗) ξ := HX̃, η := HỸ . Then we find:

D
H eX Ỹ −DHeY X̃ − j[HX̃,HỸ ] = 0;

hence
h[HX̃,HỸ ] = H

(
D

H eX Ỹ −DHeY X̃
)
.

On the other hand, using Lemma 1 again, we get

v[HX̃,HỸ ] = i ◦ V[HX̃,HỸ ] = −iR1(X̃, Ỹ ).

Adding the last two relations, we obtain the relation (3). This concludes
the proof.

2.46. The Bianchi identities. Ricci formulae.

Notation. We shall follow the convention mentioned in 1.47, Remark: if we are
given an expression A(X1, X2, X3), we shall denote by S

1,2,3
A(X1, X2, X3) the cyclic

sum

A(X1, X2, X3) +A(X2, X3, X1) +A(X3, X1, X2).

Theorem. Let D be a covariant derivative operator in τ∗τ . Then its cur-
vature tensor field RD ∈ T1

3(τ) satisfies

dDdDj = RD[ j ] − the algebraic Bianchi identity,

dDRD = 0 − the differential Bianchi identity
.

Proof. These results are obvious consequences of 1.43, Lemma 2 and 1.43,
Proposition, as special cases.

Proposition 1. Let D be a covariant derivative operator in τ∗τ . Assume
that D is associated to the horizontal map H and that D is symmetric. Then
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we have the following set of Bianchi identities:

I S
1,2,3

R(X̃1, X̃2)X̃3 = − S
1,2,3

S(R1(X̃1, X̃2), X̃3)

II S
1,2,3

(D
H eX1

R)(X̃2, X̃3, Ỹ ) = S
1,2,3

P(X̃3,R1(X̃1, X̃2))Ỹ

III S
1,2,3

(D
i eX1

Q)(X̃2, X̃3, Ỹ ) = 0

IV (Di eX1
R)(X̃2, X̃3, Ỹ ) + (DH eX2

P)(X̃3, X̃1, Ỹ )− (DH eX3
P)(X̃2, X̃1, Ỹ )

+Q(R1(X̃2, X̃3), X̃1)Ỹ + R(S(X̃1, X̃3), X̃2)Ỹ −R(S(X̃1, X̃2), X̃3)Ỹ

+P(X̃3,T(X̃1, X̃2))Ỹ −P(X̃2,T(X̃1, X̃3))Ỹ = 0

V (Di eX2
P)(X̃1, X̃3, Ỹ )− (Di eX3

P)(X̃1, X̃2, Ỹ ) + (DH eX1
Q)(X̃3, X̃2, Ỹ )

+Q(T(X̃1, X̃3), X̃2)Ỹ −Q(T(X̃1, X̃2), X̃3)Ỹ + P(S(X̃1, X̃3), X̃2)Ỹ

−P(S(X̃2, X̃1), X̃3)Ỹ = 0

(X̃1, X̃2, X̃3, Ỹ are arbitrary vector fields along τ).

Proof. We check only the first three relations, in the remaining two cases
the calculation is similar.

(1) We evaluate both sides of the algebraic Bianchi identity on a triplet

(HX̃1,HX̃2,HX̃3). Applying 1.43 and the vanishing of T, we get

[dD(dDj)](HX̃1,HX̃2,HX̃3) = DH eX1
(dDj)(HX̃2,HX̃3)−DH eX2

(dDj)(HX̃1,HX̃3)

+DH eX3
(dDj)(HX̃1,HX̃2)− (dDj)([HX̃1,HX̃2],HX̃3) + (dDj)([HX̃1,HX̃3],HX̃2)

− (dDj)([HX̃2,HX̃3],HX̃1) = − S
1,2,3

(dDj)([HX̃1,HX̃2],HX̃3).

Since

(dDj)([HX̃1,HX̃2],HX̃3) = (dDj)(H ◦ j[HX̃1,HX̃2],HX̃3)

+ (dDj)(i ◦ V[HX̃1,HX̃2],HX̃3) = −(dDj)(HX̃3, i ◦ V[HX̃1,HX̃2])

= −S(X̃3,V[HX̃1,HX̃2]) = −S(−R1(X̃1, X̃2), X̃3) = S(R1(X̃1, X̃2), X̃3),

it follows that

dD(dDj)(HX̃1,HX̃2,HX̃3) = − S
1,2,3

S(R1(X̃1, X̃2), X̃3).
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On the other hand, according to the definition given in 1.37 (3),

RD[j](HX̃1,HX̃2,HX̃3) =
1
2
(RD(HX̃1,HX̃2)j(HX̃3) +RD(HX̃2,HX̃3)j(HX̃1)

+RD(HX̃3,HX̃1)j(HX̃2)−RD(HX̃2,HX̃1)j(HX̃3)−RD(HX̃1,HX̃3)j(HX̃2)

−RD(HX̃3,HX̃2)j(HX̃1)) = S
1,2,3

RD(HX̃1,HX̃2)X̃3 = S
1,2,3

R(X̃1, X̃2)X̃3.

This concludes the proof of the first Bianchi identity.
(2) In view of the differential Bianchi identity,

0 = dDRD(HX̃1,HX̃2,HX̃3) = S
1,2,3

(DH eX1
[R(X̃2, X̃3)]−RD([HX̃1,HX̃2],HX̃3)).

Using the product rule 1.32 (3), we get

S
1,2,3

DH eX1
[R(X̃2, X̃3)] = S

1,2,3
(DH eX1

R)(X̃2, X̃3) + S
1,2,3

R(DH eX1
X̃2, X̃3)

+ S
1,2,3

R(X̃2, DH eX1
X̃3).

Observe that from 2.45, Proposition 2 (3) it follows that

j[HX̃i,HX̃j ] = DH eXi
X̃j −DH eXj

X̃i (1 5 i 6= j 5 3).

Thus

S
1,2,3

RD([HX̃1,HX̃2],HX̃3) = S
1,2,3

RD(H ◦ j[HX̃1,HX̃2],HX̃3)

+ S
1,2,3

RD(i ◦ V[HX̃1,HX̃2],HX̃3) = S
1,2,3

R(DH eX1
X̃2, X̃3)

− S
1,2,3

R(DH eX2
X̃1, X̃3)− S

1,2,3
P(X̃3,V[HX̃1,HX̃2])

= S
1,2,3

(R(DH eX1
X̃2, X̃3) + R(X̃2, DH eX1

X̃3)) + S
1,2,3

P(X̃3,R(X̃1, X̃2)),

and we obtain the desired relation.
(3) Again, our starting point is the differential Bianchi identity. Applying

2.45, Proposition 2 (1), we get

0 = dDRD(iX̃1, iX̃2, iX̃3) = S
1,2,3

Di eX1
[Q(X̃2, X̃3)]− S

1,2,3
RD([iX̃1, iX̃2], iX̃3)

= S
1,2,3

(Di eX1
Q)(X̃2, X̃3) + S

1,2,3
(Q(Di eX1

X̃2, X̃3) + Q(X̃2, Di eX1
X̃3))

− S
1,2,3

RD(i(Di eX1
X̃2 −Di eX2

X̃1), iX̃3) = S
1,2,3

(Di eX1
Q)(X̃2, X̃3)

+ S
1,2,3

Q(Di eX1
X̃2, X̃3)− S

1,2,3
Q(Di eX2

X̃1, X̃3)− S
1,2,3

Q(Di eX1
X̃2, X̃3)

+ S
1,2,3

Q(Di eX2
X̃1, X̃3) = S

1,2,3
(Di eX1

Q)(X̃2, X̃3),
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thereby proving the third Bianchi identity.

Corollary. Under the hypotheses of the Proposition,

S
1,2,3

Q(X̃1, X̃2)X̃3 = 0.

Proof. Replacing Ỹ := δ in the third Bianchi identity, and taking into ac-
count 2.45, Lemma 4, the formula drops out.

Proposition 2. Hypothesis as above.

(1) The Berwald curvature P, the Finsler torsion S and the v-mixed tor-
sion P1 of D satisfy

P(X̃, Ỹ )Z̃ −P(Z̃, Ỹ )X̃ = (D
H eZS)(X̃, Ỹ )− (D

H eXS)(Ỹ , Z̃)

+ S(P1(Z̃, Ỹ ), X̃)− S(P1(X̃, Ỹ ), Z̃)

for all X̃, Ỹ , Z̃ ∈ X(τ).

(2) The Berwald-Cartan curvature Q is related with the Finsler torsion S

by the following formula:

Q(X̃, Ỹ )Z̃ = S(S(Z̃, X̃), Ỹ )− S(S(Ỹ , Z̃), X̃)

+ (D
ieY S)(X̃, Z̃)− (D

i eXS)(Ỹ , Z̃);

X̃, Ỹ , Z̃ are arbitrary vector fields along τ .

Proof. Applying Proposition 2 in 2.45, evaluate both sides of the algebraic
Bianchi identity on a triplet of form (HX̃, iỸ ,HZ̃) in the first case, and on
a triplet (iX̃, iỸ ,HZ̃) ∈ (X(TM))3 in the second case.

Proposition 3. Let D be a symmetric covariant derivative operator in τ∗τ ,
associated to the horizontal map H. If A is a type (1, 2) tensor field along τ ,
then we have the following Ricci formulae:(

D
H eXDieYA−DieYDH eXA−D[H eX,ieY ]

A
)
(Z̃1, Z̃2

)
(1)

= P(X̃, Ỹ )A(Z̃1, Z̃2)−A(P(X̃, Ỹ )Z̃1, Z̃2)−A(Z̃1,P(X̃, Ỹ )Z̃2),(
D

i eXDieYA−DieYDi eXA−D[i eX,ieY ]
A)(Z̃1, Z̃2)(2)

= Q(X̃, Ỹ )A(Z̃1, Z̃2)−A(Q(X̃, Ỹ )Z̃1, Z̃2)−A(Z̃1,Q(X̃, Ỹ )Z̃2),(
D

H eXDHeYA−DHeYDH eXA−D[H eX,HeY ]
A
)
(Z̃1, Z̃2)(3)

= R(X̃, Ỹ )A(Z̃1, Z̃2)−A(R(X̃, Ỹ )Z̃1, Z̃2)−A(Z̃1,R(X̃, Ỹ )Z̃2)
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(X̃, Ỹ , Z̃1, Z̃2 are arbitrary vector fields along τ).

We omit the straightforward but lengthy proof.

2.47. The Berwald derivative induced by H in τ∗τ . Let ∇ be the
Berwald derivative induced by H in τ∗τ according to 2.44, Example 1. In
that example we also described the intimate relation between the Berwald
derivatives arising from H in τTM on the one hand, and in τ∗τ on the other.
In 2.22 we have found a canonical correspondence between the semibasic
covariant (and vector-valued covariant) tensor fields on TM and the covari-
ant (resp. vector-valued covariant) tensor fields along τ . These facts enable
us to translate the results of 2.33 into the pull-back framework without any
difficulty.

The torsions and the curvatures of the Berwald derivative ∇ in τ∗τ will
be denoted by

◦
T,

◦
S,

◦
R1,

◦
P1,

◦
Q1, and

◦
R,

◦
P,

◦
Q, respectively.

1. (
◦
T)0 = T := the torsion of H, (

◦
R1)0 = Ω := the curvature of H.

Indeed, for any vector fields X, Y on M we have

(
◦
T)0(Xc, Y c) := i

◦
T(jXc, jY c) = iT0(X̂, Ŷ ) = i(∇Xh Ŷ −∇Y hX̂ − j[Xh, Y h])

= i(V[Xh, Y v]− V[Y h, Xv]− j[Xh, Y h]) = v[Xh, Y v]− v[Y h, Xv]

− J [Xh, Y h] = [Xh, Y v]− [Y h, Xv]− [X,Y ]v = T(Xc, Y c).

Similarly, for any vector fields ξ, η on TM ,

(
◦
R1)0(ξ, η) = i

◦
R1(jξ, jη)

2.45, Lemma 1
= Ω(ξ, η).

Thus the torsion and the h-horizontal torsion of the Berwald deriv-
ative induced by H in τ∗τ may be regarded as the torsion and the
curvature of H, respectively.

2.
◦
S = 0,

◦
P1 = 0,

◦
Q1 = 0.

In view of our above remarks, these are immediate consequences of 2.33,
11; see also 2.45, Corollary.

◦
P(X̂, Ŷ )Ẑ = V

[
[Xh, Y v],

◦
Q = 0,

(∇h∇vZ̃)(X̂, Ŷ )− (∇v∇hZ̃)(Ŷ , X̂) =
◦
P(X̂, Ŷ )Z̃

3.

(X,Y, Z ∈ X(M), Z̃ ∈ X(τ)).
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In fact, the first two of these relations correspond to 2.33, 8 and 2.33,
10, while the third may be checked by an easy calculation.

4. The tension t̃ of H and the Berwald curvature
◦
P of ∇ are related by

◦
P(X̂, Ŷ )δ = −(∇vt̃)(Ŷ , X̂) for all X,Y ∈ X(M).

Indeed, taking into account 2.44, Example 2 and 2.31, 5, we obtain:
◦
P(X̂, Ŷ )δ := ∇Xh∇Y vδ −∇Y v∇Xhδ −∇[Xh,Y v]δ = ∇Xh Ŷ −∇Y v t̃(X̂)

− j[[Xh, Y v],H ◦ δ] = V[Xh, Y v]− (∇vt̃)(Ŷ , X̂)− V[Xh, Y v]

= −(∇vt̃)(Ŷ , X̂).

We assume now that ∇ is associated to the horizontal map H.

Notice that in view of 2.44, Example 2 our assumption is equivalent to
the homogeneity of H.

5. For any vector fields X̃, Ỹ along τ we have:

[iX̃, iỸ ] = i(∇
i eX Ỹ −∇ieY X̃),

[HX̃, iỸ ] = i∇
H eX Ỹ −H∇

ieY X̃,

[HX̃,HỸ ] = −i
◦
R1(X̃, Ỹ ) + H(∇

H eX Ỹ −∇HeY X̃).

This is an immediate consequence of 2.45, Proposition 2.

6. The Bianchi identities for the Berwald derivative ∇, induced by and
associated to the horizontal map H, reduce to the following:

I S
1,2,3

◦
R(X̃1, X̃2)X̃3 = 0

II S
1,2,3

(∇
H eX1

◦
R)(X̃2, X̃3, Ỹ ) = S

1,2,3

◦
P(X̃3,

◦
R1(X̃1, X̃2))Ỹ

IV (∇
i eX1

◦
R)(X̃2, X̃3, Ỹ ) + (∇

H eX2

◦
P)(X̃3, X̃1, Ỹ )

−(∇
H eX3

◦
P)(X̃2, X̃1, Ỹ ) = 0

V (∇
i eX2

◦
P)(X̃1, X̃3, Ỹ ) = (∇

i eX3

◦
P)(X̃1, X̃2, Ỹ )

.
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7. Under the homogeneity of H, the Berwald curvature
◦
P of ∇ is totally

symmetric.

This property has already been proved in the tangent bundle framework
under the condition that the torsion of H vanishes; see 2.33, Property 8.
In the present situation another efficient reasoning, due to J.-G. Diaz [25],

is also possible. Observe first that, by the vanishing of
◦
S, 2.46, Proposi-

tion 2(1) implies that
◦
P(X̃, Ỹ )Z̃ =

◦
P(Z̃, Ỹ )X̃ for all X̃, Ỹ , Z̃ ∈ X(τ).

Since
◦
P1 also vanishes, 2.45, Lemma 4 leads to the relation

◦
P( · , · )δ =

0. Thus, replacing Ỹ := δ in the fifth Bianchi identity, we obtain that
◦
P(X̃, Ỹ )Z̃ =

◦
P(X̃, Z̃)Ỹ . This concludes the proof.

8. Let the (1, 1) tensor field
◦̃
R along τ be defined by

◦̃
R(X̃) :=

◦
R(δ, X̃)δ.

Then for all X̃, Ỹ ∈ X(τ) we have

◦
R(X̃, Ỹ )δ =

1
3

[(
∇

i eX
◦̃
R
)
(Ỹ )−

(
∇

ieY
◦̃
R
)
(X̃)

]
.

Proof. We follow the argument presented in [25]. Since
◦
P( · , · )δ = 0 and

∇hδ = 0, the fourth Bianchi identity yields

(∇
i eX

◦
R)(Z̃, Ỹ , δ) = 0 for all X̃, Ỹ , Z̃ ∈ X(τ).

In detail,

∇
i eX(

◦
R(Z̃, Ỹ )δ)−

◦
R(∇

i eX Z̃, Ỹ )δ −
◦
R(Z̃,∇

i eX Ỹ )δ −
◦
R(Z̃, Ỹ )X̃ = 0.

Hence

∇
i eX
( ◦̃
R(Y )

)
=

◦
R(X̃, Ỹ )δ +

◦̃
R(∇

i eX Ỹ ) +
◦
R(δ, Ỹ )X̃,

therefore (
∇

i eX
◦̃
R
)
(Ỹ ) =

◦
R(X̃, Ỹ )δ +

◦
R(δ, Ỹ )X̃,

and, consequently,(
∇

i eX
◦̃
R
)
(Ỹ )−

(
∇

ieY
◦̃
R
)
(X̃) = 2

◦
R(X̃, Ỹ )δ +

◦
R(δ, Ỹ )X̃ −

◦
R(δ, X̃)Ỹ .

Here, by the first Bianchi identity,
◦
R(δ, Ỹ )X̃−

◦
R(δ, X̃)Ỹ =

◦
R(X̃, Ỹ )δ, which

concludes the proof.
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9. In the homogeneous case the Riemann curvature of the Berwald deriv-
ative is determined by the v-horizontal torsion, namely

◦
R(X̃, Ỹ )Z̃ = (∇

i eZ
◦
R1)(X̃, Ỹ ) for all X̃, Ỹ , Z̃ ∈ X(τ)

(cf. 2.33, 6).

Proof. In view of the assumption ∇hδ = 0 and Property 7 above, the fourth
Bianchi identity yields(

∇
i eZ

◦
R
)
(X̃, Ỹ , δ) = 0 for all X̃, Ỹ , Z̃ ∈ X(τ).

In detail, taking into account 2.45, Lemma 4,

0 = ∇
i eZ(

◦
R(X̃, Ỹ )δ)−

◦
R(∇

i eZX̃, Ỹ )δ −
◦
R(X̃,∇

i eZ Ỹ )δ −
◦
R(X̃, Ỹ )Z̃

= ∇
i eZ(

◦
R1(X̃, Ỹ ))−

◦
R1(∇

i eZX̃, Ỹ )−
◦
R(X̃,∇

i eZ Ỹ )−
◦
R(X̃, Ỹ )Z̃

= (∇
i eZ

◦
R1)(X̃, Ỹ )−

◦
R(X̃, Ỹ )Z̃,

whence the statement.

10. In the homogeneous case for the Riemann curvature of the Berwald
derivative the following are equivalent:

(1)
◦
R = 0;

(2)
◦
R( · , · )δ =

◦
R1 = 0;

(3)
◦
R(δ, · )δ = 0.

This is an immediate consequence of the above properties 8 and 9;
see also 2.33, Property 7.

2.48. A theorem of M. Crampin on Berwald derivatives.

Theorem. Let D be a covariant derivative operator in τ∗τ such that
Dv = ∇v, i.e., the v-covariant derivative induced by D is the canonical
v-covariant derivative.

(a) If H is a horizontal map for τ then the following two conditions are
equivalent:

(D
ieY P1)(X̃, Z̃) = (D

i eZP1)(X̃, Ỹ ) for all X̃, Ỹ , Z̃ ∈ X(τ);(i)

P(X̃, Z̃)Ỹ = P(X̃, Ỹ )Z̃ for all X̃, Ỹ , Z̃ ∈ X(τ).(ii)
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(P1 and P are the v-mixed torsion and the Berwald curvature of D with
respect to H, respectively).

(b) If either of conditions (i) and (ii) holds for one horizontal map, then
both of them hold for all horizontal maps.

(c) Condition (i), and hence (ii), is necessary and sufficient for there to
be some horizontal map H on M which induces D as the Berwald derivative
arising from H.

Proof. (1) Note first that Dv = ∇v implies that

S = 0, Q1 = 0 and Q = 0,

see e.g. 2.45, Lemma 1 and 2.42, Example 2.

(2) To prove (a), we start from the Jacobi indentity[
[HX̃, iỸ ], iZ̃

]
+
[
[iỸ , iZ̃],HX̃

]
+
[
[iZ̃,HX̃], iỸ

]
= 0(∗)

(X̃, Ỹ , Z̃ ∈ X(τ)).

Next we express the brackets in terms of covariant derivatives. The calcu-
lation is somewhat lengthy, but quite straightforward. For example, using
the expression for P1 in 2.45, Lemma 1 and the vanishing of S and Q1, the
first term in (∗) may be formed as follows:[
[HX̃, iỸ ], iZ̃

]
=
[
iV[HX̃, iỸ ], iZ

]
+
[
H ◦ j[HX̃, iỸ ], iZ̃

]
= [iDH eX Ỹ , iZ̃]

− [iP1(X̃, Ỹ ), iZ̃]− [HDieY X̃, iZ̃] = iDiD
HfX

eY Z̃ − iDieZDH eX Ỹ

− iDiP1( eX,eY )Z̃ + iDieZ(P1(X̃, Ỹ ))− iDHDi eY
eX Z̃ + iP1(DieY X̃, Z̃) + HDieZDieY X̃.

Analogously, we get similar expressions for the second and the third term
of (∗). Adding all these, and operate by V on both sides of the equality
obtained, after some easy steps we arrive at the relation

P(X̃, Z̃)Ỹ −P(X̃, Ỹ )Z̃ = (D
ieY P1)(X̃, Z̃)− (D

i eZP1)(X̃, Ỹ ).

This concludes the proof of assertion (a).

(3) Suppose that (ii) holds for a horizontal map H. We show that then
(ii) is valid for any other horizontal map H̄ .

Observe that H̄ −H is vertical-valued, since

J ◦ (H̄ −H) = i ◦ j ◦ H̄ − i ◦ j ◦H = i− i = 0.
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From this it follows that H̄ and H are related as follows:

H̄ = H + i ◦ Ã, Ã ∈ T1
1(τ).

If P̄ is the Berwald curvature of D with respect to H̄, then for any vector
fields X̃, Ỹ , Z̃ along τ we have

P̄(X̃, Z̃)Ỹ − P̄(X̃, Ỹ )Z̃ = RD(H̄X̃, iZ̃)Ỹ −RD(H̄X̃, iỸ )Z̃

= P(X̃, Z̃)Ỹ −P(X̃, Ỹ )Z̃ + Q(Ã(X̃), Z̃)−Q(Ã(X̃), Ỹ )Z̃ = 0,

thus proving assertion (b).
(4) Both of conditions (i) and (ii) are necessary. Indeed, if D is the

Berwald derivative induced by a horizontal map, then its v-mixed torsion
vanishes according to 2.47, 2, therefore (i) holds automatically. Notice that
(ii) is valid also in its own rights in virtue of 2.33, 8.

(5) Finally, we turn to the proof of the sufficiency of (i). Suppose that
(i) holds for a horizontal map H. In view of 2.45, Corollary, we have to
find a horizontal map H̄ which has vanishing v-mixed torsion P̄1. As we
have just seen, H̄ and H are related by H̄ = H + i ◦ Ã, where Ã is a type
(1, 1) tensor field along τ . Then the relationship between the corresponding
vertical maps is V̄ = V− Ã ◦ j. Thus for any vector fields X̃, Ỹ in X(τ) we
have

P̄1(X̃, Ỹ ) = DH̄ eX Ỹ − V̄[H̄X̃, iỸ ] = DH eX Ỹ +Di eA( eX)Ỹ − V̄[HX̃, iỸ ]

− V̄[iÃ(X̃), iỸ ] = P1(X̃, Ỹ ) +Di eA( eX)Ỹ + Ã ◦ j[HX̃, iỸ ]−Di eA( eX)Ỹ

+DieY Ã(X) = P1(X̃, Ỹ ) + (DieY Ã)(X̃),

therefore Ã has to satisfy the partial differential equation

(D
ieY Ã)(X̃) = −P1(X̃, Ỹ ).

Relation (i) is just the condition of complete integrability of this equation,
which concludes the proof of the theorem.

2.49. h-basic covariant derivatives in τ∗τ .

We confirm our assumption that a horizontal map H is specified
for τ . ∇ means the Berwald derivative induced by H in τ∗τ .

Lemma 1. If D is a covariant derivative operator in τ∗τ , then the map D̃
defined by

D̃ξỸ := DhξỸ +∇vξỸ ; ξ ∈ X(TM), Ỹ ∈ X(τ),
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is also a covariant derivative operator in τ∗τ . For the Berwald curvature P̃
of D̃ we have

P̃(X̂, Ŷ )Ẑ = −j[Y v,HDXh Ŷ ] for all X,Y, Z ∈ X(M).

Proof. D̃ is obviously a covariant derivative operator in τ∗τ (cf. 2.44, Ex-
ample 1). Taking into account that [Xh, Y v] is a vertical vector field and
using the rules of calculation for ∇, we obtain:

P̃(X̂, Ŷ )Ẑ = D̃XhD̃Y vẐ − D̃Y vD̃XhẐ − D̃[Xh,Y v]Ẑ

= −D̃Y vDXhẐ = −j[Y v,HDXhẐ].

Definition. A covariant derivative operator D in τ∗τ is said to be h-basic

if there is a covariant derivative
◦
D on M such that

DXh Ŷ =
◦̂
DXY for all X,Y,∈ X(M).

Then
◦
D is called the base covariant derivative belonging to D.

Lemma 2. A covariant derivative operator D in τ∗τ is h-basic if, and only
if, the covariant derivative D̃ defined in Lemma 1 has vanishing Berwald
curvature.

Proof. (a) Necessity. If D is h-basic with the base covariant derivative op-

erator
◦
D, then by Lemma 1 for any vector fields X, Y , Z on M we have

P̃(X̂, Ŷ )Ẑ = −j[Y v,H
◦̂
DXY ] = −j

[
Y v, (

◦
DXY )h

]
= 0,

since the Lie bracket gives a vertical vector field.
(b) Sufficiency. If P̃=0, then, according to Lemma 1, j[Y v,HDXhZ̃] = 0,

or equivalently,

J [Y v,HDXhẐ] = 0 for all X,Y, Z ∈ X(M).

Applying 2.31, 3 we have

0 = [J, Y v]HDXhẐ = [iDXhẐ, Y v]− J [HDXhẐ, Y v],

therefore
[iDXhẐ, Y v] = 0 for all Y ∈ X(M).
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In virtue of 2.31, Lemma (ii), from this it follows that

iDXhẐ is a vertical vector field for all X,Z ∈ X(M).

Thus there is a possibility to define a covariant derivative operator
◦
D on M

by the rule

(X,Z) 7→
◦
DXZ,

◦̂
DXZ := DXhẐ for all X,Z ∈ X(M).

This proves that D is an h-basic covariant derivative operator with the base

covariant derivative
◦
D.

Example. Consider the Berwald derivative ∇ induced by H in τ∗τ .

(1) ∇ is h-basic if, and only if, there is covariant derivative operator
◦
D

on M such that

◦̂
DXY=V[Xh, Y v], or equivalenty , (

◦
DXY )v = [Xh, Y v] for all X,Y ∈X(M).

Indeed, this is obvious from the rule of calculation ∇Xh Ŷ = V[Xh, Y v].
Now Lemma 2 implies immediately that ∇ is h-basic if, and only if, the

Berwald curvature
◦
P of ∇ vanishes.

(2) Suppose that ∇ is h-basic with the base covariant derivative
◦
D. We

express the Riemann curvature
◦
R and the h-horizontal torsion

◦
T of ∇ in

terms of the curvature tensor field R
◦
D and the torsion tensor field T

◦
D of

◦
D.

Let X, Y , Z be vector fields on M . Then

i
◦
R(X̂, Ŷ )Ẑ = iR∇(Xh, Y h)Ẑ = i

(
∇Xh∇Y hẐ −∇Y h∇XhẐ −∇[Xh,Y h]Ẑ

)
= i
(
∇XhV[Y h, Zv]−∇Y hV[Xh, Zv]−∇h[Xh,Y h]Ẑ −∇v[Xh,Y h]Ẑ

)
= i
(
∇Xh

◦̂
DY Z −∇Y h

◦̂
DXZ −∇[X,Y ]hẐ

)
= v

(
[Xh, (

◦
DY Z)v]− [Y h, (

◦
DXZ)v]

− [[X,Y ]h, Zv]
)

=
( ◦
DX

◦
DY Z −

◦
DY

◦
DXZ −

◦
D[X,Y ]Z

)v = (R
◦
D(X,Y )Z)v,

hence

◦
R(X̂, Ŷ )Ẑ =

̂
R
◦
D(X,Y )Z for all X,Y, Z ∈ X(M).

Thus an h-basic Berwald derivative has vanishing curvature if, and only if,
the curvature tensor field of its base covariant derivative operator vanishes.
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According to 2.47, 1 and the Lemma in 2.32, we have

◦
T(X̂, Ŷ ) = VT(Xc, Y c) = V([Xh, Y v]− [Y h, Xv]− [X,Y ]v)

= V(
◦
DXY −

◦
DYX − [X,Y ])v = V ◦ i

̂
T
◦
D(X,Y ) =

̂
T
◦
D(X,Y ),

i.e.,

◦
T(X̂, Ŷ ) = VT(Xc, Y c) =

̂
T
◦
D(X,Y ) for all X,Y ∈ X(M).

From this it follows that for an h-basic Berwald derivative ∇ the following
are equivalent:

(i) ∇ has vanishing h-horizontal torsion.
(ii) The torsion of the given horizontal map vanishes.
(iii) The base covariant derivative belonging to ∇ is torsion-free.

(3) Next we show that ∇ is h-basic if, and only if, the tension t̃ of H is
basic.

Necessity. Suppose that ∇ is h-basic, i.e. there is a covariant derivative

operator
◦
D on M such that

[Xh, Y v] = (
◦
DXY )v for all X,Y ∈ X(M).

Then the Lie brackets [Xh, Y v] (X,Y ∈ X(M)) are vertical lifts, hence,
according to the Proposition in 2.6, are homogeneous of degree 0:

[C, [Xh, Y v]] = −[Xh, Y v] for all X,Y ∈ X(M).

Thus, using the Jacobi identity, we obtain:

0 = [Xh, [Y v, C]] + [Y v, [C,Xh]] + [C, [Xh, Y v]]

= [Xh, Y v] + [Y v, [C,Xh]]− [Xh, Y v] = [Y v, [Xh, C]].

This implies by 2.31, Lemma (ii) that [Xh, C] = i t̃(X̃) is a vertical lift.
Therefore there is a type (1, 1) tensor field A on M such that t̃(X̂) = Â(X)
for all X ∈ X(M), proving that t̃ is basic.

Sufficiency. Suppose that there is a (1, 1) tensor field A on M satisfying

Â(X) = t̃(X̂) = V[Xh, C] for all X ∈ X(M).



175

Then, again by the Jacobi identity,

0 = [Xv, [Y h, C]] + [Y h, [C,Xv]] + [C, [Xv, Y h]] = [Xv, (A(Y ))v]

− [Y h, Xv] + [C, [Xv, Y h]] = [Xv, Y h] + [C, [Xv, Y h]],

hence
[C, [Xv, Y h] = −[Xv, Y h] for all X,Y ∈ X(M).

By the Proposition in 2.6 from this it follows that

[Xv, Y h] is a vertical lift for all X,Y ∈ X(M).

Now, as in the proof of Lemma 2, we conclude that there is a (unique)

covariant derivative operator
◦
D on M such that

∇Xh Ŷ = V[Xh, Y v] =
◦̂
DXY for all X,Y ∈ X(M),

therefore ∇ is h-basic. This concludes the proof of our statement.

Lemma 3. Suppose that D is and h-basic covariant derivative operator in

τ∗τ with the base covariant derivative
◦
D. Let h0 be the horizontal projector

arising from
◦
D according to 2.15, Example 3. Then we have

iDXhδ = Xh −Xh0 for all X ∈ X(M);

therefore h0 coincides with h if, and only if, the h-deflection Dhδ of D
vanishes.

Proof. Notice first that in view of 2.16, Example 3 and 2.33, Proposition 3
we have

[Xh0 , C] = 0, (
◦
DXY )v = [Xh0 , Y v] for all X,Y ∈ X(M).

Keeping these in mind, we apply a local argument. Let (U, (ui)n
i=1) be a

chart on M and (τ−1(U), ((xi)n
i=1, (y

i)n
i=1)) the induced chart in TM . Then

the coordinate expression of δ is yi ∂̂
∂ui , and over τ−1(U) we get:

i(DXhδ) = iDXh

(
yi ∂̂

∂ui

)
= i
[
(Xhyi) ∂̂

∂ui + yi
◦̂
DX

∂
∂ui

]
= (Xhyi) ∂

∂yi + yi
( ◦
DX

∂
∂ui

)v = (Xhyi) ∂
∂yi + yi

[
Xh0 , ∂

∂yi

]
= (Xhyi) ∂

∂yi + [Xh0 , C]− (Xh0yi) ∂
∂yi = Xh −Xh0 .
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Remark. Suppose that D is a covariant derivative oprator in τ∗τ with
vanishing h-deflection, i.e. Dhδ = 0. In view of Lemma 3 in order that D
be h-basic it is necessary that H be homogeneous and smooth on its whole
domain of definition TM ×M TM . In particular, if D = ∇ is the Berwald
derivative induced by H, then the only condition is the smoothness of H on
TM ×M TM , since ∇hδ = t̃ = the tension of H (see 2.42, Example 4).

Proposition 1. Suppose that H is a homogeneous horizontal map and let
D be an h-basic covariant derivative operator in τ∗τ . Then

Dhδ = 0 if, and only if, P1 = 0.

Proof. Let
◦
D be the base covariant derivative belonging to D, and let us

denote by h0 the horizontal projector arising from
◦
D. According to 2.45,

Lemma 1, for any vector fields X, Y on M we have

i P1(Xh, Y h) = iDXh Ŷ − [Xh, Y v] = (
◦
DXY )v − [Xh, Y v]

= [Xh0 , Y v]− [Xh, Y v],

therefore

P1 = 0 ⇐⇒ [Xh0 , Y v] = [Xh, Y v] for all X,Y ∈ X(M).

Next we show that the last property is equivalent to the coincidence of h0

and h; this, in virtue of Lemma 3, yields the Proposition.
Since Xh −Xh0 is obviously a vertical vector field, the property

[Xh −Xh0 , Y v] = 0 for all Y ∈ X(M)

implies by 2.31, Lemma (ii) that Xh −Xh0 is a vertical lift. Hence, in view
of 2.31, Corollary 2, [J,Xh−Xh0 ] = 0. Choose a vector field ξ on TM such
that Jξ = C. Then it follows that

0 = [J,Xh −Xh0 ]ξ = [C,Xh −Xh0 ]− J [ξ,Xh −Xh0 ]

= −J [ξ,Xh −Xh0 ]
2.31, 5

= Xh0 −Xh

(since h and h0 are homogeneous). Thus Xh = Xh0 for all X ∈ X(M),
hence h = h0. This concludes the proof.
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Proposition 2. Suppose that the horizontal map H is everywhere continu-
ous on its domain. Let D be an h-basic covariant derivative operator with

the base covariant derivative
◦
D. Then

Dhδ = t̃ if, and only if, P1 = 0.

Proof. (a) Necessity. Let X ∈ X(M). By the condition, iDXhδ = [Xh, C]
(see also 2.42, Example 4). On the other hand, according to Lemma 3,
iDXhδ = Xh −Xh0 . Thus, by the homogeneity of h0, we obtain

[C,Xh −Xh0 ] = [C,Xh] = −(Xh −Xh0),

i.e., Xh−Xh0 is homogeneous of degree 0. Locally this means that the ver-
tical vector field Xh −Xh0 has positive-homogeneous component functions
of degree zero. Since these functions are continuous on their domain of def-
inition and smooth outside the zero section, it follows from 2.6 Lemma 2(1)
that they are vertical lifts. (More directly, we may also refer to 2.6, Propo-
sition (1).) Hence for any vector field Y on M we have

0 = [Xh −Xh0 , Y v] = [Xh, Y v]− [Xh0 , Y v],

therefore

i P1(Xh, Y h) = (
◦
DXY )v − [Xh, Y v] = [Xh0 , Y v]− [Xh, Y v] = 0.

Thus P1 = 0, as we claimed.
(b) Sufficiency. If P1 = 0, then, according to 2.45, Lemma 1,

DXh Ỹ = V[Xh, iỸ ] for all X ∈ X(M), Ỹ ∈ X(τ).

In particular,

DXhδ = V[Xh, C] = t̃(X̂) for all X ∈ X(M),

whence Dhδ = t̃. This concludes the proof of the Proposition.

Comment. The concept of h-basic covariant derivatives (under the name
‘linear Finsler connections’) was introduced by M. Hashiguchi [39]. The
importance of these covariant derivatives lies in the fact that a large class of
special Finsler manifolds may be efficiently investigated with the help of an
appropriate h-basic covariant derivative operator; see Y. Ichijyō’s important
papers [40], [41] and the papers of Sz. Szakál and J. Szilasi [73], [74]. In the
next chapter we shall also present some application.
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2.50. Hessian, gradients, Cartan tensors.

Definition 1. Let D be a covariant derivative operator in τ∗τ . The Hessian
of a smooth function F on TM is the second v-covariant differential

HDF := DvDvF,

where Dv is the v-covariant derivative induced by D.

Remark 1. For any vector fields X̃, Ỹ along τ we have

HDF (X̃, Ỹ ) = [Dv(DvF )](X̃, Ỹ ) = D
i eX(DvF (Ỹ ))−DvF (D

i eX Ỹ )

= (iX̃)(iỸ (F ))− (iD
i eX Ỹ )F.

Let, in particular, ∇ be the Berwald derivative induced by a horizontal map
in τ∗τ . Then, for any vector fields X, Y on M ,

H∇F (X̂, Ŷ ) = Xv(Y vF )− (i∇Xv Ŷ )F = Xv(Y vF ).

If (U, (ui)n
i=1) is a chart on M , and (τ−1(U), ((xi)n

i=1, (y
i)n

i=1)) is the induced
chart on TM , then we have the following coordinate expression for H∇F :

H∇F

(
∂

∂ui
,
∂

∂uj

)
=

∂2F

∂yi∂yj
, 1 5 i, j 5 n.

Lemma 1. Let D be a covariant derivative operator in τ∗τ .

(1) If the v-vertical torsion Q1 of D vanishes, then the Hessian HDF
of any smooth function F on TM is a symmetric type (0, 2) tensor field
along τ .

(2) If D has vanishing v-vertical torsion Q1 and vertical curvature Q,
then DvHDF is a totally symmetric type (0, 3) tensor field along τ for all
F ∈ C∞(TM).

Proof. Let X̃, Ỹ , Z̃ be vector fields along τ .

(1) HDF (X̃, Ỹ )−HDF (Ỹ , X̃) = ([iX̃, iỸ ]− i(Di eX Ỹ −DieY X̃))F

= −iQ1(X̃, Ỹ )F = 0, so HDF is indeed symmetric.

(2) Dv(HDF )(X̃, Ỹ , Z̃) = (Di eXH
DF )(Ỹ , Z̃) = iX̃(HDF (Ỹ , Z̃))

−HDF (Di eX Ỹ , Z̃)−HDF (Ỹ ,Di eX Z̃) = iX̃(iỸ (iZ̃)F )− iX̃(iDieY Z̃)F

−(iDi eX Ỹ )(iZ̃)F + (iDiD
ifX

eY Z̃)F − (iỸ )(iDi eX Z̃)F + (iDieY Di eX Z̃)F .
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Interchanging the variables X̃, Ỹ and subtract, we obtain:

Dv(HDF )(X̃, Ỹ , Z̃)−Dv(HDF )(Ỹ , X̃, Z̃) = [iX̃, iỸ ](iZ̃)F

− i(Di eX Ỹ −DieY X̃)(iZ̃)F + i(Di(D
ifX

eY−Di eY
eX)Z̃)F

− (i(Di eXDieY −DieY Di eX)Z̃)F = −iQ1(X̃, Ỹ )(iZ̃)F − (iQ(X̃, Ỹ )Z̃)F = 0.

Thus Dv(HDF ) is symmetric in its first two variables. Since HDF
is symmetric, the symmetry of Dv(HDF ) in the second two variables is
obvious. This concludes the proof.

In the rest of this subsection g will be a pseudo-Riemannian metric in
τ∗τ , i.e., a Finsler metric on M (cf. 2.23). We continue to assume that
a horizontal map H is specified for τ .

Lemma 2. Let F be a smooth function on TM .

(1) Consider the Sasaki lift gS ∈ T0
2(TM) of g. There is a unique vector

field gradF on TM such that

gS(gradF, ξ) = (dF )(ξ) for all ξ ∈ X(TM).

(2) There is a unique vector field gradv F along τ such that

g(gradv F, X̃) = (dvF )(X̃) for all X̃ ∈ X(τ).

(3) There is a unique vector field gradh F along τ such that

g(gradh F, X̃) = (dhF )(X̃) for all X̃ ∈ X(τ).

Proof. All assertions are obivious consequences of the non-degeneracy of gS

and g (cf. 1.30(5)).

The vector field gradF on TM is called the gradient of F , while the
vector fields gradv F and gradh F along τ are said to be the v-gradient and
the h-gradient of F , respectively.

Lemma 3. Let F be a smooth function on TM . Then

gradF = i gradv F + H gradh F.
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Proof. For any vector field X̃ along τ we have

gS(v gradF, iX̃)
2.23
:= g(Vv gradF,V iX̃) + g(j v gradF, j iX̃)

= g(V gradF, X̃).

On the other hand, taking into account 2.23, Lemma,

gS(v gradF, iX̃) = gS(gradF, iX̃) := dF (iX̃) = (dvF )(X̃);

therefore g(V gradF, X̃) = (dvF )(X̃). From these it follows that

V gradF = gradv F, or equivalently, v gradF = i gradv F.

We obtain by a similar argument that h gradF = H gradh F . This
concludes the proof.

Remark 2. Let f ∈ C∞(M). Then gradv f
v is obviously zero, so

grad fv = H gradh f
v, i.e. the gradient of a vertically lifted function is a

horizontal vector field on TM .

Lemma 3. Let D be a covariant derivative operator in τ∗τ . Suppose that
D has vanishing v-vertical torsion and that D is v-metrical, i.e., Dvg = 0.
Then

HDF (X̃, Ỹ ) = g(D
i eX gradv F, Ỹ ) for all X̃, Ỹ ∈ X(τ).

Proof. As we have learnt,

HDF (X̃, Ỹ ) = iX̃((iỸ )F )− (iD
i eX Ỹ )F

= iX̃g(gradv F, Ỹ )− g(gradv F,Di eXY ).

Since D is v-metrical,

iX̃g(gradv F, Ỹ ) = g(D
i eX gradv F, Ỹ ) + g(gradv F,Di eX Ỹ ),

whence the desired formula.

Note. This result is a strict analogue of Lemma 49 in [61], Chapter 3. We
shall see in the next subsection that v-metrical covariant derivatives with
vanishing v-vertical torsion do exist in τ∗τ .



181

Definition 2. The first Cartan tensor of the Finsler metric g is the type
(1, 2) tensor field C along τ given by

g(C(X̃, Ỹ ), Z̃) = (∇vg)(X̃, Ỹ , Z̃) for all X̃, Ỹ , Z̃ ∈ X(τ),

where ∇v is the canonical v-covariant derivative in τ∗τ . The lowered tensor
C[ = ∇vg is also called the first Cartan tensor of g.

Remark 3. (a) Since ∇v is an ‘intrinsic’ operator in the calculus along τ ,
the first Cartan tensor introduced here depends only on g, contrary to the
Cartan tensor defined in 1.46(b).

(b) The lowered first Cartan tensor is symmetric in its last two variables.
Indeed, for any vector fields X̃, Ỹ , Z̃ along τ we have

C[(X̃, Ỹ , Z̃) = (∇vg)(X̃, Ỹ , Z̃) = (∇
i eXg)(Ỹ , Z̃)

= iX̃(g(Ỹ , Z̃))− g(∇
i eX Ỹ , Z̃)− g(Ỹ ,∇

i eX Z̃) = C[(X̃, Z̃, Ỹ ),

since g is symmetric.
(c) For any vector fields X, Y , Z on M , we have

C[(X̂, Ŷ , Ẑ) = Xvg(Ŷ , Ẑ).

If (U, (ui)n
i=n) is a chart on M , and (τ−1(U), ((xi)n

i=1, (y
i)n

i=1)) is the induced
chart on TM , then we obtain the following coordinate expressions for C[
and C:

C[

(
∂̂

∂ui
,
∂̂

∂uj
,
∂̂

∂uk

)
=
∂gjk

∂yi
, gjk := g

(
∂̂

∂uj
,
∂̂

∂uk

)
;

if C

(
∂̂

∂ui
,
∂̂

∂uj

)
= C`

ij

∂̂

∂u`
, then C`

ij = g`k ∂gjk

∂yi
; 1 5 i, j, k 5 n

((gij) is the inverse of (gij); summation convention is used).

Lemma 4. The first Cartan tensor of a Finsler metric g vanishes if, and
only if, g reduces to a pseudo-Riemannian metric on M (in the sense of
2.23, Example).

Proof. (a) Suppose that g = ĝM , where gM is a pseudo-Riemannian metric
on M . Then for any vector fields X, Y , Z on M we have

(∇vĝM )(X̂, Ŷ , Ẑ) = XvgM (Ŷ , Ẑ) = Xv(gM (Y, Z))v = 0,

thus C[ := ∇vg = ∇vĝM = 0.
(b) Conversely, the vanishing of C[ implies immediately that g is basic,

since the components of g are vertical lifts.
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Definition 3. A Finsler metric g is said to be variational if there is a
smooth function F on TM such that g = H∇F .

Corollary. The first Cartan tensor of a variational Finsler metric is sym-
metric, the lowered first Cartan tensor is totally symmetric.

This is an immediate consequence of Lemma 1.

Remark 4. If g = HDF (F ∈ C∞(TM)), then for any vector fields X, Y ,
Z on M we have

C[(X̂, Ŷ , Ẑ) := (∇v(H∇F ))(X̂, Ŷ , Ẑ) = (∇XvH∇F )(Ŷ , Ẑ)

= Xv((H∇F )(Ŷ , Ẑ)) = Xv(Y v(ZvF )).

In local coordinates (cf. Remark 3, (c)),

C[

(
∂̂

∂ui
,
∂̂

∂uj
,
∂̂

∂uk

)
=

∂3F

∂yi∂yj∂yk
, 1 5 i, j, k 5 n.

Definition 4. The second Cartan tensor of the Finsler metric g with respect
to the horizontal map H is the type (1, 2) tensor field Ch along τ given by

g(Ch(X̃, Ỹ ), Z̃) = (∇hg)(X̃, Ỹ , Z̃) for all X̃, Ỹ , Z̃ ∈ X(τ),

where ∇ is the Berwald derivative induced by H in τ∗τ . The lowered tensor
Ch

[ = ∇hg will also be mentioned as the second Cartan tensor of g.

Remark 5. It may be checked immediately that the lowered second Cartan
tensor of a Finsler metric is symmetric in its last two variables.

Lemma 5. Let g be a variational Finsler metric, namely g = H∇F ,
F ∈ C∞(TM). Then the second Cartan tensor of g operates as follows:

Ch
[ (X̂, Ŷ , Ẑ) = −(i

◦
P(X̂, Ŷ )Ẑ)F + Zv(Y v(XhF )) for all X,Y, Z ∈ X(M).

Proof. Taking into account 2.44, Example 1, we get:

Ch
[ (X̂, Ŷ , Ẑ) := (∇hg)(X̂, Ŷ , Ẑ) = (∇Xhg)(Ŷ , Ẑ) = Xh(g(Ŷ , Ẑ))− g(∇Xh Ŷ , Ẑ)

− g(Ŷ ,∇XhẐ) = Xh(Y v(ZvF ))− g(V[Xh, Y v], Ẑ)− g(Ŷ ,V[Xh, Zv])

= Xh(Y v(ZvF ))− [Xh, Y v](ZvF ) + (i∇[Xh,Y v]Ẑ)F − Y v([Xh, Zv]F )

+ (iDY vV[Xh, Zv])F = Y v(Zv(XhF )) + J [Y v,H ◦ V[Xh, Zv]]F.
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Since [Y v, Zv] = 0, the first term in the right hand side equals to
Zv(Y v(XhF )). In the second term

H ◦ V[Xh, Zv] 2.19= (F + J)[Xh, Zv] = F[Xh, Zv],

therefore, applying 2.28, Corollary 2; 2.31,3 and 2.47,3,

J [Y v,H ◦ V[Xh, Zv]] = −J [F[Xh, Zv], Y v] = [J, Y v]F[Xh, Zv]

− [J ◦ F[Xh, Zv], Y v] = −[[Xh, Zv], Y v] = [[Zv, Y v], Xh] + [[Y v, Xh], Zv]

= −iV[[Xh, Y v], Zv] = −i
◦
P(X̂, Ŷ )Ẑ.

This concludes the proof.

A note on terminology. In a classical Finslerian context the first and the
second Cartan tensor were called the Cartan torsion and the Landsberg
curvature, respectively, by Z. Shen in [69].

2.51. A Miron-type metric derivative.

In this subsection (M, g) is a generalized Finsler manifold in the
sense of 2.23. We assume that a horizontal map H is also given
on M .

Lemma. Let C and Ch be the first and the second Cartan tensor of g, re-

spectively. If
◦
C and

◦
Ch are defined by

g(
◦
C(X̃, Ỹ ), Z̃) := C[(X̃, Ỹ , Z̃) + C[(Ỹ , Z̃, X̃)− C[(Z̃, X̃, Ỹ )

and

g(
◦
Ch(X̃, Ỹ ), Z̃) := Ch

[ (X̃, Ỹ , Z̃) + Ch
[ (Ỹ , Z̃, X̃)− Ch

[ (Z̃, X̃, Ỹ )

(X̃, Ỹ , Z̃ ∈ X(τ)), then
◦
C and

◦
Ch are well-defined symmetric type (1, 2)

tensor fields along τ .

Proof. Well-definedness is assured by the non-degeneracy of g, the symme-
tries are consequences of Remarks 3 and 5 in 2.50.
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Proposition. Suppose that the horizontal map H has vanishing torsion and

let ∇ be the Berwald derivative induced by H in τ∗τ . If
◦
C and

◦
Ch are the

tensors given by the Lemma, then the rules

D
i eX Ỹ := ∇

i eX Ỹ +
1
2

◦
C(X̃, Ỹ )

D
H eX Ỹ := ∇

H eX Ỹ +
1
2

◦
Ch(X̃, Ỹ )

(X̃, Ỹ ∈ X(τ)) define a symmetric, metric derivative D in τ∗τ . More ex-
plicitly, for any vector fields ξ on TM and Ỹ in X(τ) we have

DξỸ = j[vξ,HỸ ] + V[hξ, iỸ ] +
1
2
(◦
C(Vξ, Ỹ ) +

◦
Ch(jξ, Ỹ )

)
.

The partial torsions of D are

T = 0, S = −1
2

◦
C, (R1)0 = Ω = −1

2
[h,h],

P1 =
1
2

◦
Ch, Q1 = 0

.

Proof. (1) First we chek that D is a v-metric covariant derivative operator,
i.e. Dvg = 0. This is an immediate calculation: for any vector fields X, Y ,
Z on M we have

(Dvg)(X̂, Ŷ , Ẑ) = (DXvg)(Ŷ , Ẑ) = Xv(g(Ŷ , Ẑ))− g(DXv Ŷ , Ẑ)− g(Ŷ ,DXvẐ)

= C[(X̂, Ŷ , Ẑ)− 1
2
g(

◦
C(X̂, Ŷ ), Ẑ)− 1

2
g(Ŷ ,

◦
C(X̂, Ẑ)) = C[(X̂, Ŷ , Ẑ)

− 1
2
g(

◦
C(X̂, Ŷ ), Ẑ)− 1

2
g(

◦
C(Ẑ, X̂), Ŷ ) = C[(X̂, Ŷ , Ẑ)− C[(X̂, Ŷ , Ẑ) = 0.

(2) We obtain similarly that D is h-metric, i.e. Dhg = 0. Indeed,

(Dhg)(X̂, Ŷ , Ẑ) = (∇hg)(X̂, Ŷ , Ẑ)− 1
2
g(

◦
Ch(X̂, Ŷ ), Ẑ)− 1

2
g(Ŷ ,

◦
Ch(X̂, Ẑ))

= Ch
[ (X̂, Ŷ , Ẑ)− 1

2
(Ch

[ (X̂, Ŷ , Ẑ) + Ch
[ (Ŷ , Ẑ, X̂)− Ch

[ (Ẑ, X̂, Ŷ ))

− 1
2
(Ch

[ (Ẑ, X̂, Ŷ ) + Ch
[ (X̂, Ŷ , Ẑ)− Ch

[ (Ŷ , Ẑ, X̂)) = 0.
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(3) Now we calculate the (h-horizontal) torsion T of D. According
to 2.45, Lemma 1, for any vector fields X̃, Ỹ along τ we have

T(X̃, Ỹ ) = DH eX Ỹ −DHeY X̃ − j[HX̃,HỸ ] = ∇H eX Ỹ −∇HeY X̃ − j[HX̃,HỸ ]

+
1
2

◦
Ch(X̃, Ỹ )− 1

2

◦
Ch(Ỹ , X̃) =

◦
T(X̃, Ỹ ).

In view of 2.47, 1 and the condition of the Proposition

(
◦
T)0 = T = torsion of H = 0,

therefore T = 0, as we claimed.
(4) For the Finsler torsion of D we get

S(X̃, Ỹ ) = −D
ieY X̃ +∇

ieY X̃ = −1
2

◦
C(Ỹ , X̃) = −1

2

◦
C(X̃, Ỹ ) = S(Ỹ , X̃)

(X̃, Ỹ ∈ X(τ)), thus S is symmetric.
(5) 2.45, Lemma 1 and the definition of D imply immediately that

P1 = 0. Finally, for any vector fields X, Y on M we have

Q1(X̂, Ŷ ) = DXv Ŷ −DY vX̂ − V[Xv, Y v] =
1
2

◦
C(X̂, Ŷ )− 1

2

◦
C(Ŷ , X̂) = 0,

so D has vanishing v-vertical torsion.
This concludes the proof.

Comment. The idea of the above construction of the metric derivative D
is from R. Miron’s paper [57], for a coordinate version see also [59], pp.
184–185. As a matter of fact, under some further regularity conditions on g,
which will be discussed in 3.9, and by means of the classical tensor calculus,
Miron was also able to derive a horizontal map that depends only on the
metric. His metric derivative is built upon this canonical horizontal map,
whose intrinsic construction will be indicated in 3.15, Remark.
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Chapter 3

Applications to Second-order
Vector Fields and Finsler
Metrics

A. Horizontal maps generated by second-order vec-
tor fields

3.1. Second order vector fields and geodesics.

(1) In this subsection I will denote an open interval of R. The velocity field
ċ : t ∈ I 7→ ċ(t) ∈ Tc(t)M of a curve c : I −→M will also be mentioned as the
canonical lift of c into TM . The velocity field c̈ of the canonical lift ċ is said
to be the acceleration vector field of c.

(2) As in the foregoing, the Einstein summation convention will be used in co-
ordinate calculations.

Lemma 1. Consider a curve c : I −→M . Choose a chart (U, (ui)n
i=1) on M

such that c−1(U) 6= ∅. Let (τ−1(U), ((xi)n
i=1, (y

i)n
i=1)) be the induced chart

on TM . If ci := ui ◦ c (1 5 i 5 n), then

c̈(t) = (ci)′(t)
(
∂

∂xi

)
ċ(t)

+ (ci)′′(t)
(
∂

∂yi

)
ċ(t)

for all t ∈ c−1(U).

Lemma 2. A curve γ : I −→ TM is the canonical lift of a curve c : I −→M
if, and only if, γ = τ∗ ◦ γ̇.

Proof. If γ = ċ, then τ ◦ γ = τ ◦ ċ = c, and we have

γ = ċ = c∗ ◦
d

dr
= (τ ◦ γ)∗ ◦

d

dr
= τ∗ ◦

(
γ∗ ◦

d

dr

)
= τ∗ ◦ γ̇.

187
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Conversely, suppose that γ = τ∗ ◦ γ̇. Let c := τ ◦ γ. Then

ċ = (τ ◦ γ)∗ ◦
d

dr
= τ∗ ◦

(
γ∗ ◦

d

dr

)
= τ∗ ◦ γ̇ = γ,

so γ is the canonical lift of c. (As for the representation of ċ, see 1.8, Example
and 1.26, Remark.)

Definition 1. A vector field ξ on TM is said to be a second-order vector
field over M if it satisfies the condition Jξ = C (or, equivalently, jξ = δ).

Note. Second-order vector fields are frequently mentioned as semisprays or
second-order differential equations (abbreviated as SODE). We follow here
the usage of Lang’s book [45], but we shall also use the term ‘semispray’
with a seemingly slight, but essential difference; see 3.5.

Remark. Any (finite) convex combination of second-order vector fields is a
second-order vector field: if (ξi)k

i=1 is a family of second-order vector fields
over M and (fi)k

i=1 is a family of non-negative smooth functions on TM

such that
k∑

i=1

fi = 1 := the 1-valued constant function on TM , then
k∑

i=1

fiξi

is also a second-order vector field over M .

Lemma 3 and definition. A vector field ξ : TM −→ TTM is a second
order vector field, if and only if, the coordinate expression of ξ with respect
to any induced chart (τ−1(U), ((xi)n

i=1, (y
i)n

i=1)) is of the following form:

ξ � τ−1(U) = yi ∂

∂xi
+ ξi ∂

∂yi
; ξi ∈ C∞(τ−1(U)), 1 5 i 5 n.

The functions ξi = ξ(yi) (or Gi := −1
2ξ(y

i), 1 5 i 5 n) are called the forces
defined by ξ with respect to the given chart.

The proof is an easy calculation.

Proposition. For a vector field ξ on TM , the following properties are equi-
valent:

(1) ξ is a second-order vector field.

(2) τ∗ ◦ ξ = 1TM .

(3) Each integral curve γ of ξ is equal to the canonical lift of τ ◦γ, in other
words, (τ ◦ γ)· = γ.
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Proof. (1) =⇒ (2) Using the coordinate expression of ξ, according to
Lemma 3 for any vector w ∈ TM we have

τ∗(ξ(w)) = yi(w)
(
∂

∂ui

)
τ(w)

= w,

so τ∗ ◦ ξ = 1TM .
(2) =⇒ (1) Let ξ � τ−1(U) = Xi ∂

∂xi + ξi ∂
∂yi . Then for all w ∈ τ−1(U)

we have

yi(w)
(

∂

∂ui

)
τ(w)

= w = τ∗

(
Xi(w)

(
∂

∂xi

)
w

+ ξi(w)
(
∂

∂yi

)
w

)
= Xi(w)

(
∂

∂ui

)
τ(w)

,

hence Xi = yi (1 5 i 5 n). In view of Lemma 3 this means that ξ is a
second-order vector field.

(2) =⇒ (3) Let γ : I −→ TM be an integral curve of ξ, i.e. γ̇ = ξ ◦ γ.
Then τ∗ ◦ γ̇ = τ∗ ◦ ξ ◦ γ = γ, therefore γ is the canonical lift of τ ◦ γ by
Lemma 2.

(3) =⇒ (2) We again consider an integral curve γ : I −→ TM of ξ, and
assume that γ is a canonical lift. Then, according to Lemma 2,

γ = τ∗ ◦ γ̇ = (τ∗ ◦ ξ) ◦ γ.

Now we use the fact that given a vector w ∈ TM , there is an integral
curve γ := γw with γw(0) = w (see 1.28). This implies immediately that
τ∗ ◦ ξ = 1TM , and concludes the proof.

Definition 2. Let a second-order vector field ξ over M be given. A curve
c : I −→ M is said to be a geodesic with respect to ξ if its canonical lift is
an integral curve of ξ, in other words c̈ = ξ ◦ ċ. This relation is also called
the second-order differential equation for the curve c, determined by ξ.

Coordinate expression. Let ξ � τ−1(U) = yi ∂
∂xi + ξi ∂

∂yi . If c : I −→ M is a
geodesic with respect to ξ, then applying Lemma 1 and Lemma 3 we get

ci′′ = ξi ◦ ċ; ci := ui ◦ c, 1 5 i 5 n.

If we introduce the functions Gi := −1
2ξ

i, the above relation takes the form

G. ci′′ + 2Gi ◦ ċ = 0 (1 5 i 5 n .

By a slight abuse of language, G is also called the differential equation of
the geodesics with respect to ξ.
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3.2. Some technical results.

Lemma 1. Let ξ be a second-order vector field over M . Then

(1) J [Jη, ξ] = Jη for all η ∈ X(TM).

(2) J [Xc, ξ] = 0 for all X ∈ X(M).

Proof. The first relation is merely a restatement of 2.31,5. According to 2.31,
3 and 2.20, Lemma 2, we have

0 = [J,Xc]ξ = [Jξ,Xc]− J [ξ,Xc] = [C,Xc]− J [ξ,Xc] = J [Xc, ξ],

thus proving the second relation.

Corollary. If ξ : TM −→ TTM is a second-order vector field, then for any
vector field X on M

[Xc, ξ] is a vertical vector field;
[Xv, ξ] is a projectable vector field, namely [Xv, ξ] ∼

τ
X.

Proof. The first assertion is obvious from the above relation (2). According
to the relation (1), J [Xv, ξ] = J [JXc, ξ] = JXc, so [Xv, ξ] and Xc differ in
a vertical vector field:

[Xv, ξ] = Xc + η, η ∈ Xv(TM).

Since Xc + η ∼
τ
Xv, the second assertion is also true.

Lemma 2. Let H be a horizontal map for τ . If ξ is a second-order vector
field over M , then

(1) Xh = h[Xv, ξ] for all X ∈ X(M);

(2) h[ξ,h] = H ◦ V, therefore F = h[ξ,h]− J,

where h, V and F are the horizontal projector, the vertical map and the
almost complex structure belonging to H, respectively.

Proof. (1) As we have just seen, [Xv, ξ] = Xc + η, where η ∈ Xv(TM).
Hence h[Xv, ξ] = hXc = Xh.

(2) For any vector field X on M we have

h[ξ,h]Xv = h[Xv, ξ]
(1)
= Xh, H ◦ V(Xv) = H ◦ V ◦ i(X̂) = H(X̂) = Xh;

h[ξ,h]Xh = −h[Xh, ξ] + h[Xh, ξ] = 0, H ◦ V(Xh) = H ◦ V ◦H(X̂) = 0,

therefore h[ξ,h] = H ◦ V.
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Definition. Let H be a horizontal map for τ and let ξ be a second-order
vector field over M . The horizontal Lie-derivative Lh

ξ with respect to ξ (see
2.39 (2)) is said to be the dynamical derivative with respect to ξ.

Note. The operator Lh
ξ is usually called the dynamical covariant derivative,

see e.g. [49], [50], [51]. It was introduced by J. F. Cariñena and E. Mart́ınez
in [14] under the name ‘generalized covariant derivative’.

Lemma 3. With the above notation we have

Lh
ξ δ = Vξ.

Proof. According to 2.39(2), Lh
ξ δ = j[ξ,H ◦ δ], or equivalently,

iLh
ξ δ = J [ξ,H ◦ δ]. The vector field ξ −H ◦ δ is vertical, since

J(ξ −H ◦ δ) = C − i ◦ j ◦H ◦ δ = C − C = 0.

Hence, by Lemma 1(1), ξ −H ◦ δ = J [ξ −H ◦ δ, ξ] = J [ξ,H ◦ δ], therefore

Lh
ξ δ = V

(
iLh

ξ δ
)

= Vξ − V ◦H ◦ δ = Vξ.

Proposition. If ξ is a second-order vector field over M , then

(1) [iξ, iJ ] = iC ,

(2) [iξ, dJ ] = dC + i[J,ξ],

(3) [iJ , dξ] = i[J,ξ].

Proof. Relations (1), (2) and (3) are immediate consequences of 2.30 Corol-
lary (i), (ii) and the second fundamental formula in 2.29, respectively.

3.3. Second-order vector fields and horizontal maps.

Remark 1. If ξ is a second-order vector field, then the vector field
ξ∗ = [C, ξ] − ξ is called the deviation of ξ. Clearly, ξ∗ ‘measures’ the non-
homogeneity of ξ. ξ∗ is a vertical vector field, since, applying 3.2, Lem-
ma 1(1), Jξ∗ = J [C, ξ]− Jξ = C − C = 0.

Lemma 1 and definition. Let H : TM ×M TM −→ TTM be a horizontal
map for τ . Then ξH := H◦δ is a second-order vector field, called associated
to H. ξH satisfies the relation

h[C, ξH] = ξH.
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Proof. The first observation is obvious: j ◦ ξH = j ◦H ◦ δ = δ. To prove the
second, consider the deviation ξ∗H := [C, ξH]− ξH of ξH. Since it is vertical,

0 = h ξ∗H = h[C, ξH]− h ξH = h[C, ξH]−H ◦ j ◦ ξH = h[C, ξH]− ξH,

whence the statement.

Coordinate description. Let a chart (U, (ui)n
i=1) on M be given. Let us

consider the induced chart (τ−1(U), ((xi)n
i=1, (y

i)n
i=1)). If (Γj

i ) is the matrix
of the Christoffel symbols of H with respect to (U, (ui)n

i=1), then the second-
order vector field ξh associated to H may be represented as follows:

ξH � τ−1(U) = yi ∂

∂xi
− yiΓj

i

∂

∂yj
.

In other words, the forces defined by ξH with respect to the chart (τ−1(U), (x, y))

are the functions −
n∑

i=1

yiΓj
i , 1 5 j 5 n.

Definition. Let H be a horizontal map for τ , and let V be the vertical map
belonging to H. A curve c : I −→M is said to be a geodesic of the nonlinear
connection given by H (or briefly a geodesics of H) if V ◦ c̈ = 0, i.e. if the
acceleration vector field of c is ‘horizontal with respect to H’.

Proposition 1. The geodesics of a horizontal map H are exactly the geo-
desics of the second-order vector field associated to H.

Proof. Let ξH be the second-order vector field associated to H. Consider a
curve c : I −→M on M .

(a) If c is a geodesic of ξH, i.e. c̈ = ξH ◦ ċ, then V ◦ c̈ = V ◦H ◦ δ ◦ ċ = 0,
so c is also geodesic with respect to ξ.

(b) Conversely, let c be a geodesic of H, i.e. let V◦ c̈ = 0. For any t ∈ R,
the following statements are true:

(1) c̈(t) = i ◦ Vc̈(t) + h c̈(t) = h c̈(t).

(2) ξHċ(t) = H ◦ δ(ċ(t)) = (H ◦ j) ◦ (H ◦ δ)ċ(t) = h ξH(ċ(t)).

(3) J(ξHċ(t)− c̈(t)) = C(ċ(t))− i ◦ j(c̈(t)) = C(ċ(t))− i(ċ(t), τ∗(c̈(t))

= C(ċ(t))− i(ċ(t), ċ(t))
2.4(3)
= C(ċ(t))− C(ċ(t)) = 0.

Thus
0

(3)
= h(ξHċ(t)− c̈(t))

(2), (1)
= ξH(ċ(t))− c̈(t),

therefore ξH ◦ ċ = c̈, proving that c is a geodesic with respect to ξH.
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Theorem 1. (a) Any second-order vector field ξ over M determines a hori-
zontal map H for τ with the horizontal projector

h =
1
2
(
1TTM + [J, ξ]

)
.

The horizontal lift by H of a vector field X on M is

Xh := HX̂ = hXc =
1
2
(
Xc + [Xv, ξ]

)
.

(b) The second-order vector field associated to H is

ξH = ξ +
1
2
ξ∗ =

1
2
(
ξ + [C, ξ]

)
.

If ξ is homogeneous of degree 2, then ξH = ξ and H is a homogeneous
horizontal map.

(c) The torsion of H vanishes.

Proof. (1) Applying 3.2, Lemma 1(2), we get

[J, ξ]Xc = [Xv, ξ]− J [Xc, ξ] = [Xv, ξ].

So if h is a horizontal projector in the sense of 2.12 and H is the horizontal
map induced by h (see 2.12, Lemma 1), then the horizontal lift of a vector
field X on M with respect to H is indeed 1

2(Xc + [Xv, ξ]).
(2) Next we show that h is indeed a horizontal projector, i.e. h2 = h

and Kerh = Xv(TM).
For any vector field X on M we have

h(Xv) =
1
2
(
Xv − J [Xv, ξ]

)
=

1
2
(Xv −Xv) = 0,

therefore Xv(TM) ⊂ Kerh, and h2 � Xv(TM) = h � Xv(TM) holds auto-
matically. Now we prove the converse relation Kerh ⊂ Xv(TM).

If η ∈ Kerh, then

0 = 2h(η) := η + [Jη, ξ]− J [η, ξ],

hence
Jη = J2[η, ξ]− J [Jη, ξ] = −Jη.

From this we obtain that Jη = 0, and so η ∈ Xv(TM). Thus
Kerh ⊂ Xv(TM) is also true, therefore Kerh = Xv(TM).
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Now we turn to the proof of h2(Xc) = h(Xc). Starting with the defini-
tion of h,

h2(Xc) =
1
2
h(Xc + [J, ξ]Xc) =

1
2
h(Xc + [Xv, ξ]− J [Xc, ξ])

3.2, Lemma1
=

=
1
2
(hXc + h[Xv, ξ]).

Since by 3.2, Corollary, [Xv, ξ] ∼
τ

X, furthermore Xc ∼
τ

X, it follows

that [Xv, ξ] − Xc ∼
τ

0. Hence [Xv, ξ] − Xc ∈ Xv(TM) = Kerh, therefore

h[Xv, ξ] = hXc, and we obtain the desired relation h2(Xc) = hXc.
This concludes the proof of part (a).

(3) ξH := H ◦ δ = H ◦ j ◦ ξ̃ = h ξ̃, where ξ̃ is an arbitrary second-order
vector field over M . According to the definition of h, and arguing as in the
proof of 3.2, Lemma 3, we obtain:

hξ̃ =
1
2
(
ξ̃ + [C, ξ]− J [ξ̃, ξ]

)
=

1
2
(ξ̃ + [C, ξ]− ξ̃ + ξ)

=
1
2
(
ξ + [C, ξ]

)
= ξ +

1
2
ξ∗.

If ξ is homogeneous of degree 2, i.e. [C, ξ] = ξ, then ξH = ξ. In this case H

is homogeneous as well. Indeed, for any vector field X on M we have

[Xh, C] =
1
2
[Xc, C] +

1
2
[[Xv, ξ], C] =

1
2
[[Xv, ξ], C]

= −1
2
(
[[ξ, C], Xv] + [[C,Xv], ξ]

)
=

1
2
(
[ξ,Xv] + [Xv, ξ]

)
= 0.

This proves part (b).

(4) We check that H has vanishing torsion.

T
2.32
:= [J,h] =

1
2
(
[J, 1TTM ] + [J, [J, ξ]]

)
=

1
2
[J, [J, ξ]].

In view of the graded Jacobi identity,

0 = (−1)1·0[J, [J, ξ]] + (−1)1·1[J, [ξ, J ]] + (−1)0·1[ξ, [J, J ]] = 2[J, [J, ξ]],

therefore T = 0.
This concludes the proof.
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Remark 2. The horizontal map (or the horizontal projector) described by
Theorem 1 will usually be mentioned as the horizontal map (or horizontal
projector) generated by the given second-order vector field. Notice that two
second-order vector fields generate the same horizontal map if, and only if,
their difference is a vertical lift.

Indeed, let the horizontal maps H1 and H2 be generated by the second-
order vector fields ξ1 and ξ2, respectively. Obviously,

H1 = H2 ⇐⇒ [J, ξ1 − ξ2] = 0.

Since ξ1 − ξ2 is a vertical vector field, the last relation is equivalent to the
fact that ξ1 − ξ2 is the vertical lift of a vector field on M .

Coordinate description. As usual, choose a chart (U, (ui)n
i=1) on M , and

consider the induced chart (τ−1(U), ((xi)n
i=1, (y

i)n
i=1)) on TM . Let

ξ � τ−1(U) = yi ∂
∂xi − 2Gi ∂

∂yi . Then for the horizontal map H generated by
ξ we have

H
(

∂̂
∂ui

)
=
(

∂
∂ui

)h
= 1

2

((
∂

∂ui

)c
+
[(

∂
∂ui

)v
, ξ
])

= 1
2

(
∂

∂xi +
[

∂
∂yi , y

j ∂
∂xj − 2Gj ∂

∂yj

])
= ∂

∂xi − ∂Gj

∂yi
∂

∂yj (1 5 i 5 n),

therefore the Christoffel symbols of H with respect to (U, (ui)n
i=1) are the

functions

Gj
i :=

∂Gj

∂yi
, 1 5 i, j 5 n .

The second-order vector field ξH asssociated to H has the coordinate ex-
pression

ξH � τ−1(U) = yi ∂

∂xi
− yj ∂G

i

∂yj

∂

∂yi
.

The components of the torsion of H are

T
((

∂

∂ui

)c

,

(
∂

∂uj

)c)
=

(
∂Gk

i

∂yj
−
∂Gk

j

∂yi

)
∂

∂yk
=
(
∂2Gk

∂yj∂yi
− ∂2Gk

∂yi∂yj

)
∂

∂yk
= 0

(1 5 i, j 5 k),

as we expected.

Corollary 1. A second-order vector field ξ over M is horizontal with respect
to the horizontal map H generated by ξ according to Theorem 1 if, and only
if, ξ is homogeneous of degree two.
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Proof. hξ = H ◦ δ = ξH = ξ + 1
2ξ

∗, so hξ = ξ if, and only if,
ξ∗ = [C, ξ]− ξ = 0, i.e. ξ is homogeneous of degree two.

Corollary 2. Let ξ be a second-order vector field on TM , and let h be the
horizontal projector arising from ξ according to Theorem 1. Then for any
smooth function F on TM we have

2dhF = d(F − CF )− iξddJF + dJ iξdF .

Proof. 2dhF = d1TTMF + d[J,ξ]F
2.26, Remark

= dF + d[J,ξ]F = dF + dJdξF−

dξdJF
1.40 (3)

= dF + dJ iξdF + dJdiξF − iξddJF − diξdJF = dF + dJ iξdF−
iξddJF − diξdJF .

Here iξdJF = dJF (ξ) = (dF ◦J)(ξ) = dF (C) = CF , whence the desired
formula.

Corollary 3. Suppose that the horizontal map H is generated by the second-
order vector field ξ. Then for any vector field X on M we have

J [Xh, ξ] = Xh −Xc.

Proof. In view of Theorem 1(a), Xh = (2h− 1TTM )Xh = [J, ξ]Xh =
[Xv, ξ]− J [Xh, ξ] = 2Xh −Xc − J [Xh, ξ], hence J [Xh, ξ] = Xh −Xc.

Corollary 4. If ξ is a second-order vector field on TM and H is the hori-
zontal map generated by ξ, then Lh

ξ = Lv
ξ .

Proof. We have only to show that Lh
ξ and Lv

ξ operate in the same way on
X(τ) (see 2.39). For any vector field Y on M we have

iLh
ξ Ŷ = J [ξ, Y h] Cor. 3= Y c − Y h.

On the other hand,

iLv
ξ Ŷ = v[ξ, Y v] Th. 1= v(Y c − 2Y h) = v Y c = Y c − hY c = Y c − Y h,

therefore
Lh

ξ Ŷ = Lv
ξ Ŷ for all Y ∈ X(M).

To complete the proof we check that

Lh
ξ fŶ = Lv

ξfŶ for all f ∈ C∞(TM).
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Indeed,

Lh
ξ fŶ := j[ξ,H(fŶ )] = fLh

ξ Ŷ + j(ξf)Y h = fLh
ξ Ŷ + (ξf)Ŷ ,

Lv
ξfŶ := V[ξ, i(fŶ )] = fLv

ξ Ŷ + V(ξf)Y v = fLv
ξ Ŷ + (ξf)Ŷ ,

and this ends the proof.

Corollary 5. With the same assumption as above, we have

[ξ, iỸ ] = −HỸ + iLh
ξ Ỹ for all Ỹ ∈ X(τ).

Proof. [ξ, i Ỹ ] = H ◦ j[ξ, i Ỹ ] + i ◦ V[ξ, i Ỹ ] = H ◦ j[ξ, i Ỹ ] + iLv
ξ Ỹ . Since

i ◦ j[ξ, i Ỹ ] = −J [i Ỹ , ξ] = −i Ỹ by 3.2, Lemma 1(1), and Lv
ξ = Lh

ξ according
to the previous Corollary, we obtain the desired formula.

Theorem 2. Any horizontal map with vanishing torsion is generated by a
second-order vector field according to Theorem 1(a).

Proof (after E. Ayassou [6]). Let H be the given horizontal map and h the
horizontal projector belongig to H. Consider the vector-valued one-form
L = 2h− 1TTM . Since

T = [J,h] =: θJh = 0,

it follows that
θJL = 2θJh− θJ1TTM = 0,

thus L is θJ -closed. On the other hand, using the first box in 2.19,

J∗L+ J ◦ L = L ◦ J + J ◦ L = 2h ◦ J − J + 2J ◦ h− J = −2J + 2J = 0,

so L satisfies the condition of Ayassou’s theorem in 2.31. Therefore L is
locally θJ -exact : there is a vector-valued 0-form, i.e. a vector field ξ̃ defined
on an open set O ⊂ TM such that

L � O = θJ ξ̃ = [J, ξ̃].

We may suppose that O is the domain of an induced chart
(τ−1(U), ((xi)n

i=1, (y
i)n

i=1)). Next we show that among these solutions there
is a second-order vector field. Let ξ̃ � τ−1(U) = X̃i ∂

∂xi + ξ̃i ∂
∂yi . Then

[J, ξ̃]
(
∂

∂xi

)
=
∂X̃j

∂yi

∂

∂xj
+

(
∂ξ̃j

∂yi
− ∂X̃j

∂xi

)
∂

∂yj
, [J, ξ̃]

∂

∂yi
= −∂X̃

j

∂yi

∂

∂yj
,
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so L may be represented over τ−1(U) by the 2n× 2n matrix
(

∂ eXj

∂yi

)
0

(
∂eξj

∂yi − ∂ eXj

∂xi

) (
−∂ eXj

∂yi

)
 .

If the Christoffel symbols of H with respect to U constitute the n×n matrix
(Γj

i ), then, according to the local description of h given in 2.32, L can be
represented by the matrix (

(δj
i ) 0

−2(Γj
i ) −(δj

i )

)
.

The equality of these matrices yields the relations

(i)
∂X̃j

∂yi
= δj

i ,

(ii)
∂ξ̃j

∂yi
− ∂X̃j

∂xi
= −2Γj

i (1 5 i, j 5 n).

The first of them implies

X̃j = yj + (f j)v, 1 5 j 5 n,

with some smooth functions f j over U.
Now we introduce the following new functions over U:

Xj := yj , ξj := ξ̃j − yk

(
∂f j

∂uk

)v

(1 5 j 5 n).

Then
ξU := Xi ∂

∂xi
+ ξi ∂

∂yi
= yi ∂

∂xi
+ ξi ∂

∂yi

is a second-order vector field over U (see 3.1, Lemma 3), and solves the
problem, since

∂ξj

∂yi
− ∂Xj

∂xi
=

∂

∂yi

(
ξ̃j − yk

(
∂f j

∂uk

)v)
− ∂

∂xi

(
X̃j − (f j)v

)
=
∂ξ̃j

∂yi
− ∂X̃j

∂xi
−
(
∂f j

∂ui

)v

+
∂(f j)v

∂xi
= −2Γj

i ,
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i.e. the functions Xj , ξj satisfy (ii), while (i) holds automatically.
From this local result we conclude that there is a locally finite open

cover (Ui)i∈I of M and a family (ξi)i∈I of second-order vector fields such
that τ−1(Ui) is the domain of ξi and L � τ−1(Ui) = [J, ξi] (i ∈ I). Now
let (fi)i∈I be a partition of unity subordinate to (Ui)i∈I (see 1.5). Then
ξ :=

∑
i∈I

(fi)vξi is a well-defined second-order vector field over M (cf. 3.1,

Remark) satisfying L = [J, ξ]. Thus h = 1
2

(
1TTM + [J, ξ]

)
, therefore H is

generated by ξ.

Note. Theorem 1, at least in this intrinsic presentation, was discovered
independently by M. Crampin and J. Grifone; see [16], [17] and [36]. The-
orem 2 is due to M. Crampin [18], but it was also deduced by E. Ayassou,
independently, in his thesis [6].

Proposition 2. The horizontal map generated by a second-order vector field
ξ is homogeneous if, and only if, there exists a second order vector field ξ̄ on
TM and a vector field X on M such that ξ̄ is homogeneous of degree two,
i.e. [C, ξ̄] = ξ̄ and ξ = ξ̄ +Xv.

Proof. Let H be the horizontal map generated by ξ; h and v the horizontal
and the vertical projector belonging to H; t the tension of H. Then
2h = 1TTM + [J, ξ].

(a) Sufficiency. Suppose that ξ = ξ̄ +Xv, where Jξ̄ = C, [C, ξ̄] = ξ̄ and
X ∈ X(M). Then for any vector field Y on M we have

2t(Y c) = 2[Y h, C]
Theorem1(a)

= [Y c, C] + [[Y v, ξ̄ +Xv], C]
2.20, Lemma2

=

= [[Y v, ξ̄ ], C]
Jacobi identity

= −[[ξ̄, C], Y v]− [[C, Y v], ξ̄ ]
2.20, Lemma2

=

= [ξ̄, Y v] + [Y v, ξ̄] = 0,

hence H is homogeneous.

(b) Necessity. Suppose that H is homogeneous, and so t = [h, C] = 0.
Let ξ̄ := h ξ. Then ξ̄ is a second-order vector field again, namely ξ̄ = ξH.
We show that ξ̄ is homogeneous of degree two.

Indeed, 2h ξ = ξ + [C, ξ], hence ξ̄ = hξ = h[C, ξ]. On the other hand,
0 = [h, C]ξ = [hξ, C]− h[ξ, C], therefore h[C, ξ] = [C,hξ] = [C, ξ̄]. Thus we
conclude that [C, ξ̄] = ξ̄.

Next we prove that vξ is a vertical lift. Let η be an arbitrary vector field



200 CHAPTER 3. APPLICATIONS TO SECOND-ORDER . . .

on TM . Then we obtain

[J,vξ]η = [Jη,vξ]− J [η,vξ]
(1)
= [Jη,vξ]− J [η,vξ]− [J,v](η, ξ) = −[v η, C]

− J [η, ξ] + J [v η, ξ] + v[Jη, ξ] + v[η, C] = −[v, C]η − J [h η, ξ] + v[Jη, ξ]

(2)
= v[Jη, ξ]− J [h η, ξ] =

1
2
(
[Jη, ξ]− [J, ξ]([Jη, ξ])− J [η, ξ]− J [[J, ξ]η, ξ]

)
=

1
2
(
[Jη, ξ] + J [[Jη, ξ], ξ]− [J [Jη, ξ], ξ]− J [η, ξ]− J [[Jη, ξ]− J [η, ξ], ξ]

)
(3)
=

1
2
(
[Jη, ξ]− [Jη, ξ]− J [η, ξ] + J [η, ξ]

)
= 0,

taking into account that T= [J,h] = 0 implies [J,v] = 0 (step (1)); [v, C] = 0
according to the homogeneity of H (step (2)), and applying 3.2, Lemma 1(1)
(step (3)). Thus [J,v ξ] = 0, therefore by 2.31, Corollary 2, v ξ is indeed a
vertical lift: there is a vector field X on M , such that v ξ = Xv. So we get

ξ = h ξ + v ξ = ξ̄ +Xv,

where the second-order vector field ξ̄ is homogeneous of degree two. This
concludes the proof.

Corollary 6. If H is a homogeneous horizontal map with vanishing torsion,
then there exists a second-order vector field which is homogeneous of degree
two and generates H according to Theorem 1.

Indeed, this is an immediate consequence of Theorem 2 and Proposi-
tion 2.

3.4. The Berwald derivative induced by a second-order vector
field. Let ξ be a second-order vector field over M and H the horizontal
map generated by ξ. Then the Berwald derivative induced by H in τ∗τ or
on TM is said to be the Bervald derivative induced by ξ in τ∗τ or on TM ,
respectively.
Coordinate description. Let (U, (ui)n

i=1) be a chart on M and
(τ−1(U), ((xi)n

i=1, (y
i)n

i=1)) be the induced chart on TM . Suppose that

ξ � τ−1(U) = yk ∂

∂xk
− 2Gk ∂

∂yk
.

Then, as we have learnt in 3.3, the Christoffel symbols of the horizontal map
H generated by ξ are the functions

Gk
i :=

∂Gk

∂yi
, 1 5 i, k 5 n.
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Let ∇ be the Berwald derivative induced by H in τ∗τ . Then for all
i, j ∈ {1, . . . , n} we have

∇�
∂

∂ui

�h
∂̂

∂uj = V
[

∂
∂xi −Gk

i
∂

∂yk ,
∂

∂yj

]
= ∂Gk

i

∂yj V ◦ i ∂̂
∂uk = Gk

ij
∂̂

∂uk ,

where Gk
ij := ∂Gk

i

∂yj = ∂2Gk

∂yj∂yi . These functions are called the Christoffel
symbols of the Berwald derivative ∇ with respect to the chart (U, (ui)n

i=1).
Thus

∇�
∂

∂ui

�h
∂̂

∂uj = Gk
ij

∂̂
∂uk , 1 5 i, j 5 n .

Remark. In terms of the Berwald derivative, Theorems 1, 2 in 3.3 may be
partly restated as follows:

The necessary and sufficient condition for a horizontal map H to be
derived from a second-order vector field is that the (h-horizontal) torsion of
the Berwald derivative induced by H in τ∗τ vanishes.

Indeed, this is obvious from the relation (
◦
T)0 = T (see 2.47,1).

Corollary 1. If ∇ is the Berwald derivative in τ∗τ induced by a second-
order vector field, then its Berwald curvature is totally symmetric.

This is an immediate consequence of Property 8 in 2.33.

Corollary 2. Suppose that ∇ is an h-basic Berwald derivative induced by

a second-order vector field. Then the base covariant derivative
◦
D belonging

to ∇ has vanishing torsion.

Indeed, according to 2.49, Example, for any vector fields X, Y on M we

have (T
◦
D(X,Y ))v = T(Xc, Y c) = 0.

Lemma 1. Let ∇ be the Berwald derivative induced by the second-order
vector field ξ in τ∗τ . Then

∇ξX̃ = Lh
ξ X̃ + t̃(X̃) for all X̃ ∈ X(τ).

Proof. It is enough to check the formula for an arbitrary basic vector field
X̂. Starting with the definitions, we have

i(∇ξX̂ − Lh
ξ X̂) = i(∇h ξX̂ +∇v ξX̂)− J [ξ,Xh] = v[h ξ,Xv] + J [v ξ,Xh]

− J [ξ,Xh] = v[h ξ,Xv]− J [h ξ,Xh].
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Since the torsion of the horizontal map generated by ξ vanishes, we get

0 = [J,h](ξ,Xh) = [C,Xh] + [h ξ,Xv] + J [ξ,Xh]− J [h ξ,Xh]− J [ξ,Xh]

− h[C,Xh]− h[ξ,Xv] = [C,Xh] + v[h ξ,Xv]− J [h ξ,Xh].

Hence v[h ξ,Xv] − J [h ξ,Xh] = [Xh, C] = t(Xc) = i t̃(X̂), and we obtain
the desired relation.

Corollary 3. Under the hypothesis of Lemma 1 we have

i∇ξX̂ = [Xh, C] +Xc −Xh, or equivalently, ∇ξX̂ = Vt(Xc) + V(Xc).

Indeed, we have seen in the proof of 3.3, Corollary 4 that
iLh

ξ X̂ = Xc −Xh.

Lemma 2. Let H and ∇ be the horizontal map and the Berwald derivative
generated by the second-order vector field ξ. Then the tension of H may be
expressed as follows:

t̃ = ∇vLh
ξ δ.

Proof. For any vector field X on M we have

i(∇vLh
ξ δ)(X̂) = i(∇XvLh

ξ δ)
3.2, Lemma 3

= i(∇XvVξ) = J [Xv,H ◦ Vξ].

Since

0 = [J,Xv]H ◦ Vξ = [J ◦H ◦ Vξ,Xv]− J [H ◦ Vξ,Xv] = [v ξ,Xv] + J [Xv,H ◦ Vξ],

it follows that

(∇vLh
ξ δ)(X̂) = V[Xv,v ξ] for all X ∈ X(M).

We have learnt that t̃(X̂) = V[Xh, C], so our only task is to check the
equality [Xv,v ξ] = [Xh, C]. We apply the vanishing of the torsion of H.
This gives

0 = [J,h](Xh, ξ) = [Xv,h ξ] + [Xh, C] + J [Xh, ξ]− J [Xh, ξ]− J [Xh,h ξ]

− h[Xv, ξ]− h[Xh, C].

On the right-hand side

h[Xh, C] = 0, J [Xh,h ξ] = J [Xh, ξ]
3.3, Cor. 3

= Xh −Xc, h[Xv, ξ]
3.2, Lemma 2

= Xh,

therefore

[Xh, C] = 2Xh −Xc − [Xv,h ξ]
3.3, Th.1

= [Xv, ξ]− [Xv, ξ] + [Xv,v ξ] = [Xv,v ξ].

This completes the proof.
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3.5. Semisprays and sprays. By a semispray on the manifold M we
mean a map ξ : TM −→ TTM , v ∈ TM 7→ ξ(v) ∈ TvTM , satisfying the
following conditions:

Jξ = C (or, equivalently , jξ = δ).SPR1.

ξ is smooth on
◦
TM.SPR2.

A spray on M is a semispray ξ having the following properties:

ξ is of class C1 over TM.SPR3.

ξ is homogeneous of degree 2, i.e. [C, ξ] = ξ.SPR4.

A spray is called quadratic if it is of class C2 over TM .

Remarks. (1) According to 2.6, Lemma 2(3), the quadratic sprays are those
second-order vector fields which are homogeneous of degree 2.

(2) The concepts and results treated in 3.1–3.4 remain valid either with-
out any change or with immediate modifications in the formulation if the
second-order vector fields are replaced by semisprays, and the second-order
vector fields with homogeneity of degree 2 are replaced by sprays. For their
importance, we reformulate here the main results of 3.3.

Theorem of M. Crampin and J. Grifone. (i) Any semispray
ξ : TM −→ TTM generates a horizontal map on M with the horizontal
projector 1

2(1TTM + [J, ξ]). The associated semispray of this horizontal map
is 1

2(ξ+ [C, ξ]). If, in particular, ξ is a spray, then the associated semispray
is ξ itself and the horizontal map generated by ξ is homogeneous.

(ii) A horizontal map is generated by a semispray in the above sense if,
and only if, its torsion vanishes.

Proposition. Suppose ξ is a spray over M , and ∇ is the Berwald derivative
induced by ξ in τ∗τ . Then for any vector fields X̃, Ỹ along τ we have

R∇(ξ, i X̃)Ỹ = 0.

Proof. It is enough to check that for any vector fields X, Y on M we have
R∇(ξ,Xv)Ŷ = 0. To see this, we start with the definition:

R∇(ξ,Xv)Ŷ = ∇ξ∇Xv Ŷ −∇Xv∇ξŶ −∇[ξ,Xv]Ŷ = −∇Xv∇ξŶ −∇[ξ,Xv]Ŷ .
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Since ξ generates a homogeneous horizontal map, t̃ = 0. Thus, applying
3.4, Corollary 3, we get

i∇Xv∇ξŶ = J [Xv,H∇ξŶ ] = J [Xv,HVY c] = [Xv, J ◦H ◦ VY c]

= [Xv,v Y c] = [Xv, Y c]− [Xv,hY c] = [X,Y ]v − [Xv, Y h].

On the other hand,

i∇[ξ,Xv]Ŷ = i∇h[ξ,Xv]Ŷ + i∇v[ξ,Xv]Ŷ
3.2, Lemma2(1)

= −i∇Xh Ŷ

= −i ◦ V[Xh, Y v] = −[Xh, Y v],

taking into account that v[ξ,Xv] can be combined from vertical lifts. Hence

iR∇(ξ,Xv)Ŷ = −[Y h, Xv] + [Xh, Y v] + [Y,X]v = −T(Y c, Xc) = 0.

This gives the desired conclusion.
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B. Linearization of second-order vector fields

In this section ξ will be a second-order vector field on the manifold M , H

and ∇ denote the horizontal map and the Berwald derivative generated by ξ. We
define the notion of v-linearizability and linearizability of a second-order vector
field, and establish necessary and sufficient conditions for the characterizations of
these properties. Except for a minor modification, our treatment follows the line
of the paper [49] of E. Mart́ınez and J. Cariñena.

3.6. The Jacobi endomorphism.

Definition. The type (1, 1) tensor field Φ̃ along τ given by

Φ̃(X̃) := V[ξ,HX̃] for all X̃ ∈ X(τ)

is said to be the Jacobi endomorphism determined by ξ. The semibasic
tensor field Φ := (Φ̃)0 ∈ B1

0(TM) corresponding to Φ̃ according to 2.22,
Lemma 1 is called the Jacobi endomorphism determined by ξ on TM .

Coordinate description. With the hypothesis and notations of 3.3, let

ξ � τ−1(U) = yi ∂

∂xi
− 2Gi ∂

∂yi
; Gi

j :=
∂Gi

∂yj
, Gi

jk :=
∂2Gi

∂yj∂yk
(1 5 i, j, k 5 n).

As we have learnt, H ∂̂
∂ui = ∂

∂xi −Gj
i

∂
∂yj , and so V ∂

∂xi = Gj
i

∂̂
∂uj , V ∂

∂yi = ∂̂
∂ui

(1 5 i 5 n). If

Φ̃
(

∂̂
∂ui

)
= Φj

i
∂̂

∂uj (1 5 i 5 n),

then we get by an easy calculation that

Φj
i = 2

∂Gj

∂xi
−Gj

kG
k
i + 2GkGj

ik − y
k ∂G

j
i

∂xk
= 2

∂Gj

∂xi
−Gj

kG
k
i − ξ(G

j
i ),

therefore, locally,

Φ̃ =
(
2 ∂Gj

∂xi −Gj
kG

k
i − ξ(G

j
i )
)
d̂ui ⊗ ∂̂

∂uj .

(Φj
i ) is the matrix of Φ̃ with respect to the chart (U, (ui)n

i=1) on M ; then

the matrix of the semibasic tensor Φ is the 2n× 2n matrix
(

0 0
(Φi

j) 0

)
.
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Remark. For any vector field Ỹ along τ we have

[ξ,HỸ ] = H ◦ j[ξ,HỸ ] + i ◦ V[ξ,HỸ ] = H Lh
ξ Ỹ + i Φ̃(Ỹ ).

Due to this observation and 3.3, Corollary 5, we obtain the following useful
relations:

[ξ, i Ỹ ] = −HỸ + iLh
ξ Ỹ ,

[ξ,HỸ ] = H(Lh
ξ Ỹ ) + i Φ̃(Ỹ )

.

Lemma 1. Φ = −v[h, ξ] = −([h, ξ] + F + J).

Proof. Let X be a vector field on M . Since Φ is semibasic, Φ(Xv) = 0. On
the other hand, Φ(Xh) := i Φ̃(jXh) = i Φ̃(X̂) = v[ξ,Xh] = −v[h, ξ](Xh),
v[h, ξ](Xv) = 0; whence the first equality. Furthermore,

([h, ξ] + F + J)(Xv) = −h[Xv, ξ] +Xh 3.2, Lemma 2
= −Xh +Xh = 0,

([h, ξ] + F + J)(Xh) = [Xh, ξ]− h[Xh, ξ]−Xv +Xv = v[Xh, ξ] = −Φ(Xh),

so the second equality is also valid.

Lemma 2. For any vector field X̃ along τ we have

Φ̃(X̃) =
◦
R1(X̃, δ)−∇heXLh

ξ δ.

Proof. Taking into account 3.2, Lemma 3, ∇heXLh
ξ δ + Φ̃(X̃) = ∇heXVξ+

V[ξ,HX̃] = V[HX̃,v ξ] + V[ξ,HX̃] = V[HX̃, ξ]− V[HX̃,h ξ]+

V[ξ,HX̃] = −V[HX̃,H ◦ δ] =
◦
R1(X̃, δ).

Lemma 3. The curvature of the horizontal map generated by ξ and the
Jacobi endomorphism determined by ξ on TM are related as follows:

3Ω = −[J,Φ].

Proof. Since the torsion T := [J,h] of H vanishes, Corollary 2(2) in 2.32
implies that [J,F] = −Ω. Thus Lemma 1 leads to the relation

[J,Φ] = −[J, [h, ξ]]− [J,F]− [J, J ] = −[J, [h, ξ]] + Ω.

Applying the graded Jacobi identity and 3.3, Theorem 1(a), we get

0 = (−1)1·0[J, [h, ξ]] + (−1)1·1[h, [ξ, J ]] + (−1)0·1[ξ, [J,h]] = [J, [h, ξ]]

+ [h, [J, ξ]] = [J, [h, ξ]] + [h, 2h− 1TTM ] = [J, [h, ξ]]− 4Ω;

therefore [J,Φ] = −3Ω, as was to be proved.
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Corollary 1. The h-horizontal torsion of the Berwald derivative induced
by ξ in τ∗τ and the Jacobi endomorphism Φ̃ determined by ξ are related as
follows:

−3
◦
R1(X̂, Ŷ ) = (∇vbXΦ̃)(Ŷ )− (∇vbY Φ̃)(X̂) for all X,Y ∈ X(M).

Proof. In view of the preceding lemma, for any vector fields X, Y on M we
have

− 3Ω(Xh, Y h) = [J,Φ](Xh, Y h) = [Xv,Φ(Y h)] + [Φ(Xh), Y v]

+ (J ◦ Φ + Φ ◦ J)[Xh, Y h]− J [Φ(Xh), Y h]− J [Xh,Φ(Y h)]− Φ([Xv, Y h])

− Φ([Xh, Y v]) = [Xv,Φ(Y h)]− [Y v,Φ(Xh)]

(repeatedly using the fact that Φ is semibasic). Since

Ω(Xh, Y h)
2.45, Lemma 1

= (
◦
R1)0(Xh, Y h) = i

◦
R1(j ◦HX̂, j ◦HŶ ) = i

◦
R1(X̂, Ŷ ),

Φ(Xh) := (Φ̃0)(Xh) = i Φ̃(j ◦HX̂) = i Φ̃(X̂),

it follows that

−3
◦
R1(X̂, Ŷ ) = V[Xv, i Φ̃(Ŷ )]− V[Y v, i Φ̃(X̂)].

Now observe that

0 = [J,Xv]HΦ̃(Ŷ ) = [i Φ̃(Ŷ ), Xv]− J [HΦ̃(Ŷ ), Xv].

Hence

V[Xv, i Φ̃(Ŷ )] = V ◦ J [Xv,HΦ̃(Ŷ )] = j[Xv,HΦ̃(Ŷ )]

= ∇Xv(Φ̃(Ŷ )) =
(
∇vbXΦ̃

)
(Ŷ ).

Similarly, V[Y v, i Φ̃(X̂)] = (∇vbY Φ̃)(X̂). This concludes the proof.

Corollary 2. If the Jacobi endomorphism determined by ξ is v-parallel, i.e.
∇vΦ̃ = 0, then the Riemann curvature of ∇, as well as the curvature of the
horizontal map generated by ξ vanish. We have the same conclusion if Φ̃ is
basic, i.e. Φ̃ = ϕ̂, ϕ ∈ T1

1(M).

Proposition. Suppose that the Berwald derivative arising from the second-
order vector field ξ has vanishing Berwald curvature and the Jacobi endo-
morphism determined by ξ is v-parallel. Then the tension of the horizontal
map generated by ξ is parallel.
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Proof. In view of 2.47, Property 4, the vanishing of
◦
P implies that ∇vt̃ = 0.

Also due to the vanishing of
◦
P, from 2.47, Property 3 we obtain

0 = (∇h∇vZ̃)(Ŷ , X̂)− (∇v∇hZ̃)(X̂, Ŷ ) = ∇Y h∇XvZ̃ − (∇vZ̃)(∇Y hX̂)

−∇Xv∇Y hZ̃,

hence for all X,Y ∈ X(M), Z̃ ∈ X(τ) we have

(∗) ∇Xv∇Y hZ̃ = ∇Y h∇XvZ̃ − (∇vZ̃)(∇Y hX̂).

Since Φ̃ is v-parallel, Corollary 1 yields
◦
R1 = 0. Thus, by Lemma 2,

Φ̃ = −∇hLh
ξ δ. Now, for any vector fields X, Y on M we get

0 = (∇vΦ̃)(X̂, Ŷ ) =
(
∇XvΦ̃)(Ŷ ) = ∇Xv(Φ̃(Ŷ )) = −∇Xv∇Y hLh

ξ δ

(∗)
= (∇vLh

ξ δ)(∇Y hX̂)−∇Y h∇XvLh
ξ δ

3.4, Lemma 2
= t̃(∇Y hX̂)−∇Y h(t̃(X̂))

= t̃(∇Y hX̂)− (∇Y h t̃)X̂ − t̃(∇Y hX̂) = −(∇ht̃)(Ŷ , X̂),

therefore ∇ht̃ = 0. This completes the proof.

3.7. The v-linearizability of a second-order vector field.

Definition. A second-order vector field ξ over M is said to be linearizable
in velocities, or briefly v-linearizable, if around any point of M there is a
chart (U, (ui)n

i=1) such that the forces Gi := −1
2ξ(u

i)c (1 5 i 5 n) defined
by ξ are of the form

Gi = (Ai
j ◦ τ)yj + bi ◦ τ ; Ai

j , b
i ∈ C∞(U) (1 5 i, j 5 n) .

Theorem (E. Mart́ınez and J. Cariñena). Let ξ be a second-order vector
field on the manifold M . The following assertions are equivalent:

(1) ξ is v-linearisable.

(2) The Berwald derivative induced by ξ has vanishing curvature, i.e. its
Riemann curvature and Berwald curvature vanish.

(3) The tension of the horizontal map generated by ξ is basic and the
Berwald derivative induced by ξ has vanishing Riemann curvature.

(4) The Berwald derivative induced by ξ is h-basic and its base covariant
derivative has vanishing curvature.
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Proof. Our reasoning follows the scheme

(1) =⇒ (2) ⇐⇒ (3) ⇐⇒ (4) =⇒ (1).

(1) =⇒ (2) If ξ is v-linearizable, then in a suitable induced chart
(τ−1(U), ((xi)n

i=1, (y
i)n

i=1)) the coordinate expression of ξ is

ξ � τ−1(U) = yi ∂

∂xi
− 2Gi ∂

∂yi
; Gi = (Ai

j ◦ τ)yj + bi ◦ τ (1 5 i 5 n)

(see the above box-formula). According to the coordinate descriptions pre-
sented in 2.32 and 3.3, the Christoffel symbols of the horizontal map and
the Berwald derivative generated by ξ are

Gi
j = Ai

j ◦ τ and Gi
jk = 0 (1 5 i, j, k 5 n),

respectively. Thus for all i, j, k ∈ {1, . . . , n} we have
◦
P
(

∂̂
∂ui ,

∂̂
∂uj

)
∂̂

∂uk

2.47, 3
= V

[[(
∂

∂ui

)h
, ∂

∂yj

]
, ∂

∂yk

]
= V

[[
∂

∂xi −G`
i

∂
∂y` ,

∂
∂yj

]
, ∂

∂yk

]
= V

[
G`

ji
∂

∂y` ,
∂

∂yk

]
= 0,

therefore the Berwald curvature of∇ vanishes. Similarly, an easy calculation

shows that
◦
R = 0.

(2) =⇒ (3) Indeed, according to 2.49, Example, the tension t̃ is basic if,

and only if, ∇ is h-basic, i.e.
◦
P = 0.

(3) =⇒ (4) This is also an immediate consequence of the results in 2.49,
Example.

(4) =⇒ (1) Let
◦
D be the base covariant derivative belonging to ∇. Since

the horizontal map generated by ξ has vanishing torsion,
◦
D is also torsion-

free (see 2.49, Example). As a torsion-free covariant derivative operator on

M with zero curvature, according to 1.48, Proposition,
◦
D is arising from a

locally affine structure (Uα, (ui
α)n

i=1)α∈A on M such that for any vector fields

X and Y = Y i ∂
∂ui

α
on Uα we have

◦
DXY = X(Y i) ∂

∂ui
α
. Then, in particular,

◦
D ∂

∂ui
α

∂

∂uj
α

= 0 (1 5 i, j 5 n, α ∈ A). Now choose an arbitrary member

(U, (ui)n
i=1) of the locally affine structure (the family index is omitted for

simplicity). Let, as usual, ξ � τ−1(U) = yi ∂
∂xi − 2Gi ∂

∂yi . Since ∇ is h-basic,
for any indices i, j ∈ {1, . . . , n} we have

0 =
(
◦
D ∂

∂ui

∂

∂uj

)v

=
[(

∂

∂ui

)h

,

(
∂

∂uj

)v]
=
[
∂

∂xi
−Gk

i

∂

∂yk
,
∂

∂yj

]
=Gk

ji

∂

∂yk
,
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therefore Gk
ij =

∂Gk
j

∂yi = 0 (1 5 i, j, k 5 0). This shows that the Christoffel
symbols of H are vertical lifts. In other words, there exist smooth functions
Ai

j ∈ C∞(U) such that

Gi
j = Ai

j ◦ τ, 1 5 i, j 5 n.

Since Gi
j := ∂Gi

∂yj , we conclude immediately that

Gi = (Ai
j ◦ τ)yj + bi ◦ τ ; bi ∈ C∞(U), 1 5 i 5 n.

This completes the proof of the Theorem.

3.8. The linearizability of second-order vector fields.

Lemma. Let Φ̃ be the Jacobi endomorphism determined by a second-order
vector field ξ. Over any induced chart (τ−1(U), ((xi)n

i=1, (y
i)n

i=1)) we have

(∇vΦ̃)
(

∂̂
∂ui ,

∂̂
∂uj

)
=

∂Φk
j

∂yi
∂̂

∂uk ,

(∇hΦ̃)
(

∂̂
∂ui ,

∂̂
∂uj

)
=
(

∂Φk
j

∂xi −G`
i

∂Φk
j

∂y` +Gk
i`Φ

`
j −G`

ijΦ
k
`

)
∂̂

∂uk (1 5 i, j 5 n),

where (Φj
i ) is the matrix of Φ̃ with respect to the chart (U, (ui)n

i=1).

Proof. Immediate calculation.

Definition. A second-order vector field ξ on M is said to be linearizable if
around any point of M there is a chart such that the forces defined by ξ are
of the form

Gi = Ai
jy

j +Bi
jx

j + Ci; Ai
j , B

i
j , C

i ∈ R, 1 5 i, j 5 n .

Theorem (E. Mart́ınez and J. Cariñena). A second-order vector field ξ is
linearizable if, and only if, it induces an h-basic Berwald derivative and the
Jacobi endomorphism determined by ξ is parallel with respect to the Berwald
derivative.

Proof. (a) Necessity. Suppose that ξ is linearizable. Then, obviously, ξ is
v-linearizable as well. Thus the preceding theorem guarantees that ξ induces
an h-basic Berwald derivative in τ∗τ . It remains only to check that ∇Φ̃ = 0.
This can be done by an easy calculation.
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Let (U, (ui)n
i=1) be a chart on M such that the forces defined by ξ with

respect to this chart have the form given by the box-formula. Then

Gj
i :=

∂Gj

∂yi
= Aj

i , G
j
ki :=

∂Gj
i

∂yk
= 0,

∂Gj

∂xi
= Bj

i ,
∂Gj

i

∂xk
= 0 (1 5 i, j, k 5 n),

therefore the components of the Jacobi endomorphism Φ̃ (see 3.6) are the
constant functions

Φj
i = 2Bj

i −A
j
kA

k
i (1 5 i, j 5 n).

Taking into account the preliminary Lemma, it follows at once that ∇Φ̃ = 0.
(b) Sufficiency. Suppose that the Berwald derivative ∇ induced by ξ

is h-basic with the base covariant derivative
◦
D, and let the Jacobi endo-

morphism Φ̃ determined by ξ be parallel. Then by 3.7, Corollary 2,
◦
R = 0.

Hence, according to 2.49, Example, R
◦
D = 0. Since the torsion of the hori-

zontal map generated by ξ vanishes, we also have T
◦
D = 0. Thus, as in the

proof of the preceding theorem,
◦
D is arising from a locally affine structure

on M . It follows that around any point of M there is a chart (U, (ui)n
i=1)

such that
◦
D ∂

∂ui

∂
∂uj = 0, and consequently Gi

jk = ∂2Gi

∂yj∂yk = 0 (1 5 i, j, k 5 n;

Gi := −1
2ξ(u

i)c, as above). Then, over τ−1(U), the coordinate expression of
the tension t̃ reduces to

t̃ = −Gj
i d̂u

i ⊗ ∂̂
∂uj

(cf. 2.32,4). In view of the Proposition in 3.6, t̃ is parallel, i.e. ∇t̃ = 0.
Hence for all i, k ∈ {1, . . . , n} we have

0 = (∇ht̃)
(

∂̂
∂uk ,

∂̂
∂ui

)
=
(
∇�

∂

∂uk

�h t̃
)

∂̂
∂ui = −∇�

∂

∂uk

�h G
j
i

∂̂
∂uj − t̃

(
Gj

ki
∂̂

∂uj

)
= −∂Gj

i

∂xk
∂

∂yj ,

therefore the functions Gj
i = ∂Gj

∂yi (1 5 i, j 5 n) are constant over τ−1(U).

Since
∂Gi

j

∂xk =
∂Gi

j

∂yk = 0 (1 5 i, j 5 n), the components of Φ̃ (see 3.6)
reduce to

Φj
i = 2

∂Gj

∂xi
−Gj

k G
k
i (1 5 i, j 5 n).

Applying the Lemma, by the condition ∇Φ̃ = 0 we obtain that

∂Φj
i

∂xk
=
∂Φj

i

∂yk
= 0, 1 5 i, j, k 5 n;
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hence the functions Φj
i are constant. This implies that ∂Gj

∂xi (1 5 i, j 5 n)
are also constant functions.

From these we infer immediately that the forces defined by ξ have the
desired form

Gi = Ai
jy

j +Bi
jx

j + Ci; Ai
j , B

i
j , C

i ∈ R, 1 5 i, j 5 n.
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C. Second-order vector fields generated
by Finsler metrics

In this section by a Finsler metric we mean a pseudo-Riemannian metric in the
deleted bundle

◦
τ∗τ . Thus a Finsler metric g ∈ Γ(S2(

◦
τ∗τ)) is a smooth map

v ∈
◦
TM 7→ gv ∈ L2

sym(T◦
τ(v)

M) such that gv is non-degenerate. As we have learnt,
g may also be interpreted as a non-degenerate, symmetric C∞(TM)-bilinear map
X(

◦
τ)× X(

◦
τ) −→ C∞(TM). According to 2.23, a pair (M, g) is called a generalized

Finsler manifold , if g is a Finsler metric in
◦
τ∗τ . Then, by a slight abuse of language,

we also say that M is a generalized Finsler manifold with the Finsler metric g. We
shall frequently need the smooth function

E :=
1
2
g(δ, δ) :

◦
TM −→ R;

it is called the (absolute) energy of (M, g).

3.9. The regularity conditions of R. Miron.

Definition 1. A Finsler metric g ∈ T0
2(
◦
τ) is said to be regular in Miron’s

sense, or briefly regular , if its first Cartan tensor has the following properties:

C[(X̃, δ, δ) = 0 for all X̃ ∈ X(
◦
τ).M.reg.1.

The map Ã : X̃ ∈ X(
◦
τ) 7→ Ã(X̃) := X̃ + C(X̃, δ) ∈ X(

◦
τ)M.reg.2.

is injective.

Coordinate description. Let (U, (ui)n
i=1) be a chart on M and consider the

induced chart (
◦
τ−1(U), ((xi)n

i=1, (y
i)n

i=1)) on
◦
TM . Taking into account 2.50,

Remark 3(c), for all i ∈ {1, . . . , n} we have

C[

(
∂̂

∂ui , y
j ∂̂

∂uj , y
k ∂̂

∂uk

)
= yjyk ∂gjk

∂yi ;(1)

Ã
(

∂̂
∂ui

)
= ∂̂

∂ui + C
(

∂̂
∂ui , y

j ∂̂
∂uj

)
= ∂̂

∂ui + yj ∂gjk

∂yi g
`k ∂̂

∂u`

=
(
δ`
i + yj ∂gjk

∂yi g
`k
)

∂̂
∂u` .(2)

Thus the regularity conditions take the following local form:

M.reg.1 ⇐⇒ yjyk ∂gjk

∂yi
= 0 (1 5 i 5 n)

M.reg.2 ⇐⇒ det
(
δ`
i + yj ∂gjk

∂yi
g`k

)
6= 0

 over any induced chart .
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Note. Conditions M.reg.1, 2 were introduced by R. Miron in [57], in the
above coordinate form.

Lemma 1. If the Finsler metric g satisfies the condition M.reg.1, then the
energy 1

2g(δ, δ) is positive-homogeneous of degree 2.

Proof. CE = 1
2C(g(δ, δ)) = 1

2

(
(∇Cg)(δ, δ) + 2g(∇Cδ, δ)

)
= 1

2C[(δ, δ, δ)+

g(δ, δ)
M.reg.1

= g(δ, δ) = 2E.

Definition 2. Let (M, g) be a generalized Finsler manifold.

(1) By the canonical one-form of (M, g) we mean the one-form

θg : ξ ∈ X(
◦
TM) 7→ θg(ξ) := g(j ξ, δ) ∈ C∞(

◦
TM) on

◦
TM,

or the one-form

θ̃g : X̃ ∈ X(
◦
τ) 7→ θ̃g(X̃) := g(X̃, δ) ∈ C∞(

◦
TM) along

◦
τ .

(2) The differential ωg := dθg of the canonical one-form on
◦
TM is said to

be the fundamental two-form of (M, g).

Lemma 2. If ωg is the fundamental two-form of the generalized Finsler
manifold (M, g), then

ωg(Jξ, η) = g(Ã(j ξ), j η) for all ξ, η ∈ X(
◦
TM),

where Ã is the (1, 1) tensor defined in M.reg.2.

Proof. We may assume that ξ = Xc, X ∈ X(M). Then Jξ = Xv, j ξ = X̂,
and a straightforward calculation leads to the result:

ωg(Xv, η) = (dθg)(Xv, η) = Xvθg(η)− ηθg(Xv)− θg([Xv, η]) = Xvg(j η, δ)

− g(j[Xv, η], δ) = (∇Xvg)(j η, δ) + g(∇Xvj η, δ) + g(j η,∇Xvδ)

− g
(
j[Xv,H ◦ j η], δ

)
= C[(X̂, j η, δ) + g(∇Xvj η, δ) + g(j η, X̂)

− g(∇Xvj η, δ) = C[(X̂, δ, j η) + g(X̂, j η) = g(C(X̂, δ), j η) + g(X̂, j η)

= g(Ã(X̂), j η).
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Corollary 1. The fundamental two-form of a generalized Finsler manifold
is non-degenerate if, and only if, the metric satisfies the regularity condition
M.reg.2.

Proof. Necessity. Suppose the assertion is false, i.e. ωg is non-degenerate,
but the map Ã : X(

◦
τ) −→ X(

◦
τ) is not injective. Then there is a non-zero

vector field X on M such that Ã(X̂) = 0, and so for all η ∈ X(
◦
TM) we have

0 = g(Ã(X̂), j η) = ωg(Xv, η). Since Xv 6= 0, this is a contradiction.

Sufficiency. Arguing locally, choose an induced chart

(
◦
τ−1(U), ((xi)n

i=1, (y
i)n

i=1)) on
◦
TM , as usual. Let Ã

(
∂̂

∂ui

)
= Aj

i
∂̂

∂uj

(1 5 i 5 n). Then, by Lemma 2,

ωg

(
∂

∂xi ,
∂

∂yj

)
= −ωg

(
∂

∂yj ,
∂

∂xi

)
= −g

(
Ã
(

∂̂
∂uj

)
, j ∂

∂xi

)
= −Ak

j g
(

∂̂
∂uk ,

∂̂
∂ui

)
= −Ak

j gki,

ωg

(
∂

∂yi ,
∂

∂yj

)
= g

(
Ã
(

∂̂
∂ui

)
, j
(

∂
∂yj

))
= 0 (1 5 i, j 5 n).

Thus, with respect to the given chart, ωg can by represented by a 2n × 2n
matrix of form  (Bij) (−gikA

k
j )

(gkjA
k
i ) 0

 .

Since det(Ak
i ) 6= 0 by M.reg.2, this matrix is regular, and hence ωg is non-

degenerate.

Lemma 3. Let E be the energy of the generalized Finsler manifold (M, g),
and let gE := ∇v∇vE. Under the condition M.reg.1 we have:

g(X̃, δ) = (i X̃)E = gE(X̃, δ) for all X̃ ∈ X(
◦
τ).(i)

gE(X̂, Ŷ ) = g(Ã(X̂), Ŷ ) for all X,Y ∈ X(M).(ii)

Proof. Starting with the condition M.reg.1, 0 = C[(X̃, δ, δ) = (∇
i eXg)(δ, δ) =

i X̃(g(δ, δ)) − 2g(∇
i eXδ, δ) = 2(i X̃)E − 2g(X̃, δ); hence g(X̃, δ) = (iX)E.

Moreover, since E is positive-homogeneous of degree 2 by Lemma 1, gE(X̃, δ) =
(∇v∇vE)(X̃, δ) = (∇

i eX(∇vE))(δ) = ∇
i eX∇CE −∇vE(∇

i eXδ) = 2(i X̃)E −
∇vE(X̃) = (i X̃)E, as desired. Thus part (i) is proved.
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Relation (ii) can also easily be deduced. We have on the one hand

gE(X̂, Ŷ ) = (∇v∇vE)(X̂, Ŷ )
2.50,Remark 1

= Xv(Y vE)
(i)
= Xvg(Ŷ , δ). On the

other hand, g(Ã(X̂), Ŷ ) Lemma 2= ωg(Xv, Y c) = dθg(Xv, Y c) = Xvθg(Y c) −
Y cθg(Xv)− θg([Xv, Y c]) = Xvθg(Y c) = Xvg(Ŷ , δ), whence (ii).

Lemma 4. The following properties are equivalent for a generalized Finsler
manifold (M, g):

(1) (M, g) satisfies the regularity condition M.reg.1.

(2) The canonical one-form can be expressed by the energy function
E = 1

2g(δ, δ) as follows:

θ̃g = dvE or θg = (dvE)0 = dvE ◦ j = dJE .

Proof. We have learnt in the proof of Lemma 3 that

C[(j ξ, δ, δ) = 2(Jξ)E − 2g(j ξ, δ) for all ξ ∈ X(
◦
TM).

Thus

M.reg.1 ⇐⇒ ∀ξ ∈ X(
◦
TM) : C[(j ξ, δ, δ) = 0

⇐⇒ ∀ξ ∈ X(
◦
TM) : g(j ξ, δ) = (Jξ)E

⇐⇒ ∀ξ ∈ X(
◦
TM) : θg(ξ) = (dJE)(ξ) ⇐⇒ θg = dJE

2.38, Prop. 1⇐⇒ θ̃g = dvE.

Definition 3. (1) A one-form α on TM (or on
◦
TM) is said to be a Hilbert

one-form (other terms: Poincaré or Poincaré-Cartan one-form), if it is
semibasic and dJ -closed, i.e. if iJα = 0 and dJα = 0.

(2) A one-form α̃ along τ (or along
◦
τ) is called a Hilbert one-form, if

(α̃)0 is a Hilbert one-form.

Remark. The vertical lift αv of a one-form α on M (or, what is essentially
the same, a basic one-form α̃ ∈ A1(τ)) is a trivial example of Hilbert one-
forms. A one-form α̃ along τ is a Hilbert one-form if, and only if, dvα̃ = 0.
Indeed, (dvα̃)0 = dJ(α̃)0 by 2.38, Proposition 1.
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Corollary 2. If a generalized Finsler manifold satisfies the condition M.reg.1,
then its canonical one-form is a Hilbert one-form.

Proof. This is an immediate consequence of Lemma 4 and the property
dv ◦ dv = 0 (see 2.34).

3.10. Semi-Finsler manifolds.

Lemma 1. Let g be a variational Finsler metric, namely g = ∇v∇vL,

L ∈ C∞(
◦
TM). If EL := CL− L, then the canonical one-form of the gene-

ralized Finsler manifold (M, g) can be expressed as follows:

θg = dJEL = (dvEL)0 .

Thus θg is a Hilbert one-form. The fundamental two-form ωg := dθg has the
property

iJωg = 0 .

Proof. (1) For any vector field ξ on TM we have

θg(ξ) := g(j ξ, δ) = ∇v∇vL(j ξ, δ) =
(
∇Jξ(∇vL)

)
(δ) = ∇Jξ∇CL

−∇vL(∇Jξδ) = ∇JξCL−∇vL(j ξ) = Jξ(CL)− (Jξ)L

= Jξ(EL) = (dJEL)(ξ).

iJωg = iJddJEL
2.27= −iJdJdEL

2.31, Cor. 2
= dJ iJdEL

2.31,5(2)
=(2)

= d2
JEL

2.31,2
= 0.

Remark 1. With the notations of the lemma, the function EL is said to be
the energy function associated to L.

Corollary. If g is a variational Finsler metric, namely g = ∇v∇vL, and
satisfies M.reg.1, then the absolute energy E = 1

2g(δ, δ) and the energy
function EL associated to L differ only in a vertical lift.

Proof. By the preceding lemma and by 3.9, Lemma 4 we obtain
θg = dJE = dJEL, hence dJ(E −EL) = 0. This implies by 2.31, Lemma (i)
that E − EL is the vertical lift of a smooth function on M .

Definition. A generalized Finsler manifold (M, g) is said to be a semi-
Finsler manifold if g is variational and satisfies the condition M.reg.2. If
g = ∇v∇vL, then the function ẼL := CEL − EL is called principal energy.
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Note. The attribute ‘semi’ refers to the fact that homogeneity properties
concerning the metric are not required.

Lemma 2. For the principal energy we have dJ ẼL 6= 0, and hence dẼL 6= 0.

Proof. Let g be the given variational Finsler metric. Since M.reg.2 is as-
sumed, the fundamental two-form ωg is non-degenerate. So we have

0 6= iCωg
Lemma1= iCddJEL

2.27= −iCdJdEL
2.31, Cor. 1

= −iJdEL

+ dJ iCdEL = −dJEL + dJ(CEL) = dJ ẼL,

as we claimed.

Proposition 1 and definition. Suppose that (M, g) is a semi-Finsler
manifold; g = ∇v∇vL, EL := CL − L, ẼL = CEL − EL. Then there is a

unique second-order vector field ξ on
◦
TM such that

iξωg = −dẼL.

ξ is called the canonical second-order vector field for the semi-Finsler man-
ifold (M, g) (or simply for g).

Proof. Due to the non-degeneracy of ωg and Lemma 2, there is a unique

vector field ξ on
◦
TM satisfying iξωg = −dẼL. So our only task is to show

that ξ is a second-order vector field, i.e. Jξ = C. This can be done by a
quite immediate calculation:

iJξωg
2.29, Cor.(i)

= iξiJωg − iJ iξωg
Lemma1= −iJ iξωg = iJdẼL

= dJdCEL − dJEL
2.31, Cor. 1

= dCdJEL + dJEL − dJEL

1.40(3)
= iCddJEL + diCdJEL = iCωg;

thus, again by the non-degeneracy of ωg, Jξ = C.

Remark 2. Keeping the conditions and notations of the Proposition, we

have dξωg = 0. Indeed, dξωg
1.40(3)

= iξdωg + diξωg = −ddẼL = 0.

Lemma 3. Let (M, g) be a generalized Finsler manifold, ωg the fundamental

two-form of (M, g). Assume that ξ is a second-order vector field on
◦
TM and
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h is the horizontal projector arising from ξ according to 3.3, Theorem 1. If
Γ := [J, ξ], then the following properties are equivalent:

(1) iΓωg = 0.

(2) ωg(h η,h ζ) = 0 for all η, ζ ∈ X(
◦
TM).

Proof. From the theorem quoted we know that Γ = 2h − 1TTM , hence
Γ ◦ h = h, Γ ◦ v = −v. Thus, applying part (4) of the Theorem in 2.26,

iΓωg(h η,h ζ) = ωg(Γ ◦ h η,h ζ) + ωg(h η,Γ ◦ h ζ) = 2ωg(h η,h ζ),

iΓωg(h η,v ζ) = ωg(h η,v ζ)− ωg(h η,v ζ)
3.9, Lemma2

= 0,

iΓωg(v η,v ζ) = −2ωg(v η,v ζ) = 0,

whence the assertion.

Remark 3. Property (2) in Lemma 3 is usually expressed as follows: ‘the
horizontal subbundle Imh is Lagrangian for ωg’.

Proposition 2. Let (M, g) be a semi-Finsler manifold, and let ξ be the
canonical second-order vector field for g. Then the horizontal subbundle

Imh ⊂ T
◦
TM is Lagrangian for the fundamental two-form ωg., i.e.

ωg(h η,h ζ) = 0

for all η, ζ ∈ X(
◦
TM).

Proof. As above, we assume that g = ∇v∇vL. Let

α := iξωg + dẼL = iξddJEL + d(CEL)− dEL.

According to 3.3, Corollary 2,

iξddJEL + d(CEL)− dEL = dJ iξdEL − 2dhEL.

Thus, since 0 = d[J,h] = dJ ◦ dh + dh ◦ dJ , it follows that

dJα = −2dJdhEL = 2dhdJEL = 2ihddJEL − 2dihdJEL

= 2ihωg − 2ωg
2.26, Th.

= i2h−1TTM
ωg = iΓωg

(taking into account that dJEL is semibasic, and so ihdJEL = dJEL). But
α = 0, therefore iΓωg = 0, which implies by Lemma 3 that Imh is a
Lagrangian subbundle for ωg.
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Proposition 3. Hypothesis as in Proposition 2. For any basic vector fields
X̂, Ŷ in X(

◦
τ) we have

(Lh
ξ g)(X̂, Ŷ ) + (Lh

ξ C[)(X̂, Ŷ , δ) + C[(X̂, Ŷ ,Vξ) = 0.

Proof. By Remark 2, the fundamental two-form ωg has the property
dξωg = 0. Thus

0 = (dξωg)(Xv, Y h) = ξωg(Xv, Y h)− ωg([ξ,Xv], Y h)− ωg(Xv, [ξ, Y h]).

Next, we express the three terms on the right-hand side with the help of the
metric tensor g.

ωg(Xv, Y h)
3.9, Lemma2

= g(Ã(X̂), Ŷ ) = g(X̂, Ŷ ) + g(C(X̂, δ), Ŷ )(1)

= g(X̂, Ŷ ) + C[(X̂, Ŷ , δ).

[ξ,Xv]
3.6, Remark

= −Xh + iLh
ξ X̂, hence ωg([ξ,Xv], Y h) = −ωg(Xh, Y h)(2)

+ ωg(iLh
ξ X̂, Y

h)
Prop. 2

= ωg(iLh
ξ X̂, Y

h)
3.9, Lemma2

= g(Ã(Lh
ξ X̂), Ŷ )

= g(Lh
ξ X̂, Ŷ ) + C[(L

h
ξ X̂, Ŷ , δ).

Also by the box-formula in 3.6, Remark, [ξ, Y h] = H(Lh
ξ Ŷ ) + i Φ̃(Ŷ );(3)

therefore ωg(Xv, [ξ, Y h] = ωg(Xv,H(Lh
ξ Ŷ ) + ωg(Xv, i Φ̃(Ŷ ))

= g(Ã(X̂),Lh
ξ Ŷ ) = g(X̂,Lh

ξ Ŷ ) + C[(X̂,L
h
ξ Ŷ , δ).

Thus

0 = ξg(X̂, Ŷ )− g(Lh
ξ X̂, Ŷ )− g(X̂,Lh

ξ Ŷ ) + ξC[(X̂, Ŷ , δ)− C[(L
h
ξ X̂, Ŷ , δ)

− C[(X̂,L
h
ξ Ŷ , δ)

3.2, Lemma3
= (Lh

ξ g)(X̂, Ŷ ) + (Lh
ξ C[)(X̂, Ŷ , δ) +C[(X̂, Ŷ ,Vξ),

which concludes the proof.

3.11. Finsler manifolds.

Definition 1. A covariant or a
◦
τ∗τ -valued covariant tensor field T̃ along

◦
τ

is said to be homogeneous of degree k ∈ Z if

∇v
δ T̃ = kT̃ ,

where ∇v is the canonical v-covariant derivative, or equivalently, the v-part
of an arbitrary Berwald derivative in τ∗τ . In particular, a Finsler metric
will be called homogeneous, if it is homogeneous of degree 0.
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Lemma 1. Let g be a Finsler metric in
◦
τ∗τ . g is homogeneous if, and only

if, its components gij := g
(

∂̂
∂ui ,

∂̂
∂uj

)
are positive-homogeneous functions of

degree 0, i.e.

yk ∂gij

∂yk
= 0 (1 5 i, j 5 k)

holds over any induced chart (
◦
τ−1(U), ((xi)n

i=1, (y
i)n

i=1)) on
◦
TM . If g is

homogeneous, then its first Cartan C tensor has the following properties:

(1) C(δ, X̃) = 0, for all X̃ ∈ X(
◦
τ).

(2) ∇v
δC = −C, i.e. C is homogeneous of degree −1.

Proof. For any vector fields X, Y on M we have

(∇v
δg)(X̂, Ŷ ) = (∇Cg)(X̂, Ŷ ) = C(g(X̂, Ŷ )),

since e.g. ∇CX̂ = j[C,Xh] = 0, being [C,Xh] vertical. Thus, in particular,

(∇v
δg)
(

∂̂
∂ui ,

∂̂
∂uj

)
= Cgij = yk ∂gij

∂yk ;

this leads immediately to the local criterion of the homogeneity of g. Next
we assume that g is homogeneous. Then

g(C(δ, X̃), Ỹ ) := (∇v
δg)(X̃, Ỹ ) = 0 for all X̃, Ỹ ∈ X(

◦
τ),

which implies by the non-degeneracy of g the relation C(δ, . ) = 0.
Finally we show that C is homogeneous of degree −1. Let X̂, Ŷ , Ẑ be

arbitrary basic vector fields along
◦
τ . The homogeneity of g yields

0 = (∇Cg)(C(X̂, Ŷ ), Ẑ) = Cg(C(X̂, Ŷ ), Ẑ)− g(∇C(C(X̂, Ŷ )), Ẑ),

hence

g((∇CC)(X̂, Ŷ ), Ẑ) = C(g(C(X̂, Ŷ ), Ẑ) = C((∇Xv g)(Ŷ , Ẑ)) = C(Xvg(Ŷ , Ẑ))

= [C,Xv]g(Ŷ , Ẑ) +Xv(Cg(Ŷ , Ẑ)) = −Xvg(Ŷ , Ẑ) = −g(C(X̂, Ŷ ), Ẑ),

and so, again by the non-degeneracy of g, we conclude the desired relation
∇CC = −C.

Definition 2. A Finsler metric g in
◦
τ∗τ is said to be normal, if its first

Cartan tensor satisfies the condition

C(X̃, δ) = 0 for all X̃ ∈ X(
◦
τ) .
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Coordinate expression. Given a chart (U, (ui)n
i=1) on M , let the local expres-

sion of g be gij d̂ui ⊗ d̂uj . If C
(

∂̂
∂ui ,

∂̂
∂uj

)
= C`

ij
∂̂

∂u` then, as we have learnt

in 2.50, C`
ij = g`k ∂gjk

∂yi (1 5 i, j, k 5 n). Thus

C
(

∂̂
∂ui , δ

)
= C

(
∂̂

∂ui , y
j ∂̂

∂uj

)
= yj ∂gjk

∂yi g
`k ∂̂

∂u` (1 5 i 5 n),

which yields the following local criterion:

g is normal ⇐⇒ yj ∂gjk

∂yi
= 0 (1 5 i, k 5 n) .

Definition 3. By a Finsler manifold we mean a manifold endowed with
a normal Finsler metric.

Example. Suppose that (M, g) is a generalized Finsler manifold satisfying
M.reg.1, 2. Consider the absolute energy E := 1

2g(δ, δ), and let
gE = ∇v∇vE. Then (M, gE) is a Finsler manifold, called associated to
(M, g). Indeed, due to M.reg.1, by 3.9, Lemma 3 we get

gE(X̂, Ŷ ) = g(Ã(X̂), Ŷ ) for all X,Y ∈ X(M).

According to M.reg.2, Ã is injective, so it follows that gE is non-degenerate.
Let CE be the Cartan tensor of gE . Applying 3.9, Lemma 3(i) twice and
taking into account 2.45, Example 2, for any vector fields X, Y on M we
have

gE(CE(X̂, δ), Ŷ ) := (∇XvgE)(δ, Ŷ ) = XvgE(δ, Ŷ )− gE(∇Xvδ, Ŷ )

= Xv(Y vE)− gE(X̂, Ŷ ) = Xv(Y vE)− (∇v∇vE)(Xv, Y v)

= Xv(Y vE)−Xv(Y vE) = 0,

hence, by the non-degeneracy of gE , CE(X̂, δ) = 0. Thus the metric gE is
normal, as we claimed.

Elementary properties.

1. Every Finsler manifold satisfies the regularity conditions M.reg.1, 2.
In particular, if (M, g) is a Finsler manifold, then it coincides with its
associated Finsler manifold (M, gE).

Indeed, if C( · , δ) = 0, then C[( · , δ, δ) holds automatically. The tensor Ã
in M.reg.2 reduces to the identity map 1

X(
◦
τ)

, so 3.9, Lemma 3(ii) leads to
the relation gE = g.
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2. If (M, g) is a Finsler manifold, then g is variational, namely
g = gE = ∇v∇vE, where E := 1

2g(δ, δ) is the absolute energy.

This is obvious by Property 1.

3. The absolute energy of a Finsler manifold is positive-homogeneous of
degree 2; the metric tensor and the first Cartan tensor are homoge-
neous of degree 0 and degree −1, respectively.

Proof. We have shown in 3.9, Lemma 2 that under the condition M.reg.1
E := 1

2g(δ, δ) is positive-homogeneous of degree 2. Then g is also homoge-
neous: for any vector fields X, Y on M we have

(∇v
δg)(X̂, Ŷ ) = (∇Cg)(X̂, Ŷ ) = C(g(X̂, Ŷ )) 2= C(gE(X̂, Ŷ )) = C(Xv(Y vE))

= [C,Xv](Y vE) +Xv(C(Y vE)) = −XvY vE +Xv([C, Y v]E + Y v(CE))

= −2Xv(Y vE) + 2Xv(Y vE) = 0;

hence ∇v
δg = 0. The homogeneity of g implies by Lemma 1 that C is homo-

geneous of degree −1.

4. The absolute energy E :
◦
TM −→ R can be uniquely extended to a C1

function Ẽ : TM −→ R.

By the second-degree positive-homogeneity of E this is a consequence of the
next
Observation. Let U ⊂ Rn be a non-empty open set and
f : U × (Rk \ {0}) −→ R a smooth function. If f is positive-homogeneous
of degree 2 in its Rk-variables, then f can be uniquely prolonged to a C1

function f̃ : U× Rn −→ R.
In view of the conceptual importance of this fact, we present here the elementary

proof.
We are obviously forced to define f̃ by f̃(p, 0) := 0 for all p ∈ U. We shall show

that all partial derivatives Dif̃ , 1 5 i 5 n + k exist and are continuous at every
point (p, 0) ∈ U× Rk. Two cases are distinguished.

(1) 1 5 i 5 n. Then Dif̃(p, 0) = lim
t−→0

f̃(p+ tei, 0)− f̃(p, 0)
t

= 0. On the other

hand, Dif̃ is also positive-homogenous of degree 2. Indeed, for all λ ∈ R∗
+

we have

Dif̃(p, λv) = lim
t−→0

f̃(p+ tei, λv)− f̃(p, λv)
t

= λ2 lim
t−→0

f̃(p+ tei, v)− f̃(p, v)
t

= λ2Dif̃(p, v).
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Next we check that for every sequence
(
(pj , vj)

)
of points of U × Rk such

that lim
j−→∞

(pj , vj) = (p, 0), the sequence
(
(Dif̃)(pj , vj)

)
tends to 0. We may

suppose that all of the vectors vj differ from zero, since (Dif̃)(pj , 0) = 0
(j ∈ N∗). Then

(Dif̃)(pj , vj) = ‖vj‖2(Dif̃)
(
pj ,

vj

‖vj‖

)
, j ∈ N∗.

Here ‖vj‖2 tends zero as (pj , vj) −→ (p, 0), while (Dif̃)
(
pj ,

vj

‖vj‖

)
is bounded.

Therefore (Dif̃)(pj , vj) tends to zero as (pj , vj) −→ (p, 0).

(2) n+ 1 5 i 5 n+ k. Then

Dif̃(p, 0) = lim
t−→0

f̃(p, tei)− f̃(p, 0)
t

= lim
t−→0+

t2f̃(p, ei)− f̃(p, 0)
t

= lim
t−→0+

tf̃(p, ei) = 0.

In this case the functions Dif̃ are positive-homogeneous of degree 1 since for
all λ ∈ R∗

+ we have

Dif̃(p, λv) = lim
t−→0

f̃(p, λv + tei)− f̃(p, λv)
t

= λ lim
t−→0

f̃(p, v + t
λei)− f̃(p, v)

t
λ

= λ(Dif̃)(p, v).

Now the proof can be completed by the above argument.

In what follows E will mean the extended energy function.

5. The canonical one-form of a Finsler manifold (M, g) is the Hilbert
one-form θg = dJE, the fundamental two-form is ωg = ddJE. Both
θg and ωg are homogenous of degree 1, i.e.

dCθg = θg, dCωg = ωg.

We also have
iCωg = θg, iJωg = 0.

Proof. Since (M, g) satisfies M.reg.1, θg = dJE by 3.9, Lemma 4. Thus

dCθg = dCdJE
2.31, Cor. 1

= dJdCE − dJE
3= 2dJE − dJE = θg,

dCωg = dCdθg
1.40(5)

= ddCθg = dθg = ωg,

iCωg = iCdθg
1.40(3)

= dCθg − diCθg = θg − diCdJE = θg;
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while the relation iJωg = 0 is an immediate consequence of Property 2 and
3.10, Lemma 1.

6. The canonical second-order vector field ξ of a Finsler manifold (M, g)
is given by the ‘Euler-Lagrange equation’

iξωg = −dE; ωg = ddJE, E =
1
2
g(δ, δ) ,

and ξ is homogeneous of degree 2, i.e. [C, ξ] = ξ.

Proof. Due to the second-degree positive-homogeneity of E, the principal
energy ẼL = ẼE reduces to E, and 3.10, Proposition 1 leads to the given
form of the Euler-Lagrange equation. Now

i[C,ξ]ωg
1.40(2)

= dCiξωg − iξdCωg
5= −dCdE − iξωg = −dCdE + dE

1.40(5)
= −ddCE + dE = −dE = iξωg,

hence [C, ξ] = ξ.

7. The canonical second-order vector field of a Finsler manifold can be

prolonged to a C1 map ξ̃ : TM −→ TTM such that ξ̃ � TM \
◦
TM = 0,

therefore ξ̃ is a spray over M .

This is a consequence of the second-degree homogeneity of the canonical
second-order vector field and the above Observation. ξ̃ is called the canonical
spray of the Finsler manifold and will be denoted simply by ξ.

8. The first Cartan tensor of any Finsler manifold has the following pro-
perties:
(i) C[ is totally symmetric;
(ii) iδC = 0, iδC[ = 0.

Indeed, the metric tensor is variational, as we pointed out in 2. Furthermore,
by the Corollary in 2.50, the lowered Cartan tensor of any variational Finsler
metric is totally symmetric, so (i) is true. This implies (ii), since C( · , δ) = 0.

9. If ξ is the canonical spray of the Finsler manifold (M, g) and ∇ is the
Berwald derivative generated by ξ, then

∇ξg = 0 .
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Proof. Since ξ is homogeneous of degree 2, the horizontal map H generated
by ξ is homogeneous according to 3.3, Theorem 1(b). Thus the tension of H

vanishes, and 3.4, Lemma 1 yields the relation∇ξ = Lh
ξ . Taking into account

Property 8(ii), this relation and 3.10, Proposition 3 give the result.

10. Under the preceding conditions, let us consider the second Cartan ten-
sor Ch := ∇hg of g with respect to the horizontal map generated by the
canonical spray ξ. Then:

(i) Ch is homogeneous of degree 0, i.e. ∇v
δC

h = 0.
(ii) Ch = −∇ξC.

(iii) Ch is symmetric, Ch
[ is totally symmetric.

(iv) iδC
h = 0, iδCh

[ = 0.

Proof. (i) Since g and H are both homogeneous, for any vector fields X, Y ,
Z on M we have

g(∇CCh(X̂, Ŷ ), Ẑ) = Cg(Ch(X̂, Ŷ ), Ẑ) =C((∇Xhg)(Ŷ , Ẑ))=C(Xhg(Ŷ , Ẑ))

= [C,Xh]g(Ŷ , Ẑ) +Xh(Cg(Ŷ , Ẑ)) = Xh(∇Cg(Ŷ , Ẑ)) = 0,

therefore ∇CCh = ∇v
δC

h = 0, as we claimed.
(ii) By 3.5, Proposition, for any vector field X on M we have

0 = R∇(ξ,Xv) = ∇ξ ◦∇Xv −∇Xv ◦∇ξ−∇[ξ,Xv]. Since Lh
ξ = ∇ξ as we have

just seen, 3.3, Corollary 5 yields [ξ,Xv] = −Xh + i∇ξX̂. Hence

∇ξ ◦ ∇Xv −∇Xv ◦ ∇ξ −∇i∇ξ
bX = −∇Xh .

Now we operate by both sides of this relation on the metric tensor g. Since
∇ξg = 0 by 9, this yields

∇ξ∇Xvg −∇
i∇ξ

bXg = −∇Xhg.

For any vector fields Y , Z on M , we have on the one hand

−(∇Xhg)(Ŷ , Ẑ) =: −Ch
[ (X̂, Ŷ , Ẑ).

On the other hand,

(∇ξ∇Xvg)(Ŷ , Ẑ)− (∇
i∇ξ

bXg)(Ŷ , Ẑ) = ξ
(
(∇Xvg)

)
(Ŷ , Ẑ)

)
− (∇Xvg)(∇ξŶ , Ẑ)

− (∇Xvg)(Ŷ ,∇ξẐ)− C[(∇ξX̂, Ŷ , Ẑ) = ξC[(X̂, Ŷ , Ẑ)− C[(∇ξX̂, Ŷ , Ẑ)

− C[(X̂,∇ξŶ , Ẑ)− C[(X̂, Ŷ ,∇ξẐ) = (∇ξC[)(X̂, Ŷ , Ẑ),
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therefore

g(Ch(X̂, Ŷ ), Ẑ) = Ch
[ (X̂, Ŷ , Ẑ) = −(∇ξC[)(X̂, Ŷ , Ẑ).

Finally, using ∇ξg = 0 again, we get

(∇ξC[)(X̂, Ŷ , Ẑ) = g
(
(∇ξC)(X̂, Ŷ ), Ẑ

)
,

whence
Ch(X̂, Ŷ ) = −(∇ξC)(X̂, Ŷ ) for all X,Y ∈ X(M).

This concludes the proof of (ii).
(iii) Since C is symmetric and ∇ξC remains obviously symmetric, it fol-

lows from (ii) that Ch is symmetric, and hence Ch
[ is totally symmetric.

(iv) The homogeneity of H implies by 3.3, Theorem 1 that H ◦ δ = ξ.
Applying this, for any vector fields X, Y on M we have

g(Ch(δ, X̂), Ŷ ) = (∇h
ξ g)(X̂, Ŷ ) = (∇H◦δg)(X̂, Ŷ ) = (∇ξg)(X̂, Ŷ ) 9= 0.

Thus Ch(δ, · ) = 0 and (iii) leads to the conclusion iδCh = 0, iδCh
[ = 0.

11. Hypothesis as above. Choose a chart (U, (ui)n
i=1) on M , and let

(τ−1(U), ((xi)n
i=1, (y

i)n
i=1)) be the induced chart on TM . Then the

forces Gi := −1
2ξ(y

i) defined by the canonical spray of (M, g) with
respect to the chart (U, (ui)n

i=1) can be expressed as follows:

Gi = gijGj , Gj =
1
2

(
yk ∂2E

∂xk∂yj
− ∂E

∂xj

)
(1 5 i, j 5 n) .

We have the relations

∂E

∂xi
= yj ∂Gj

∂yi
(1 5 i 5 n).

The coordinate expression for ξ can be deduced by a straightforward
but lengthy calculation. As for the remaining, using repeatedly the second-
degree positive-homogeneity of E, we get:

2yj ∂Gj

∂yi
= yj ∂

∂yi

(
yk ∂2E

∂xk∂yj
− ∂E

∂xj

)
= yj ∂2E

∂xi∂yj
+ yjyk ∂3E

∂yi∂xk∂yj

− yj ∂2E

∂yi∂xj
= yj ∂2E

∂xi∂yj
+ yk ∂2E

∂xk∂yi
− yj ∂2E

∂yi∂xj
= yj ∂2E

∂xi∂yj
= 2

∂E

∂xi
,
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whence the result.

Comment. The approach to Finsler to manifolds sketched here was strongly
inspired by M. Hashiguchi’s paper [38]. More usually, the concept of Finsler
manifolds is built on the notion of the fundamental function ([53], [67], or
on the Minkowski norm ([7]) or on the energy function [36]. For example,
the definition accepted by Grifone in [36] sounds as follows:

‘Let a function E : TM −→ R be given. Assume:
(1) ∀v ∈ TM : E(v) = 0, E(0) = 0.

(2) E is of class C1 on TM , smooth on
◦
TM .

(3) E is positive-homogeneous of degree 2.
(4) The two-form ddJE is non-degenerate.

Then (M,E) is said to be a Finsler manifold with the energy E.’
According to Property 4, our Definition 3 leads to this concept, if we

assume that g(δ, δ) is non-negative over
◦
TM . Finsler manifolds defined by

a fundamental function, called Finsler–Lagrangian, will appear in 3.13.
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D. Covariant derivative operators on a Finsler
manifold

3.12. The fundamental lemma of Finsler geometry.

Definition. A horizontal map H : TM ×M TM −→ TTM is called conser-
vative with respect to a C1 function F : TM −→ R if

XhF = 0 for all X ∈ X(M);

more concisely, if
dhF = 0 or dhF = 0

(dh is the h-exterior derivative on A(τ) with respect to H, see 2.37, Lemma 1;
dh is the Lie derivative with respect to the horizontal projector h, see 2.26.)
A horizontal map on a Finsler manifold is said to be conservative, if it is
conservative with respect to the absolute energy.

Theorem. (Fundamental lemma of Finsler geometry.) Given a Finsler
manifold (M, g), there exists a unique horizontal map

H : TM ×M TM −→ TTM

called the canonical horizontal map (of g) such that
CH 1. The torsion of H vanishes.
CH 2. H is homogeneous.
CH 3. H is conservative.

The canonical horizontal map is generated by the canonical spray of the
Finsler manifold.

Proof. (a) Existence. Let ξ be the canonical spray of (M, g) and H the
horizontal map generated by ξ. Then the horizontal projector belonging to
H is

h =
1
2
(1TTM + [J, ξ]).

Theorem 1 in 3.3 guarantees that H satisfies CH1 and CH 2, so we have
only to check that H is conservative.

Let ∇ be the Berwald derivative induced by H. For every X ∈ X(M)
we have

XhE =
1
2
Xh(g(δ, δ)) =

1
2
(
(∇Xhg)(δ, δ) + 2g(∇Xhδ, δ)

)
=

1
2
Ch

[ (X̂, δ, δ)

+ g(V[Xh, C], δ)
homogeneity

=
1
2
Ch

[ (X̂, δ, δ)
3.11,10(iv)

= 0.
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This proves the existence.
(b) Uniqueness. Assume that H̃ : TM ×M TM −→ TTM is a horizontal

map satisfying CH1–CH3. Let h̃, T̃ and X
eh be the corresponding hori-

zontal projector, the torsion of H̃ and the horizontal lift of a vector field
X ∈ X(M) by H̃, respectively. Next we show that h̃ = h. The proof is done
in several steps.

(1) We first prove that Im H̃ is a Lagrangian subbundle for the funda-
mental two-form ωg, i.e.

ωg(X
eh, Y eh) = 0 for all X,Y ∈ X(M).

Indeed, ωg(X
eh, Y

eh) = dθg(X
eh, Y

eh) = X
ehθg(Y

eh)− Y ehθg(X
eh)− θg([X

eh, Y
eh])

3.11,5
= X

ehdJE(Y eh)− Y ehdJE(Xeh)− dJE
(
[Xeh, Y

eh]
)

= X
eh(Y vE)− Y eh(XvE)

− J [Xeh, Y
eh]E = [Xeh, Y v]E + Y v(XehE)− [Y eh, Xv]E −Xv(Y ehE)− [X,Y ]vE

CH3=
(
[Xeh, Y v]− [Y eh, Xv]− [X,Y ]v

) 2.32, Lemma
= (T̃(Xc, Y c))E CH1= 0.

(2) The second-order vector field ξ eH := H̃ ◦ δ associated to H̃ is a spray.

According to 3.3, Lemma 1, ξ eH = h̃[C, ξ eH]. Since H̃ is homogeneous by
the condition CH 2,

0 = [h̃, C]ξ eH = [h̃ ξ eH, C]− h̃[ξ eH, C] = [ξ eH, C] + ξ eH;

hence [C, ξ eH] = ξ eH. Thus ξ eH is indeed a spray.
(3) We show that the canonical spray ξ equals ξH. Let X be an arbitray

vector field on M . Then

(i
ξ eHωg)(Xv) = ωg(ξ eH, Xv) = −ωg(Xv, ξ eH)

3.9, Lemma2
= −g(X̂, j ξ eH)

= −g(X̂, δ) = −θg(Xc)
3.11,5
= −dJE(Xc) = −XvE

= −(dE)(Xv)
3.11,6
= (iξωg)(Xv).

Since ξ eH is horizontal with respect to H̃, in view (1) iξ
eH
ωg is completely

determined by its action over {Xv | X ∈ X(M)}. The same is true for iξωg,
so we conclude

iξ
eH
ωg = iξωg.

By the non-degeneracy of ωg this implies the desired equality ξ eH = ξ.
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(4) Conditions CH1, CH2 imply by 3.3, Corollary 6 that H̃ may be
generated by a spray ξ̃, thus

h̃ =
1
2
(1TTM + [J, ξ̃]).

According to Theorem 1(b) in 3.3, this implies ξ eH = ξ̃. Hence, by (3), ξ̃ = ξ

and we obtain h̃ = h.
This concludes the proof of the theorem.

Note. The fundamental lemma of Finsler geometry is due to J. Grifone [36];
the proof presented here differs essentially from Grifone’s deduction of the
theorem. The nonlinear connection determined by the canonical horizontal
map is also mentioned as the canonical nonlinear connection of the Finsler
manifold. The corresponding horizontal projector is called the Barthel en-
domorphism e.g. in [75].

3.13. The equations of A. Rapcsák.

Definition 1. By a Finsler-Lagrangian we mean a function L : TM −→ R,
having the following properties:
FL1. L is continuous.

FL2. L :
◦
TM −→ R is smooth.

FL3. L is positive-homogeneous of degree 1.
FL4. If E := 1

2L
2, then the two-form ω := ddJE is non-degenerate.

E is called the energy associated to L, ω is the fundamental two-form
determined by L. A Finsler-Lagrangian L is said to be positive, if it satisfies
FL5. L(v) = 0 for all v ∈ TM ; L(v) = 0 if, and only if, v = 0.

Lemma 1. If L : TM −→ R is a Finsler-Lagrangian, then
(1) dJL is homogeneous of degree 0;
(2) iCddJL = 0, therefore the two-form ddJL is degenerate.

Proof. dCdJL
2.31, Cor. 1

= dJdCL− dJL = dJL− dJL = 0;

iCddJL= iCddJL+ d((dJL)C) = iCddJL+ diCdJL
1.40(3)

= dCdJL
(1)
= 0.

Lemma 2. Let L : TM −→ R be a Finsler-Lagrangian, E the energy asso-
ciated to L. If g := ∇v∇vE, then (M, g) is a Finsler manifold. The metric
tensor g is related to the fundamental two-form ω by

(g)0(ξ, η) = ω(Jξ, η) for all ξ, η ∈ X(
◦
TM).
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Proof. (g)0(ξ, η)
2.22, Lemma1

:= g(j ξ, j η) := ∇v∇vE(j ξ, j η) = (∇Jξ(∇vE))j η =

Jξ(Jη(E))−∇vE(∇Jξj η)
2.44, Ex. 1

= Jξ(Jη(E))−∇vE(j[Jξ, η]) = Jξ(Jη(E))−
J [Jξ, η]E. An immediate calculation yields the same expression also for
ω(Jξ, η), so we have

(g)0(ξ, η) = ω(Jξ, η) for all ξ, η ∈ X(
◦
TM).

Due to the non-degeneracy of ω, from this it follows that g is non-degenerate.
Finally, we obtain by the calculation of 3.11, Example that g is normal.

Remark 1. (1) The Finsler manifold (M, g) obtained in this way is called
the Finsler manifold determined by the Finsler-Lagrangian L. Then we
speak simply of the Finsler manifold (M,L).

(2) The canonical spray of the Finsler manifold (M,L) is given by the
Euler-Lagrange equation

iξω = −dE; E :=
1
2
L2, ω := ddJE .

Indeed, this follows from Lemma 2 and 3.11,6, since

1
2
g(δ, δ) =

1
2
∇v∇vE(δ, δ) =

1
2
(∇CCE −∇vE(∇Cδ))

2.44, Ex. 1
=

1
2
(4E −∇vE(j[C,H ◦ δ]))

3.2, Lemma1(1)
=

1
2
(4E −∇vE(δ)) =

1
2
(4E − 2E) = E.

(3) The non-degeneracy of the fundamental two-form ω guarantees that

for any one-form α ∈ A1(
◦
TM) there exists a unique vector field α] (read: α

sharp) on
◦
TM such that iα]ω = α. Thus we obtain a module isomorphism

from A1(
◦
TM) onto X(

◦
TM), called the sharp operator with respect to ω

(cf. 1.30(5)). Using this language, the canonical spray of (M,L) is simply

ξ := −(dE)] over
◦
TM ; ξ(0) := 0.

Lemma 3. If (M,L) is a Finsler manifold and ξ is its canonical spray, then
iξddJL = 0.

Proof. Let H be the canonical horizontal map for (M,L), i.e. the horizontal
map generated by the canonical spray (3.12, Theorem). As usual, we denote
by h the corresponding horizontal projector. Let X be an arbitrary vector
field on M .
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(i) iξddJL(Xv) = ddJL(ξ,Xv) = −XvdJL(ξ)− dJL([ξ,Xv]) =

−XvdL(C)− dL(J [ξ,Xv])
3.2, Lemma1(1)

= −XvL+XvL = 0.

(ii) iξddJL(Xh) = ddJL(ξ,Xh) = ξ(XvL)−XhL− J [ξ,Xh]L
3.3, Cor. 3

=

ξ(XvL)−XhL+XhL−XcL = [ξ,Xv]L+Xv(ξL)−XcL
3.3, Th. 1(a)

= −2XhL+
Xv(ξL) = −2dhL(Xh) + XvdhL(ξ) = 0, taking into account that H is
conservative and ξ is horizontal by 3.3, Corollary 1.

This concludes the proof.

Lemma 4. Let L̄ : TM −→ R be a positive Finsler-Lagrangian, and assume

that ξ is a spray over M . Then, over
◦
TM , the canonical spray ξ̄ of the

Finsler manifold (M, L̄) may be represented in the form

ξ̄ = ξ − ξL̄

L̄
C − L̄(iξddJ L̄)] ,

where the sharp operator is taken with respect to the fundamental two-form
of (M, L̄).

Proof. Let Ē := 1
2 L̄

2 be the energy associated to L̄. Then

iξddJ Ē = iξd(L̄dJ L̄) = iξ(dL̄ ∧ dJ L̄+ L̄ddJ L̄) = (ξL̄)dJ L̄− dL̄(CL̄)

+ L̄iξddJ L̄ =
ξL̄

L̄
dJ Ē − dĒ + L̄iξddJ L̄

3.11,5
=

ξL̄

L̄
iCddJ Ē

+ iξ̄ddJ Ē + L̄i(iξddJ L̄)]ddJ Ē = i
ξ̄+ ξL̄

L̄
C+L̄(iξddJ L̄)]ddJ Ē.

Since ddJ Ē is non-degenerate, this leads to the desired relation.

Lemma 5 and definition. Let α ∈ A0(TM), A ∈ B0(TM), i.e. let α be a
semibasic, A a vector-valued semibasic form on TM . If ξ is a second-order
vector field (or a semispray) over M , then

α0 := iξα and A0 := iξA

are also semibasic forms, which do not depend on the choice of ξ. α0 and
A0 are called the potential of α and A, respectively.

Proof. Since the difference of two second-order vector fields is vertical, the
potential is well-defined. α0 and A0 remain obviously semibasic.
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Lemma 6. If a semibasic form is homogeneous of degree r ∈ Z, then its
potential is homogeneous of degree r + 1.

Proof. Let α ∈ Ak+1
0 (TM) (k ∈ N) be homogeneous of degree r + 1. By

Lemma 5, in forming α0 we may take a spray ξ. Then for any vector fields
X1, . . . , Xk on M we obtain:

(dC(iξα))(Xc
1, . . . , X

c
k)

1.33(2)
= C[(iξα)(Xc

1, . . . , X
c
k)]

−
k∑

i=1

(iξα)(Xc
1, . . . , [C,X

c
i ], . . . , X

c
k)

2.20, Lemma2
= C(α(ξ,Xc

1, . . . , X
c
k))

= (dCα)(ξ,Xc
1, . . . , X

c
k) + α([C, ξ], Xc

1, . . . , X
c
k) = rα(ξ,Xc

1, . . . , X
c
k)

+ α(ξ,Xc
1, . . . , X

c
k) = (r + 1)(iξα)(Xc

1, . . . , X
c
k).

Since a semibasic form is fully determined by its action on the complete
lifts of vector fields, it follows that dCα

0 = (r + 1)α0.

Lemma 7. Let α be a semibasic k-form on TM . Assume that α is homo-
geneous of degree r and k + r 6= 0. Then we have

α =
1

k + r
((dJα)0 + dJα

0).

If, in particular, α is dJ -closed i.e. dJα = 0, then α may be reconstructed
from its potential, namely

α =
1

k + r
dJα

0.

For a proof see [24], p. 196.

Lemma 8. Let α ∈ A1(TM) be a Hilbert one-form. If α is homogeneous of
degree 0, then (dα)0 is semibasic.

Proof. Choose a spray ξ over M . Let H be the (homogenous) horizontal
map generated by ξ according to 3.3, Theorem 1. As usual, we denote by h
the corresponding horizontal projector.

For any vector field X on M we have

(dα)0(Xv) = (iξdα)(Xv) = dα(ξ,Xv)
(∗)
= −Xvα(ξ)− α([ξ,Xv])

(∗)
= Xviξα+

α(h[Xv, ξ])
3.3, Th. 1(a)

= −Xvα0 + α(Xh) Lemma7= −Xvα0 + dJα
0(Xh) =

−Xvα0 + dα0(Xv) = 0 (at the steps denoted by an asterisk we used that α
is semibasic). This proves the assertion.
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Lemma 9. Let H be a horizontal map, h the horizontal projector belonging
to H. If α is a semibasic one-form on TM , then dhα is also semibasic and
we have

dhα = h∗dα,

where h∗ is the adjoint operator of h in the sense of 2.31, Definition (1).

Proof. Since α is semibasic, dhα := ihdα − dihα = ihdα − dα. It may
immediately be checked that the pairs of the form

(Xv, Y v), (Xv, Y h), (Xh, Y v); X,Y ∈ X(M)

kill the two-form ihdα−dα, so dhα is indeed semibasic. On the other hand,
for any vector fields X, Y on M we have

dhα(Xh, Y h) = (ihdα− dα)(Xh, Y h) = dα(Xh, Y h) = (h∗dα)(Xh, Y h),

therefore dhα = h∗dα.

Definition 2. Let ϕ :
◦
TM −→ R be a function. Assume:

(i) ϕ is smooth on
◦
TM .

(2) ϕ is positive-homogeneous of degree 1, i.e. Cϕ = ϕ.
If ξ is a spray, then ξ̄ := ξ + ϕC is called a projective change of ξ. Two
sprays, ξ and ξ̄ are said to be projectively equivalent if there is a smooth

function ϕ :
◦
TM −→ R such that ξ̄ = ξ + ϕC holds over

◦
TM .
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Elementary properties.

(1) If ξ̄ := ξ + ϕC is a projective change of ξ, then ξ̄ is a spray.

Indeed, Jξ̄ = C is obviously valid. ξ̄ is automatically smooth on
◦
TM .

Since
[C, ξ̄] = [C, ξ] + [C,ϕC] = ξ + (Cϕ)C = ξ + ϕC = ξ̄,

ξ̄ is homogeneous of degree 2. Now, using the Observation in 3.11,4, ξ̄ can
be extended to a C1 map from TM into TTM , so it is indeed a spray (in
this sense).

(2) If ξ and ξ̄ are projectively equivalent sprays, i.e. ξ̄ = ξ + ϕC

(ϕ ∈ C∞(
◦
TM)), then ϕ is positive-homogeneous of degree 1.

Indeed, ξ + ϕC = ξ̄ = [C, ξ̄] = [C, ξ] + (Cϕ)C, hence Cϕ = ϕ.

(3) The projective equivalence of sprays is an equivalence relation, the
equivalence classes are called projective sprays.

(4) Two sprays over the same manifold are projectively equivalent if, and
only if, their geodesics differ only in a strictly increasing parameter
transformation.

Definition 3. (1) A manifold endowed with a spray is said to be a spray
manifold. Two spray manifolds (M, ξ) and (M, ξ̄) are called projectively
equivalent if ξ and ξ̄ represent the same projective spray.

(2) A spray manifold (M, ξ) is said to be projectively equivalent to a
Finsler manifold (M, L̄) if ξ is projectively equivalent to the canonical spray
of (M, L̄). In this case we also say that (M, ξ) is Finsler-metrizable in a
broad sense or projectively Finsler.

Remark 2. A spray manifold is called Finsler metrizable in a natural sense
if there exists a Finsler-Lagrangian on the manifold whose canonical spray
is the given spray. Sprays with this property are also called variational; this
is another important concept of metrizability.

Theorem. Suppose (M, ξ) is a spray manifold. Let L̄ : TM −→ R be a posi-
tive Finsler-Lagrangian. The following conditions are equivalent to (M, ξ)
being projectively equivalent to the Finsler manifold (M, L̄).

iξddJ L̄ = 0.RAP 1.

dhdJ L̄ = 0, where h is the horizontal projector of theRAP 2.

nonlinear connection generated by ξ.
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Proof. (a) Let ξ̄ be the canonical spray of (M, L̄). Assume that RAP 1

holds. Then Lemma 4 implies ξ̄ = ξ − ξL̄
L̄
C, therefore (M, L̄) is projectively

equivalent to (M, ξ). Conversely, if ξ̄ = ξ + ϕC (ϕ ∈ C∞(
◦
TM)), then

iξddJ L̄ = iξ̄ddJL− ϕiCddJ L̄
Lemmas 1(2), 3

= 0.

Thus RAP 1 holds if, and only if, (M, ξ) is projectively equivalent to
(M, L̄).

(b) Next we show that the conditions RAP 1, RAP 2 are equivalent. As-
sume RAP 1. To prove RAP 2, we first notice that due to the homogeneity
of h,

dh ◦ dC − dC ◦ dh = d[h,C] = 0,

hence
dCdhdJ L̄ = dhdCdJ L̄

Lemma1(1)
= 0,

therefore the semibasic two-form dhdJ L̄ is homogeneous of degree 0. Ap-
plying Lemma 7, it follows that

(∗) dhdJ L̄ =
1
2
[(dJdhdJ L̄)0 + dJ(dhdJ L̄)0].

Since the torsion of the nonlinear connection generated by ξ vanishes, we
have

dJ ◦ dh + dh ◦ dJ = [dJ , dh] =: d[J,h] = 0.

Using this, we get

dJdhdJ L̄ = −dhd2
J L̄

2.31,1
= 0,

thus the first term on the right-hand side of (∗) vanishes. Now we turn to
the second term. The Hilbert one-form dJ L̄ is homogeneous of degree 0 by
Lemma 1(1), so Lemma 8 assures that iξddJ L̄ is semibasic. Hence

(dhdJ L̄)0 = iξdhdJ L̄
Lemma9= iξh∗ddJ L̄ = iξddJ L̄

Lemma3= 0.

This concludes the proof that RAP 1 implies RAP 2.
Conversely, assume RAP 2. Then, by the preceding argument,

iξddJ L̄ = iξh∗ddJ L̄
Lemma9= iξdhdJ L̄

RAP2= 0,

thus RAP 2 implies RAP 1.
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Note. Both RAP 1 and RAP 2 provide, in the form of second-order partial
differential equations, necessary and sufficient conditions for the Finsler-
metrizability of a spray in a broad sense. Their coordinate versions were
discovered by the Hungarian geometer András Rapcsák in the early 1960s,
so we refer to them as the Rapcsák equations of metrizability. The index-free
deduction presented here is from [78]. For further information the reader is
referred to [78], Rapcsák’s papers [64]–[66], and Z. Shen’s book [69].

3.14. The Finslerian Berwald derivative. Berwald manifolds and
locally Minkowski manifolds.

Theorem 1. Let (M, g) be a Finsler manifold, E := 1
2g(δ, δ) the absolute

energy of (M, g). There exist a unique horizontal map H over M and a
unique covariant derivative operator D in τ∗τ satisfying the following con-
ditions:
B.covd.1. The Finsler torsion S of D vanishes.
B.covd.2. The v-mixed torsion P1 of D vanishes.
B.covd.3. D is associated to H, i.e. Dδ = V.
B.covd.4. The (h-horizontal) torsion T of D vanishes.
B.covd.5. (HX̂)E = 0 for all X ∈ X(M), i.e. H is conservative.

The horizontal map H is the canonical horizontal map of g, and D the
Berwald derivative generated by H.

Proof. The existence is clear: if H is the canonical horizontal map of g and
∇ is the Berwald derivative generated by H, then ∇ and H have obviously
the properties B.covd.1–B.covd.5.

Conversely, suppose that a horizontal map H over M and a covari-
ant derivative operator D in τ∗τ satisfy the conditions B.covd.1–B.covd.5.
Then, in view of 2.45, Corollary, the first two of these conditions imply that
D is the Berwald derivative induced by H. According to 2.44, Example 2,
B.covd.3 yields the homogeneity of H. Due to B.covd.4 and 2.47,1, the
torsion of H vanishes. Thus, taking into account B.covd.5, we conclude
that H satifies CH1–CH3, therefore, by the uniqueness statement of the
fundamental lemma of Finsler geometry, H is the canonical horizontal map
of g.

Note. The covariant derivative operator characterized by Theorem 1 may
rightly be mentioned as the ‘Finslerian Berwald derivative’ on (M, g). The
first axiomatic description of the Finslerian Berwald derivative is due
T. Okada [60].
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Theorem 2 and definition. Let (M, g) be a Finsler manifold. The fol-
lowing conditions are equivalent:

The Finslerian Berwald derivative on (M, g) is h-basic, i.e.Berw. 1.

there is a covariant derivative operator D on M such that

[Xh, Y v] = (DXY )v for all X,Y ∈ X(M)
(the horizontal lift is taken with respect to the canonical
horizontal map).

The Berwald curvature of the Finslerian Berwald derivativeBerw. 2.

vanishes.

The canonical spray of (M, g) is everywhere smooth.Berw. 3.

If one, and hence all, of these conditions are satisfied then (M, g) is said
to be a Berwald manifold.

Proof. The equivalence of Berw. 1 and Berw. 2 has already been proved, see
2.49, Example.

Berw. 1 =⇒ Berw. 3 Let ξ be the canonical spray of (M, g), and
let ξ̃ be an arbitrary (everywhere) smooth spray on TM . Such a spray
certainly exists: the spray arising from a covariant derivative operator on
M is smooth. If h is the horizontal projector belonging to the canonical
horizontal map, then ξ = hξ̃. Since h is everywhere smooth by Berw. 1, we
conclude that the canonical spray of (M, g) is also smooth everywhere.

Berw. 3 =⇒ Berw. 1 Let X and Y be arbitrary vector fields on M .
Observe that [Xh, Y v] is homogeneous of degree 0. Indeed,
[C, [Xh, Y v]] = −[Xh, [Y v, C]]− [Y v, [C,Xh]] = [Xh, [C, Y v]] = −[Xh, Y v].
As ξ is everywhere smooth by the condition Berw. 3, so are the horizontal
projector h = 1

2(1TTM + [J, ξ]) and hence the vector field [Xh, Y v] as well.
Thus by 2.6, Proposition(1), [Xh, Y v] is a vertical lift. Now, as in the proof
of Lemma 2 in 2.49, it follows that there is a covariant derivative operator
D on M such that

[Xh, Y v] = (DXY )v for all X,Y ∈ X(M).

This concludes the proof.

Note. Due to Z. I. Szabó’s activity, the positive definite Berwald manifolds
are completely classified [72].
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Theorem 3 and definition. Let (M, g) be a Finsler manifold. The fol-
lowing conditions are equivalent:

The Finslerian Berwald derivative on (M, g) is h-basic and theMink. 1.

curvature of the base covariant derivative vanishes.

The Finslerian Berwald derivative has vanishing curvature, i.e.Mink. 2.

both its Riemann curvature and Berwald curvature vanish.

The canonical spray of (M, g) is v-linearizable.Mink. 3.

The geodesics with respect to the canonical spray areMink. 4.

‘rectilinear’ in the sense that around each point of M
there is a chart such that over the induced chart on TM

the differential equation of the geodesics takes the form

xi′′ = 0 (1 5 i 5 n) .

Around each point of M there is a chart such that overMink. 5.

the induced chart we have

∂E

∂xi
= 0 (1 5 i 5 n) ;

roughly speaking, the absolute energy of the Finsler manifold
‘does not depend on the position’.

If one, and hence all, of these conditions are satisfied then (M, g) is said
to be a locally Minkowski manifold.

Proof. In view of the v-linearizability theorem of Mart́ınez and Cariñena
(3.7), conditions Mink. 1–Mink. 3 are equivalent.

Mink. 3 ⇐⇒ Mink. 4 Assume that the canonical spray ξ of (M, g)
is v-linearizable. Then around any point of M there is a chart (U, (ui)n

i=1)
such that over the induced chart (τ−1(U), ((xi)n

i=1, (y
i)n

i=1)) the forces
Gi := −1

2ξ(y
i) are of the form

Gi = (Ai
j ◦ τ)yj + bi ◦ τ ; Ai

j , b
i ∈ C∞(U) (1 5 i, j 5 n).

Since ξ is a spray, the functions Gi are positive-homogeneous of degree 2.
The relation CGi = 2Gi (1 5 i 5 n) leads to

−(Ai
j ◦ τ)yj = 2bi ◦ τ (1 5 i 5 n),
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hence Ai
j ◦ τ = 0 and bi ◦ τ = 0 (1 5 i, j 5 n). Therefore all of the forces

vanish over τ−1(U), which proves Mink. 4. The converse is clear.
Mink. 3 ⇐⇒ Mink. 5 If ξ is v-linearizable then, as we have just seen,

around any point of M there is a chart (U, (ui)n
i=1) such that the forces

Gi = −1
2ξ((u

i)c) (1 5 i 5 n) vanish. This implies by 3.11,11 that over
τ−1(U)

∂E

∂xi
= 0, 1 5 i 5 n.

Thus Mink. 3 implies Mink. 5.
Conversely, assume Mink. 5. Then around each point of M there is a

chart (U, (ui)n
i=1) such that over τ−1(U) we have ∂E

∂xi = 0 (1 5 i 5 n).
Applying again 3.11,11, it follows that

Gi = gijGj =
1
2
gij

(
yk ∂

∂yj

∂E

∂xk
− ∂E

∂xj

)
= 0,

therefore ξ is v-linearizable.

3.15. The Cartan, the Chern–Rund and the Hashiguchi derivative.

Lemma 1. Let H̄ be a horizontal map for τ , with vanishing torsion. Let ∇̄
be the Berwald derivative induced by H̄ (other objects defined by H̄ will also
be distinguished by a ‘bar’). Assume that

ψ : X(TM)× X(τ) −→ X(τ)

is a C∞(TM)-bilinear map, and let the tensors ψv, ψ̄h be given by

ψv(X̃, Ỹ ) := ψ(i X̃, Ỹ ), ψ̄h(X̃, Ỹ ) := ψ(HX̃, Ỹ ) for all X̃, Ỹ ∈ X(τ).

(1) The map

D̄ : (ξ, Ỹ ) ∈ X(TM)× X(τ) 7→ D̄ξỸ := ∇̄ξỸ + ψ(ξ, Ỹ ) ∈ X(τ)

is a covariant derivative operator in τ∗τ . For the h̄-horizontal, the
Finsler, the v-mixed and the v-vertical torsion of D̄ we have:

T̄(X̃, Ỹ ) = ψ̄h(X̃, Ỹ )− ψ̄h(Ỹ , X̃),

S̄(X̃, Ỹ ) = −ψv(Ỹ , X̃),

P̄1(X̃, Ỹ ) = ψ̄h(X̃, Ỹ ),

Q1(X̃, Ỹ ) = ψv(X̃, Ỹ )− ψv(Ỹ , X̃)

(X̃, Ỹ ∈ X(τ)). T̄ vanishes if, and only if, ψ̄h is symmetric; Q1

vanishes if, and only if, ψv is symmetric.
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(2) If g is a (not necessarily normal) Finsler metric in
◦
τ∗τ , then for any

vector fields ξ on
◦
TM ; Ỹ , Z̃ in X(

◦
τ) we have

(D̄ξg)(Ỹ , Z̃) = C[(V̄ξ, Ỹ , Z̃) + C̄h
[ (j ξ, Ỹ , Z̃)− g(ψ(ξ, Ỹ ), Z̃)

− g(Ỹ , ψ(ξ, Z̃)),

where C is the first Cartan tensor of g, and C̄ is the second Cartan
tensor of g with respect to H̄.

Proof. D̄ is obviously a covariant derivative operator (cf. 1.41(3)). Since
the corresponding torsions of ∇̄ vanish by 2.47;1,2, we get immediately the
formulae for T̄, S̄, P̄1 and Q1. The expression for D̄ξg may also be obtained
by an easy calculation.

Lemma 2. Let g be a variational Finsler metric, namely g = ∇v∇vL

(L ∈ C∞(
◦
TM)). Suppose that H̄ is a conservative horizontal map for L,

with vanishing torsion. Then the second Cartan tensor C̄h
[ of g with respect

to H̄ is totally symmetric.

Proof. According to 2.50, Lemma 5, we have

C̄h
[ (X̂, Ŷ , Ẑ) = −(i P̄(X̂, Ŷ )Ẑ)L+ Zv(Y v(X h̄L)) for all X,Y, Z ∈ X(M)

where P̄ is the Berwald curvature of the Berwald derivative induced by H̄.
Since H̄ is conservative, X h̄L = 0. On the other hand, the vanishing of
the torsion of H̄ implies by 2.33,8 that P̄ is totally symmetric, whence the
statement.

Proposition. Let (M, g) be a Finsler manifold. Assume that H̄ is a conser-
vative horizontal map with vanishing torsion and ∇̄ is the Berwald derivative
induced by H̄. Let ψ : X(TM)× X(τ) −→ X(τ) be a C∞(TM)-bilinear map
and define the tensors ψv, ψ̄h ∈ T1

2(τ) as above. Consider the covariant
derivative operator

D̄ : (ξ, Ỹ ) ∈ X(
◦
TM)× X(

◦
τ) 7→ D̄ξỸ := ∇̄ξỸ + ψ(ξ, Ỹ ) ∈ X(

◦
τ).

(1) D̄ is h̄-metrical, i.e. D̄h̄g = 0, and D has vanishing h-horizontal
torsion if, and only if, ψ̄h = 1

2 C̄h.

(2) D̄ is v-metrical, i.e. D̄vg = 0, and D̄ has vanishing v-vertical torsion
if, and only if, ψv = 1

2C.
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Proof. Assume that D̄h̄g = 0 and T̄ = 0. Let X̃, Ỹ , Z̃ be arbitrary vector
fields along

◦
τ . Taking into account Lemma 1(2), the first condition yields

g(C̄h(X̃, Ỹ ), Z̃) = g(ψ̄h(X̃, Ỹ ), Z̃) + g(Ỹ , ψ̄h(X̃, Z̃)).

Permuting the letters cyclically, we get

g(C̄h(Ỹ , Z̃), X̃) = g(ψ̄h(Ỹ , Z̃), X̃) + g(Z̃, ψ̄h(Ỹ , X̃)),

−g(C̄h(Z̃, X̃), Ỹ ) = −g(ψ̄h(Z̃, X̃), Ỹ )− g(X̃, ψ̄h(Z̃, Ỹ )).

Since C̄h
[ is totally symmetric according to Lemma 2, and ψ̄h is also sym-

metric by the vanishing of T̄ (see Lemma 1(1)), adding these three equations
we obtain

1
2
g(C̄h(X̃, Ỹ ), Z̃) = g(ψ̄h(X̃, Ỹ ), Z̃).

By the non-degeneracy of g, this leads to the desired relation ψ̄h = 1
2 C̄h.

Conversely, if ψ̄h = 1
2 C̄h, then T̄ = 0 by Lemma 1. Furthermore, applying

the total symmetry of C̄h
[ , for any vector fields X̃, Ỹ , Z̃ along

◦
τ we have

(D̄hg)(X̃, Ỹ , Z̃) =
(
D̄

H̄ eXg
)
(Ỹ , Z̃) = H̄X̃(g(Ỹ , Z̃))− g

(
∇

H̄ eX Ỹ , Z̃
)

− g
(
Ỹ ,∇

H̄ eX Z̃
)
− 1

2
g(C̄h(X̃, Ỹ ), Z̃)− 1

2
g(Ỹ , C̄h(X̃, Z̃)) = (∇̄hg)(X̃, Ỹ , Z̃)

− g(C̄h(X̃, Ỹ ), Z̃) = g(C̄h(X̃, Ỹ ), Z̃)− g(C̄h(X̃, Ỹ ), Z̃) = 0.

This concludes the proof of (1). Assertion (2) may be verified similarly; note,
that in this case the necessary symmetry properties of C are guaranteed by
the structure (see 3.11,8).

Corollary 1. Let (M, g) be a Finsler manifold, H the canonical horizontal
map of g. There is a unique covariant derivative operator D in

◦
τ∗τ satisfying

the following conditions:
C.covd.1. D is v-metrical, i.e. Dvg = 0.
C.covd.2. D is h-metrical, i.e. Dhg = 0.
C.covd.3. The (h-horizontal) torsion of D vanishes.
C.covd.4. The v-vertical torsion of D vanishes.

The covariant derivative operator D acts by the following rules for cal-
culation:

D
i eX Ỹ = ∇

i eX Ỹ +
1
2
C(X̃, Ỹ ) = j[i X̃,HỸ ] +

1
2
C(X̃, Ỹ )

D
H eX Ỹ = ∇

H eX Ỹ +
1
2
Ch(X̃, Ỹ ) = V[HX̃, i Ỹ ] +

1
2
Ch(X̃, Ỹ )
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(∇ is the Berwald derivative induced by H, i.e. the Finslerian Berwald
derivative; X̃, Ỹ ∈ X(

◦
τ)). In particular, for any basic vector fields X̂, Ŷ

along τ we have

DXv Ŷ =
1
2
C(X̂, Ŷ ), DXh Ŷ = V[Xh, Y v] +

1
2
Ch(X̂, Ŷ ) .

D is associated to H:
Dδ = V .

Proof. Both the existence and the uniqueness of D is an immediate con-
sequence of the Proposition. Since H is homogeneous, according to 2.44,
Example 2, ∇ is associated to H, i.e. ∇δ = V. So, for any vector field ξ on
◦
TM , we have

(Dδ)ξ = Dξδ = ∇ξδ +
1
2
C(Vξ, δ) +

1
2
Ch(j ξ, δ) = V(ξ) +

1
2
C(Vξ, δ)

+
1
2
Ch(j ξ, δ)

3.11,10
= V(ξ).

This concludes the proof.

Note. The covariant derivative operator given by the Corollary is said to
be the Cartan derivative. The first axiomatic description of this derivative
is due to M. Matsumoto. The present treatment is based on [75], [76] and
Crampin’s paper [20].

Remark. Let (M, g) be a generalized Finsler manifold satisfying the reg-
ularity conditions M.reg.1, 2. Then, as we have seen in 3.11, Example,
(M, gE) is a Finsler manifold, if gE := ∇v∇vE, E := 1

2g(δ, δ). Let HgE be
the canonical horizontal map of gE . With the help of HgE we may construct
the covariant derivative operator described in 2.51, Proposition. The co-
variant derivative obtained in this way is called the Miron derivative or the
Miron-Cartan derivative on the generalized Finsler manifold (M, g). If, in
particular, (M, g) is a Finsler manifold, then the Miron derivative reduces
to the Cartan derivative.

Corollary 2. Hypothesis as in Corollary 1. There exists a unique covariant
derivative operator D in

◦
τ∗τ with the following properties:

Ch.-R.covd.1. Dv := ∇v = the canonical v-covariant derivative.
Ch.-R.covd.2. D is h-metrical, i.e. Dhg = 0.
Ch.-R.covd.3. The h-horizontal torsion of D vanishes.
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The rules of calculation for this derivative are

D
i eX Ỹ = ∇

i eX Ỹ = j[i X̃,HỸ ],

D
H eX Ỹ = ∇

H eX Ỹ +
1
2
Ch(X̃, Ỹ ) = V[HX̃, i Ỹ ] +

1
2
Ch(X̃, Ỹ )

(X̃, Ỹ ∈ X(
◦
τ)). In particular,

DXv Ŷ = 0, DXh Ŷ = V[Xh, Y v] +
1
2
Ch(X̂, Ŷ ) for all X,Y ∈ X(M) .

D is associated to H, i.e. Dδ = V.

Corollary 3. Hypothesis as above. There exists a unique covariant deriva-
tive oparator D in

◦
τ∗τ with the following properties:

H.covd.1. D is v-metrical, i.e. Dvg = 0.
H.covd.2. The v-vertical torsion of D vanishes.
H.covd.3. Dh := ∇h.

The rules of calculation with respect to D are the following:

D
i eX Ỹ = ∇

i eX Ỹ +
1
2
C(X̃, Ỹ ) = j[i X̃,HỸ ] +

1
2
C(X̃, Ỹ ),

D
H eX Ỹ = ∇

H eX Ỹ = V[HX̃, i Ỹ ]
;

in particular,

DXv Ŷ =
1
2
C(X̃, Ŷ ), DXh Ŷ = V[Xh, Y v]

for all X̃, Ỹ ∈ X(
◦
τ); X,Y ∈ X(M).

D is associated to the canonical horizontal map, i.e. Dδ = V.

Note. The covariant derivative operators given by these corollaries are called
the Chern–Rund and the Hashiguchi derivative, respectively. The former
was discovered by S.S. Chern in 1948, and independently, by H. Rund in
1951. The two operators were indentified by M. Anastasiei in 1996 (!),
see [4].
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Appendix

A.1. Basic conventions.

(1) To shorten statements, we sometimes use the symbols ∀ (read: ‘for all’, ‘for
any’, etc.), =⇒ (read: ‘implies’, ‘if. . . , then’), ⇐⇒ (read: ‘logically equivalent’,
‘if, and only if’). The notation a = b means that the objects denoted by the symbols
a and b are the same; its negation is written a 6= b. The symbol ‘:=’ means that its
left-hand side is defined by the right-hand side, the symbol ‘=:’ is used analogously.

(2) Throughout our study the language and symbolism of naive set theory will
be applied. The meaning of the symbols ∈, ∩, ∪, ∅ is common. If A and B are
sets, we use the symbol A ⊂ B to mean that A is contained in B but may be equal
to B. We have products (or Descartes products) of sets, say finite products A×B,
or A1 × · · · ×An, and products of families (see below) of sets.

(3) If f : A −→ B is a map of one set into another, we write a 7→ f(a) to denote
the effect of f on an element a ∈ A. In order to save parentheses, sometimes we
write fa rather than f(a). For every set S, 1S denotes the identity map of S onto
itself. When it is clear which set we mean, we write simply 1.

Let f : A −→ B be a map, and A′ a subset of A. The restriction f to A′ is the
map f � A′ : A′ −→ B defined by (f � A′)(a) := f(a) for all a ∈ A′.

(4) Let A and I be two sets. By a family of elements of A, having I as the
set of indices we mean a map f : I −→ A, which is written as (ai)i∈I , or simply
(ai) when no confusion can arise. In particular, if I = {1, . . . , n}, we also write
(ai)n

i=1 and speak of a finite sequence of elements of A. A ‘double family’ (aij)
(with 1 5 i 5 m, 1 5 j 5 n; m, n are positive integers) is called a matrix with m
rows and n columns (or m× n matrix) over the set A.

We may also speak of a family (Ai)i∈I of subsets of A, then Ai ⊂ A for all
i ∈ I. The union, intersection and the product of the family (Ai)i∈I is denoted by

∪
i∈I

Ai, ∩
i∈I

Ai and ×
i∈I

Ai,

respectively. For an extremely clear axiomatic treatment of these subtle concepts
the reader is referred to the book of M. Eisenberg [32].

247
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(5) Let S be a set, (Ai)i∈I and (Bj)j∈J two families of subsets of S. (Bj)j∈J

is said to be a refinement of (Ai)i∈I if for every j ∈ J there is an index i ∈ I
(depending on j) such that Bj ⊂ Ai.

(6) If f : A −→ S and g : B −→ S are maps, then A ×S B denotes the fibre
product of A and B over S relative to f and g. The elements of A ×S B are the
ordered pairs (a, b) ∈ A×B such that f(a) = g(b); briefly

A×S B := {(a, b) ∈ A×B | f(a) = g(b)}.

(7) Following Bourbaki, we say that a map f : A −→ B is injective, if
a 6= b =⇒ f(a) 6= f(b), surjective, if given an element b ∈ B there is at least one
a ∈ A such that f(a) = b, bijective if both injective and surjective. A bijective map
of a set S onto itself is also called a permutation of S. The set of all permutations
of S is denoted by S(S). If S = {1, . . . , n}, we write Sn in place of S(S).

(8) If f : A −→ B and g : B −→ C are two maps, then we have a composition
map g ◦ f such that g ◦ f(a) := g[f(a)] for all a ∈ A. A diagram

A B-f

C

h

@
@

@
@R

g
�

�
�

�	

of maps is said to be commutative if g ◦ f = h. Similarly, a diagram

A
f−−−−→ B

h
y yg
C −−−−→

k
D

is commutative, if g ◦ f = k ◦ h.

(9) The symbols N, Z, Q, R and C denote the natural numbers, integers,
rationals, reals, and complexes. Again as Bourbaki, we denote by N∗, R∗, R+, R∗

+

etc. the positive integers, the non-zero reals, the non-negative reals and the set of
positive reals, respectively. A mapping into R or C will be called a function.

A.2. Topology.

A topological space is a set S in which a family T of subsets, called open sets, has
been specified with the following properties: S and ∅ are open, the intersection of
any two open sets is open, the union of every family of open sets is open. Such a
family T is called a topology on S.
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The reader is expected to be familiar with the basics of point set topology, but,
for convenience, we present here some of the vocabulary we use.

Let S be a topological space with a topology T.

(1) A set H ⊂ S is closed , if its complement is open. A neighbourhood of a
point p ∈ S is any set that contains an open set containing p. (S,T) is a Hausdorff
space, if distinct points of S have disjoint neighbourhoods. S is connected if it is
not possible to express S as a union of two disjoint non-empty open sets. T′ ⊂ T is
a base for T if every member of T is a union of members of T′. S is second countable
if it has a countable base.

(2) An open cover of S is a subfamily of T whose union is S. S is compact if
every open cover of S has a finite subcover.

(3) A family (Ai)i∈I of subsets of S is locally finite if for every a ∈ S there is
a neighbourhood U of a such that

{i ∈ I | U ∩Ai 6= ∅}

is finite.

(4) If T is another topological space, a map f : S −→ T is said to be continuous
if the inverse image of an open set (in T ) is open in S. f is continuous at a point
a ∈ S if given a neighbourhood V of f(a) there exists a neighbourhood U of a
such that f(U) ⊂ V. A continuous map which admits a continuous inverse map
is called a homeomorphism. A continuous map f : S −→ T is said to be a local
homeomorphism if any point a ∈ S has an open neighbourhood which f maps
homeomorphically onto an open neighbourhood of f(a) in T .

A.3. The Euclidean n-space Rn.

(1) Let n ∈ N∗. Rn is defined as the set of all ‘n-tuples’ a = (α1, . . . , αn) of real
numbers αi, i.e. its elements are the sequences (αi)n

i=1 of n real numbers; R1 := R.
With the law of composition

a+ b = (αi)n
i=1 + (βi)n

i=1 := (α1 + β1, . . . , αn + βn)

and with the map

R× Rn −→ Rn, (λ, a) 7→ (λα1, . . . , λαn)

Rn is an n-dimensional real vector space. The usual or canonical basis of Rn

is (ei)n
i=1, where ei := (0, . . . , 1, . . . , 0), with the 1 in the ith place. The linear

functions
ei : a ∈ Rn 7→ ei(a) := αi ∈ R (1 5 i 5 n)

constitute the dual basis (ei)n
i=1 of the basis (ei). Then

ei(ej) = δi
j :=

{
1 if i = j

0 if i 6= j
;
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δi
j is called the Kronecker symbol.

(2) In Rn the standard inner product is defined by

〈a, b〉 :=
n∑

i=1

αiβi, if a = (αi)n
i=1, b = (βi)n

i=1;

thus Rn becomes a Euclidean vector space. The norm of a vector v ∈ Rn is
‖v‖ := 〈v, v〉1/2. By an open ball in Rn centered at a point a and of radius % ∈ R∗

+,
we mean the set

B(a; %) := {p ∈ Rn | ‖p− a‖ < %}.

We define a set U ⊂ Rn to be open if for each point a ∈ U there is an open ball
B(a; %) such that B(a; %) ⊂ U. It is easy to verify that this defines a topology on
Rn, called the ordinary topology. We agree once and for all that

Rn is endowed with the ordinary topology .

A.4. Smoothness.

Let a non-empty open set U ⊂ Rn be given, and let f be a function with domain U.

(1) The ith partial derivative of f at a point p ∈ U is

Dif(p) := lim
t−→0

f(p+ tei)− f(p)
t

,

if the limit exists. (In the particular case n = 1 ei is nothing but the 1 ∈ R, and we
get the derivative f ′(p) · ). If the partial derivatives D1f, . . . , Dnf exist for every
p ∈ U, and the functions

Dif : U −→ R, p 7→ Dif(p) (1 5 i 5 n)

are continuous, then f is called continuously differentiable or of class C1 on U,
denoted by f ∈ C1(U). We agree that the continuous functions are of class C0.

(2) Now we may define inductively the notion of a k-fold continuously differ-
entiable function: f is of class Ck (k ∈ N∗) on U if Dif exists and is of class Ck−1

for all i ∈ {1, . . . , n}. We say that f is smooth on U if f is of class Ck for every
k ∈ N. As in the case C1, we denote these classes of functions on U by Ck(U) and
C∞(U).

(3) Let finally a map F : U −→ Rm be given. If (`j)m
j=1 is the dual of the

canonical basis of Rm, then the functions F j := `j ◦ F (1 5 j 5 m) are called the
(Euclidean) coordinate functions of F . F is said to be of class Ck (or C∞) on U,
if each of the coordinate functions of F belongs to the class Ck(U) (or C∞(U)).
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A.5. Modules and exact sequences.

In the sequel K will mean a commutative ring with unit element 1.

(1) A commutative group (V,+) (or simply V ) is said to be a module over K,
or a K-module, if a map

K× V −→ V, (α, v) 7→ αv

is given, having the following properties:

α(v + w) = αv + αw, (α+ β)v = αv + βv,

(αβ)v = α(βv), 1v = v

(in these conditions v and w are arbitrary elements of V , sometimes called vectors;
α and β are arbitrary elements of K, called scalars).

If, in particular, K is a field, then we obtain the notion of a vector space over K.
A non-empty subset W of a K-module V is called a submodule of V , if

v, w ∈W =⇒ v + w ∈W ; α ∈ K, v ∈ V =⇒ αv ∈ V.

When V is a vector space, its submodules are called vector subspaces (or simple
subspaces if no confusion can arise).

(2) There is a strong analogy between K-modules and vector spaces over a field,
at least at the level of basic concepts (linear dependence and independence, system
of generators, basis, etc.), so we do not repeat here these common definitions.
However, we have to emphasize that most of the results concerning these concepts
do not generalize to K-modules.

A K-module V possessing a basis is said to be free. If V is a finitely-generated
free module, then any two bases of V have the same cardinality, called the dimension
of V and denoted by dimKV or simply dimV .

(3) Let V and W be K-modules. A (K-) homomorphism or a K-linear map of
V into W is a map f : V −→W such that

f(αu+ βv) = αf(u) + βf(v) for all u, v ∈ V and for all α, β ∈ K.

If W = V then f is called an endomorphism of V . An isomorphism of V onto W
is a bijective homomorphism of V onto W .

We denote by HomK(V,W ) the set of all K-homomorphisms of V into W ;
HomK(V,W ) can immediately be made into a K-module. If f ∈ HomK(V,W ),
then the kernel

Ker f := f−1(0) := {v ∈ V | f(v) = 0} ⊂ V

of f is a submodule of V . Clearly, f is injective if, and only if, Ker f = {0}.
Similarly, the image

Im f := f(V ) := {f(v) ∈W | v ∈ V } ⊂W
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of f is a submodule of W .

(4) Let V be a K-module. EndK(V ) := HomK(V, V ) with the laws of composi-
tion

(f, g) 7→ f + g, (f, g) 7→ f ◦ g

is a ring with unit element 1V , called the ring of endomorphisms of the module
V . An endomorphism f ∈ EndK(V ) is said to be a projection (or projector) if
f2 := f ◦ f = f .

The bijective endomorphisms of V are called automorphisms. The set GL(V ) of
all automorphisms of V is a subgroup of the group S(V ) of all permutations of the
set V . This group GL(V ) is said to be the general linear group of the module V .

(5) Let us denote by Matn(K) the ring of n× n matrices

(αi
j) =:


α1

1 α1
2 . . . α1

n

α2
1 α2

2 . . . α2
n

...
...

...
αn

1 αn
2 . . . αn

n


over K, and let GL(n,K) be the set of all invertible n × n matrices with elements
in K:
GL(n,K) := {A ∈ Matn(K) | there is B ∈ Matn(K) such that AB = BA = 1n},
1n := (δi

j) ∈ Matn(K) is the unit matrix of order n.
Now let V be a finitely generated free module over K, and let B = (bi)n

i=1 be a
basis of V . Then the map

MB : f ∈ EndK(V ) 7→MB(f) =: (αi
j) ∈ Matn(K),

f(bj) =
n∑

i=1

αi
jbi, 1 5 j 5 n

is a ring-isomorphism of the ring of endomorphisms of V onto the ring of n × n
matrices over K. It follows immediately that the relations

f ∈ GL(V ) and MB(f) ∈ GL(n,K)

are equivalent.
Note. If K := R, then we shall write GL(n) rather then GL(n,K).

(6) If V is a K-module, the K-module V ∗ := HomK(V,K) of linear forms or
functionals on V is called the dual of V ; V ∗∗ := (V ∗)∗ is the bidual of V , etc. The
map {

cV : V −→ V ∗∗, v 7→ cV (v)

∀ ` ∈ V ∗ : cV (v)(`) := `(v)

is a K-linear injection, called the canonical injection of V into V ∗∗.
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Lemma 1. Assume that V is a finitely generated free module over K. Then:

(i) The dual V ∗ of V is also a free module. If (bi)n
i=1 is a basis a for V , and bi

is the functional such that

bi(bj) = δi
j = the Kronecker symbol (1 5 i, j 5 n),

then (bi)n
i=1 is a basis for V ∗.

(ii) The canonical injection cV is an isomorphism of V onto V ∗∗.

Given a basis (bi)n
i=1 for V as in the lemma, we call the basis (bi)n

i=1 the dual

basis to (bi)n
i=1. If v =

n∑
j=1

νjbj , then bi(v) = νi, hence v =
n∑

i=1

bi(v)bi. Thus bi may

rightly be called the ith coordinate function with respect to the basis (bi)n
i=1. On

the other hand, if ` =
n∑

i=1

λib
i, then

`(v) =
n∑

i=1

λib
i

( n∑
j=1

νjbj

)
=

n∑
i=1

λiν
i,

so `(v) can be obtained as the usual dot product of n-tuples, cf. A.3(2).

(7) Let V1, . . . , Vk (k = 2) be submodules of a given K-module V . The sum of
these submodules is

V1 + · · ·+ Vk := {v1 + · · ·+ vk ∈ V | vi ∈ Vi, i 5 i 5 k}.

The submodules V1, . . . , Vk are said to be linearly independent if each vector
v ∈ V1 + · · ·+ Vk has a unique expression in the form

v = v1 + · · ·+ vk with v1 ∈ V1, . . . , vk ∈ Vk.

In this case we say that V1,+ · · ·+Vk is the direct sum of the sequence (Vi) and we
write

V1 ⊕ · · · ⊕ Vk or
k
⊕

i=1
Vi.

It may immediately be seen that

V = V1 ⊕ V2 ⇐⇒ V = V1 + V2 and V1 ∩ V2 = {0};

then the submodules V1 and V2 are called complementary.

Proposition 1. Let V be a K-module, and let H be a submodule of V . The following
conditions are equivalent:

⊕1 H is a direct summand in V , i.e. there is a submodule N of V such that
H ⊕N = V .
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⊕2 There is a projection f ∈ End(V ) such that f(V ) = H.

⊕3 There is a homomorphism h : V −→ H such that h(v) = v for all v ∈ H.

The proof is easy and may be found e.g. in [34], §17, no. 4.

(8) Let V1, V2, V3 be three K-modules, f1 : V1 −→ V2, f2 : V2 −→ V3 be
homomorphisms. The pair (f1, f2) is said to be an exact sequence if Im f1 = Ker f2.
Then we also say that the diagram

V1
f1−→ V2

f2−→ V3

is an exact sequence at V2. Similarly, a diagram

V1
f1−→ V2

f2−→ V3
f3−→ V4

consisting of four K-modules and three homomorphisms is called exact if the dia-
grams

Vi−1
fi−1−→ Vi

fi−→ Vi+1, 2 5 i 5 3

are exact at Vi. Then we also speak of an exact sequence; ‘longer’ exact sequences
are defined analogously.

Now let V and W be K-modules, f : V −→ W a K-homomorphism. Let the
module consisting of one element (the zero element) be denoted by 0. Obviously,
there is only one homomorphism from 0 to V , and from V onto 0, so it is unim-
portant to give a name or a special symbol to these ‘trivial’ homomorphisms in the
exact sequences where they appear. We also recall that the factor module V/H of
V by a submodule H consists of the cosets v+H (v ∈ V ), endowed with a ‘natural’
K-module structure.

After these preparations, we have the following

Lemma. (a) For 0 −→ V
f−→ W to be an exact sequence, it is necessary and

sufficient that f be injective.

(b) For V
f−→ W −→ 0 to be exact, it is necessary and sufficient that f be

surjective.
(c) Assume that V is a submodule of W ; i : V −→W is the canonical injection

(i.e. i(v) := v for all v ∈ V ); j : W −→ W/V is the canonical surjection (i.e.
j(w) := w + V for all w ∈W ). Then the diagram

0 −→ V
i−→W

j−→W/V −→ 0

is an exact sequence.
(d) The diagram

0 −→ Ker f i−→ V
f−→W

j−→W/Imf −→ 0

is an exact sequence (again, i and j are the canonical injection and surjection,
respectively).
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Proposition 2. Let the diagram

SEQ 0 −→ U
f−→ V

g−→W −→ 0

be an exact sequence. The following conditions are equivalent:

(i) There exists a homomorphism s : W −→ V such that g ◦ s = 1W .

(ii) There exists a homomorphism r : V −→ U such that r ◦ f = 1U .

When this is so, we have

V = Im f ⊕Ker r, V = Ker g ⊕ Im s,

and the map
f ⊕ s : U ⊕W −→ V, (u,w) 7→ f(u) + s(w)

is an isomorphism.

This is an important fact, whose proof is easy, see e.g. [12] or/and [46]. The
map s is called a linear section, while r is called a linear retraction associated with
f . SEQ is said to be split , if it satisfies the equivalent conditions (i), (ii). Then s
and r are also mentioned as a right and a left splitting of SEQ, respectively; and
sometimes we write

0 −→ U
f

�
r
V

g

�
s
W −→ 0.

(9) Proposition 3. Let P be a K-module. The following conditions are equi-
valent:

(i) Given a K-homomorphism f : P −→ W and a surjective K-homomorphism
g : V −→ W , there is a homomorphism h : P −→ V making the following
diagram commutative:

V W-
g

h

�
�

�
�	

P

?

f

0- .

(ii) Every exact sequence 0 −→ V −→W −→ P −→ 0 splits.

(iii) P is a direct summand of a free module, i.e. there is a K-module V such that
P ⊕ V is free.

For a proof the reader is referred to S. Lang’s Algebra [46]. If one – and hence
all – of the conditions (i)–(iii) are satisfied then P is said to be a projective module.
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A.6. Algebras and derivations.

(1) Let V1, . . . , Vn (n = 2) and W be K-modules. A map

f : V1 × · · · × Vn −→W

is said to be K-multilinear (n-linear, multilinear) if it is linear in each variable. If
V1 = · · · = Vn := V , we also say that f is a multilinear map on V ; in particular, a
multilinear map V n −→ K is called a multilinear (more precisely, n-linear) function
or form on V .
Notation. We denote by L(V1, . . . , Vn; W ), Ln(V,W ) and Ln(V ) the sets of multi-
linear maps V1×· · ·×Vn −→W , V n −→W and n-linear forms V n −→ K, respectively.

(2) By an algebra over K (or a K-algebra) we mean a K-module A endowed with
a K-bilinear map A × A −→ A called multiplication and written by juxtaposition.
An algebra A is said to be associative if

a(bc) = (ab)c for all a, b, c ∈ A

and commutative if
ab = ba for all a, b ∈ A.

e ∈ A is a unit element of the algebra A if

ea = ae = a for all a ∈ A.

If A has a unit element, then it is clearly unique.
Suppose A and B are K-algebras. A K-linear map f : A −→ B is called a

homomorphism of algebras if f preserves products, i.e. f(ab) = f(a)f(b), for all
a, b ∈ A. If B = A, we speak of an endomorphism (of algebras). A bijective
homomorphism of algebras is said to be an isomorphism.

(3) A K-algebra A with the multiplication

[ , ] : A× A −→ A, (a, b) 7→ [a, b]

is said to be a Lie algebra over K if:

[a, a] = 0 for all a ∈ A.LIE 1.

[a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0 for all a, b, c ∈ A.LIE 2.

The identity LIE 2 is called the Jacobi identity. LIE 1 implies immediately that

[a, b] = −[b, a] for all a, b ∈ A.

If B is an associative K-algebra with the multiplication (a, b) 7→ ab, then the
new multiplication

(a, b) ∈ B× B 7→ [a, b] := ab− ba ∈ B
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makes B into a Lie algebra.

(4) Let A be a K-algebra. A map θ : A −→ A is said to be a derivation of A if:

θ is K-linear.Der 1.

θ(ab) = (θa)b+ a(θb) for all a, b ∈ A.Der 2.

An immediate example: if A is the algebra of smooth functions f : R −→ R
and θ is the map defined by θ(f) := f ′ for all f ∈ C∞(R) (cf. A.4), then θ is a
derivation in the above sense.

Lemma. Let A be a K-algebra and θ a derivation of A.

(i) If A has a unit element e 6= 0, then θ(e) = 0.

(ii) If A is associative, then

θ(a1a2 . . . an) =
n∑

i=1

a1 . . . ai−1θ(ai)ai+1 . . . an for all a1, . . . , an ∈ A.

(iii) If θ1 and θ2 are derivations of A, then [θ1, θ2] := θ1 ◦ θ2 − θ2 ◦ θ1 is again a
derivation.

Proof. From e2 = e we obtain θ(e) = θ(e2) = (θe)e + e(θe) = θe + θe, hence
θe = 0. (ii) follows from Der 2 by induction on n. (iii) may be checked by an easy
calculation.

A.7. Graded algebras and derivations.

(1) A K-algebra A is said to be a graded algebra of type Z if A is the direct sum of
a sequence (An)n∈Z of submodules such that

AmAn ⊂ Am+n for all m,n ∈ Z.

The elements of An (n ∈ Z) are called homogeneous of degree n. If A admits a
unit element e, it is always understood that e is of degree 0. The zero element
of A = ⊕

n∈Z
An is homogeneous of any degree, but a homogeneous element a 6= 0

belongs to only one An. Then the notation deg(a) := n may correctly be used.
Analogously, a K-algebra A is said to a graded algebra of type N if it has a direct

decomposition A = ⊕
n∈N

An such that

AmAn ⊂ Am+n for all m,n ∈ N.

Then A can be identified with a graded K-algebra of type Z by setting An := 0 for
n 5 −1. Whenever we refer to a graded algebra A = ⊕

n∈N
An we shall mean this

particular gradation of type Z.
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We call a graded K-algebra A of type Z (graded) commutative, respectively
(graded) anticommutative if for all non-zero homogeneous elements a, b of A we
have

ab = (−1)deg(a) deg(b)ba, respectively ab = −(−1)deg(a) deg(b)ba.

(2) Let A = ⊕
n∈N

An be a graded K-algebra (in the above sense). A derivation θ

of A is said to be of degree r, where r ∈ Z, if

θ(An) ⊂ An+r for all n ∈ N.

By a graded derivation of degree r (r ∈ Z) of A we mean a derivation θ : A −→ A of
degree r which satisfies the relation

θ(aman) = (θam)an + (−1)mr(θan) for all m,n ∈ N and am ∈ Am, an ∈ An .

(Then a graded derivation of even degree r is a derivation of degree r.)

Lemma 1. Assume that A = ⊕
n∈N

An is an associative graded K-algebra. If θ is a

graded derivation of A of degree r (r ∈ Z), then

θ(a1 . . . an) =
n∑

i=1

(−1)r(m1+···+mi−1)a1 . . . ai−1(θai)ai+1 . . . an ,

where aj ∈ Amj , 1 5 j 5 n.

This can easily be verified by induction on n.

Corollary. If two derivations (respectively graded derivations) of the same degree
coincide on a set of homogeneous generators of an associative (respectively graded
associative) algebra, then they are identical.

Indeed, this is an immediate consequence of A.6, Lemma (ii), and the above
Lemma 1.

Lemma 2. (a) If θ is a graded derivation of odd degree r then θ2 := θ ◦ θ is a
derivation of degree 2r.

(b) Let θr and θs be graded derivations of degree r and s, respectively. Then
their graded commutator

[θr, θs] := θr ◦ θs − (−1)rsθs ◦ θr

is a graded derivation of degree r + s.
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Proof. Let a graded K-algebra A = ⊕
n∈N

An be given. Assume that θr and θs are

graded derivations of A of degree r and s, respectively. Choose a ∈ A so that
deg(a) = n. For every b ∈ A we have

θr(θs(ab)) = θr((θsa)b+ (−1)nsaθs(b)) = (θr(θsa))b+ (−1)(s+n)r(θsa)(θrb)

+ (−1)ns(θra)(θsb) + (−1)n(s+r)aθr(θsb).

If θr = θs =: θ and r = s is odd, we obtain that θ ◦ θ is a derivation of degree 2r.
This proves (a).

If we interchange θr and θs in the above relation and subtract (−1)rsθs(θr(ab))
from θr(θs(ab)) we get

[θr, θs](ab) = ([θr, θs]a)b+ (−1)(r+s)na[θr, θs]b,

which proves (b).

(3) A graded K-algebra A = ⊕
n∈N

An with the multiplication

[ , ] : A× A −→ A, (a, b) 7→ [a, b]

is said to be a graded Lie algebra if the multiplication satisfies the following two
conditions:

[am, an] = −(−1)mn[an, am] for all am ∈ Am, an ∈ An.Grad.Lie 1.

(−1)mq[am, [an, aq]] + (−1)nm[an, [aq, am]]Grad.Lie 2.

+ (−1)qn[aq, [am, an]] = 0 for all am ∈ Am, an ∈ An, aq ∈ Aq.

The second relation is called the graded Jacobi identity.

Proposition. The set of the graded derivations of a graded algebra becomes a
graded Lie algebra with the graded commutator given by Lemma 2.

The proof is a straightforward, but tedious computation. The graded Lie alge-
bra of all graded derivations of A will be denoted by DerA.

A.8. Tensor algebras over a module.

We continue to let K be a commutative ring with unit element. For the
rest, we assume that

all modules are finitely generated free modules over K .

Some of the results do not depend on this assumption, these will be
marked by an asterisk.
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(1) Let V1 and V2 be K-modules. There is a K-module V1⊗V2 and a K-bilinear
map

⊗ : V1 × V2 −→ V1 ⊗ V2, (a, b) 7→ ⊗(a, b) =: a⊗ b
with the following universal property: whenever W is a K-module
and f : V1 × V2 −→W a bilinear map, there exists a unique K-linear map
f̃ : V1 ⊗ V2 −→W such that the diagramm

V1 × V2 V1 ⊗ V2
-⊗

f

@
@

@
@

@
@@R

W
?

f̃

commutes. Then the pair (V1⊗V2,⊗) (or by an abuse of language, simply V1⊗V2)
is said to be a tensor product of V1 and V2. (V1⊗V2,⊗) is unique up to a unique
isomorphism in the sense that if (V1⊗̃V2, ⊗̃) is also a tensor product of V1 and V2,
then there exists a unique isomorphism ϕ : V1 ⊗ V2 −→ V1⊗̃V2 of K-modules which
makes the following diagram commutative:

V1 × V2 V1 ⊗ V2
-⊗

⊗̃

@
@

@
@

@
@@R
V1⊗̃V2

?

ϕ

For a careful proof of this not too deep, but fundamental result the reader is
referred to [15]. Note that the existence and uniqueness of a tensor product is true
without our box-assumption. As for the notations, when we want to emphasize the
ring K we write V1 ⊗K V2 instead of V1 ⊗ V2.

Basic properties.

(a)∗ K ⊗ V = V for every K-module V .

(b)∗ The tensor product is associative: if V1, V2, V3 are K-modules, then there
exists a unique isomorphism (V1 ⊗ V2) ⊗ V3 −→ V1 ⊗ (V2 ⊗ V3) such that
(a⊗ b)⊗ c 7→ a⊗ (b⊗ c) for all a ∈ V1, b ∈ V2 and c ∈ V3.

(c)∗ For every integer k = 2 and K-modules V1, . . . , Vk there is a unique K-module
V1 ⊗ · · · ⊗ Vk and K-multilinear map

⊗ : V1 × · · · × Vk −→ V1 ⊗ · · · ⊗ Vk

with the above universal property, and we have the canonical identifications

V1 ⊗ (V2 ⊗ · · · ⊗ Vk) = (V1 ⊗ · · · ⊗ Vk−1)⊗ Vk = V1 ⊗ V2 ⊗ · · · ⊗ Vk.
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(d)∗ The tensor product is commutative: V1 ⊗ V2 is canonically isomorphic to
V2 ⊗ V1 via the map a⊗ b 7→ b⊗ a (a ∈ V1, b ∈ V2).

(e)∗ For any three K-modules V1, V2, W we have the canonical isomorphisms

HomK(V1,HomK(V2,W )) ∼= L(V1, V2;W ) ∼= HomK(V1 ⊗ V2,W ) ;

see e.g. [46], p. 607.

(f) If V and W are K-modules, then there is a canonical isomorphism

V ∗ ⊗W ∼= HomK(V,W ) .

Proof. Consider the map

f : V ∗ ×W −→ HomK(V,W ), (`, w) 7→ f(`, w)

defined by
f(`, w)(v) := `(v)w for all v ∈ V.

Then f is a obviously bilinear, so by the universal property there is a unique K-linear
map f̃ : V ∗ ⊗W −→ HomK(V,W ) such that f = f̃ ◦ ⊗. Then

f̃(`⊗ w)(v) = f(`, w)(v) = `(v)w for all ` ∈ V ∗, v ∈ V, w ∈W.

Actually f̃ is an isomorphism, the inverse isomorphism can be constructed as fol-
lows. Choose a basis (bi)n

i=1 for V , and let (bi)n
i=1 be the dual basis. If

g : ϕ ∈ HomK(V,W ) 7→ g(ϕ) :=
n∑

i=1

bi ⊗ ϕ(bi) ∈ V ∗ ⊗W,

then, as an easy calculation shows, g = f̃−1.

Corollary. dim(V ⊗W ) = (dimV )(dimW ).

(g) If V1, . . . , Vk are K-modules with bases (bi,1)n1
i=1, . . . , (bi,k)nk

i=1, then
V1 ⊗ · · · ⊗ Vk is a free K-module and the family

(bi1,1 ⊗ · · · ⊗ bik,k)15i15n1,...,15ik5nk

is a basis for V1 ⊗ · · · ⊗ Vk.

(h) There is a unique K-module isomorphism

ι : V ∗
1 ⊗ · · · ⊗ V ∗

k −→ (V1 ⊗ · · · ⊗ Vk)∗

such that

ι(`1⊗· · ·⊗`k)(v1⊗· · ·⊗vk) =
n∏

i=1

`i(vi) for all `i ∈ V ∗
i , vi ∈ Vi (1 5 i 5 k).
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Proof. Let a map f : V ∗
1 × · · · × V ∗

k −→ (V1 ⊗ · · · ⊗ Vk)∗ be defined by

f(`1, . . . , `k)(v1 ⊗ · · · ⊗ vk) :=
n∏

i=1

`i(vi); `i ∈ V ∗
i , vi ∈ Vi (1 5 i 5 k).

f is evidently K-multilinear, so Property (c) guarantees that there is a unique K-
linear map ι : V ∗

1 ⊗· · ·⊗V ∗
k −→ (V1⊗· · ·⊗Vk)∗ such that f = ι ◦⊗. Using bases, it

may easily be checked that ι is an isomorphism, the desired isomorphism, between
V ∗

1 ⊗ · · · ⊗ V ∗
k and (V1 ⊗ · · · ⊗ Vk)∗.

(i) If V1, . . . , Vk are K-modules, then we have a canonical K-module isomorphism

V1 ⊗ · · · ⊗ Vk
∼= L(V ∗

1 , . . . , V
∗
k ; K) .

This may be proved in the same way as the previous property.

(j) We have a canonical K-module isomorphism

V ∗
1 ⊗ · · · ⊗ V ∗

k
∼= L(V1, . . . , Vk; K) .

Indeed, V ∗
1 ⊗ · · · ⊗ V ∗

k

(i)∼= L(V ∗∗
1 , . . . , V ∗∗

k ;K)
A.5, Lemma1∼= L(V1, . . . , Vk;K).

(2) Let V be a K-module. For every natural number r we define the rth tensor
power of V by

Tr(V ) :=


K, r = 0,

V, r = 1,

V ⊗ · · · ⊗ V︸ ︷︷ ︸
r

, r = 2.

The elements of Tr(V ) are called contravariant tensors of order r on V . From the
associativity of the tensor product, we obtain a bilinear map

Tr(V )×Tq(V ) −→ Tr+q(V ),

which makes the direct sum

T•(V ) := ⊕
r∈N

Tr(V )

into an associative, graded K-algebra, called the contravariant tensor algebra
of V .

Analogously, for every natural number s let

Ts(V ) :=


K, s = 0,

V ∗, s = 1,

V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
s

s = 2.
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Ts(V ) is said to be the module of covariant tensors of order s on V . As before,

T•(V ) := ⊕
s∈N

Ts(V )

is an associative, graded K-algebra, called the covariant tensor algebra of V .
Finally, we define the module of type (r, s) (contravariant of order r, covariant

of order s) tensors on V as the tensor product

Tr
s(V ) := Tr(V )⊗Ts(V ).

We agree that

Tr
0(V ) := Tr(V ), T0

s(V ) := Ts(V ), T0
0(V ) := K.

If r > 0 and s > 0, the elements of Tr
s(V ) are also called mixed tensors of type

(r, s). We have a canonical isomorphism

Tr
s(V )⊗Tr′

s′(V ) ∼= Tr+r′

s+s′ (V ).

This enables us to make the direct sum

T•
•(V ) = ⊕

(r,s)∈N×N
Tr

s(V )

into an associative algebra over K, called the mixed tensor algebra of V .
Due to our considerations in (1), we have the following canonical K-module

isomorphisms:

Tr(V ) ∼= Lr(V ∗), Ts(V ) ∼= Ls(V ),
Tr(V ∗) ∼= (Tr(V ))∗ ∼= Tr(V ),
Tr

s(V ) ∼= L((V ∗)r, V s; K),
T1

s(V ) ∼= HomK(V s, V )

.

Thus the mixed tensors of type (r, s) on V may be regarded as K-multilinear maps

V ∗ × · · · × V ∗︸ ︷︷ ︸
r times

×V × · · · × V︸ ︷︷ ︸
s times

−→ K.

The last isomorphism in the box provides a convenient and frequently used in-
terpretation for the type (1, s) (s 6= 0) tensors on V : they may be considered as
vector-valued K-multilinear maps

V × · · · × V︸ ︷︷ ︸
s times

−→ V.



264 APPENDIX.

A.9. The exterior algebra.

From now on we shall assume that the ring K contains the field Q of
rational numbers, so that for all α ∈ K, q ∈ Q∗ we have q−1α ∈ K,
and q−1α is the only element of K satisfying q(q−1α) = α.

(1) Let n ∈ N∗ and consider the permuation group Sn. Among the elements of
Sn there are the transpositions, which interchange two consecutive integers without
affecting the others, and which generate Sn. We denote by ε the signature function,
the only homomorphism Sn −→ Z∗ such that

ε(σ) = −1 for all transpositions σ ∈ Sn.

Now let V be a K-module. If f ∈ Tn(V ) ∼= Ln(V ) and σ ∈ Sn, then we define
the function σf by

(σf)(v1, . . . , vn) := f(vσ(1), . . . , vσ(n)) for all v1, . . . , vn ∈ V.

Cleary, then σf ∈ Tn(V ). f ∈ Tn(V ) is said to be symmetric, respectively skew-
symmetric, if

σf = f, respectively σf = ε(σ)f for all σ ∈ Sn.

The notion of a symmetric or skew-symmetric vector-valued covariant tensor
is analogous. The symmetric, as well as the skew-symmetric covariant tensors
constitute submodules of Tn(V ), denoted sometimes by Ln

sym(V ) and Ln
skew(V ),

respectively. For the module of skew-symmetric tensors of order n on V we prefer
the notation An(V ); the elements of An(V ) are called n-forms on V . If W is
also a K-module, Ln

skew(V,W ) denotes the K-module of W -valued skew-symmetric
K-multilinear maps defined on V n.

A symmetric or skew-symmetric bilinear form B on V is said to be non-
degenerate, if there exists no vector v 6= 0 in V such that B(v, w) = 0 for all
w ∈ V .

The map

Alt : Tn(V ) −→ Tn(V ), f 7→ Alt(f) :=
1
n!

∑
σ∈Sn

ε(σ)σf

is a projection onto An(V ), i.e. Alt ◦Alt = Alt and Alt(f) = f for all f ∈ An(V ).
Alt is called the alternator in Tn(V ).

(2) Let V be a K-module.

(a) Assume that k ∈ N, k = 2. There is a K-module ∧k(V ) and a skew-symmetric
K-multilinear map

∧ : V × · · · × V︸ ︷︷ ︸
k times

−→ ∧k(V ), (v1, . . . vk) 7→ ∧(v1, . . . , vk) =: v1 ∧ · · · ∧ vk
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with the following universal property:
If W is a K-module and f is a skew-symmetric multilinear map of

V × · · · × V (k copies) into W , then there is a unique K-linear map
f̃ : ∧k(V ) −→W such that the diagram

V × · · · × V ∧k (V )-∧

f

@
@

@
@

@
@@R

W
?

f̃

commutes.
The pair (∧k(V ),∧), or by abuse of language, ∧k(V ) is said to be a

kth exterior power of V , the elements of ∧k(V ) are called k-vectors. As the
tensor product of modules, (∧k(V ),∧) is also unique up to a unique module-
isomorphism, so we may speak of the kth exterior power of V .

(b) Let ∧0(V ) := K, ∧1(V ) := V , ∧(V ) := ⊕
k∈N
∧k (V ). For each pair of positive

integers (r, s) there exists a unique bilinear map

∧r(V )× ∧s(V ) −→ ∧r+s(V ),

called the wedge or exterior product and denoted also by ∧, such that if
u1, . . . , ur, v1, . . . , vs ∈ V then

(u1 ∧ · · · ∧ ur, v1 ∧ · · · ∧ vs) 7→ u1 ∧ · · · ∧ ur ∧ v1 ∧ · · · ∧ vs.

The wedge product makes ∧(V ) into a graded K-algebra which is associative
and (graded) commutative.

This algebra is said to be the exterior algebra, or the Grassmann
algebra of the K-module V .

A sketchy proof of this important result may be found e.g. in Lang’s
Algebra [46], for a detailed argument the reader is referred to [15].

(c) Let dimK V = n. If k > n, then ∧k(V ) = 0. Assume that (bi)n
i=1 is a basis

of V . If 1 5 k 5 n, then ∧k(V ) is also a finitely generated free module, and
the k-vectors

bi1 ∧ · · · ∧ bik
, ii < · · · < ik

form a basis of ∧k(V ). We have:

dim∧k(V ) =
(
n

k

)
=

n!
(n− k)!k!

, dim∧(V ) = 2n.
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(d) Let a map

f : V ∗ × · · · × V ∗︸ ︷︷ ︸
k times

−→ Ak(V ), (`1, . . . , `k) 7→ f(`1, . . . , `k)

be defined by

f(`1, . . . , `k)(v1, . . . , vk) :=
1
k!

∑
σ∈Sk

ε(σ)`1(vσ(1)) . . . `k(vσ(k))

= (Alt(`1 ⊗ · · · ⊗ `k))(v1, . . . , vk)

(vi ∈ V , 1 5 i 5 k). f is obviously K-multilinear, so the universal property
of the tensor power leads to a unique (‘natural’) K-linear map
f̃ : ∧k(V ∗) −→ Ak(V ) which makes the diagram

V ∗ × · · · × V ∗ ∧k (V ∗)-

f

@
@

@
@

@
@@R
Ak(V )

?

f̃

commutative. It may be readily shown that f̃ is actually an isomorphism of
K-modules, thus we have:

∧k(V ∗) ∼= Ak(V ) .

From this it follows that

A(V ) := ⊕
k∈N

Ak(V ) ∼= ∧(V ∗) .

In the text we shall exclusively use this interpretation of the exterior algebra
of V ∗. Then the wedge product describded by (b) has the following meaning:

f ∧ g =
(k + `)!
k!`!

Alt(f ⊗ g)

for all f ∈ ∧k(V ∗) ∼= Ak(V ), g ∈ ∧`(V ∗) ∼= A`(V ). f ⊗ g, as an element of
Lk+`(V ), operates by the rule

(f ⊗ g)(v1, . . . , vk, vk+1, . . . , vk+`) = f(v1, . . . , vk)g(vk+1, . . . , vk+`)

(vi ∈ V, 1 5 i 5 k + `). A convenient way to compute wedge products is
provided by the formula

(f ∧ g)(v1, . . . , vk+`) =
∑

σ∈S∗
k+`

ε(σ)f(vσ(1), . . . , vσ(k))g(vσ(k+1), . . . , vσ(k+`)),

where S∗
k+` is the subset of Sk+` consisting of permutations σ such that

σ(1) < σ(2) · · · < σ(k) and σ(k + 1) < · · · < σ(k + `).
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A.10. Categories and functors.

We tacitly accept the von Neumann-Bernays-Gödel axiom system of set theory. (A
derivative of this system is presented in detail in the book of M. Eisenberg [32]
cited before.) This enables us to speak legitimately of ‘larger totalities’ than sets,
called classes. The axioms specify the behavior of classes. A set is by definition a
class which is a member of some class.

(1) A category A consists of

(i) a class Ob(A) of objects;

(ii) for any two objects A,B ∈ Ob(A) a set Mor(A,B) called the set
of morphisms of A into B;

(iii) for each triple (A,B,C) of objects a law of composition (i.e. a map)
Mor(A,B)×Mor(B,C) −→ Mor(A,C) which assigns to α ∈ Mor(A,B)
and β ∈ Mor(B,C) an elements β ◦ α ∈ Mor(A,C).

These obey three axioms:

Any two sets Mor(A,B) and Mor(A′, B′) are disjoint unlessCAT 1.

A = A′ and B = B′, in which case they are equal.

For each object A in Ob(A) there is a morphism idA ∈ Mor(A,A)CAT 2.

such that if α ∈ Mor(A,B) then α ◦ idA = α = idB ◦α.

The law of composition is associative (when defined), i.e. ifCAT 3.

α ∈ Mor(A,B), β ∈ Mor(B,C), γ ∈ Mor(C,D), then
γ ◦ (β ◦ α) = (γ ◦ β) ◦ α.

Usually we write α : A −→ B or A α−→ B for α ∈ Mor(A,B). By abuse of
language, we sometimes refer to the class of objects as the category itself, if it is
clear what the morphisms are meant to be.

(2) Assume that A and B are categories. A covariant functor F of A into B
is rule which associates with each object A in Ob(A) an object F (A) in Ob(B),
and with each morphism α ∈ Mor(A,B) a morphism F (α) ∈ Mor(F (A), F (B))
satisfying the following conditions:

F (idA) = idF (A) for all A ∈ Ob(A).FUN 1.

If α ∈ Mor(A,B), β ∈ Mor(B,C) then F (β ◦ α) = F (β) ◦ F (α).FUN 2.

The notion of a contravariant functor from A into B is analogous, only
the arrows are reversed. Formally, a contravariant functor F associates with each
morphism α ∈ Mor(A,B) a morphism F (α) ∈ Mor(F (B), F (A)) satisfying

FUN 2’. If α ∈ Mor(A,B), β ∈ Mor(B,C) then F (β ◦ α) = F (α) ◦ F (β).
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Sometimes a functor is denoted by writing α∗ instead of F (α) in the case of a
covariant functor, and by writing α∗, if F is a contravariant functor (cf. e.g. 1.25
and 1.30, Example(3)).

In a similar way, one may define functors of several variables covariant in some
of their variables and contravariant in others. For this procedure, the reader is
referred to Mac Lane’s book Homology [48].

Example. (a) Let A be the category of K-modules: Ob(A) is the class of K-modules
and

Mor(V,W ) := HomK(V,W ) for all V,W ∈ Ob(A).

Consider at the same time the category B of graded K-algebras. Then Ob(B) con-
sists of the graded algebras over K and the morphisms are those K-algebra homo-
morphisms which respect the graduations, i.e. the graded algebra homomorphisms
([12], III, §3, no. 1). If

∧ : V ∈ Ob(A) 7→ ∧(V ) := the exterior algebra of V,

and the map
f ∈ Mor(V,W ) 7→ ∧(f) ∈ Mor(∧(V ),∧(W ))

is determined by

∧(f)(v1 ∧ · · · ∧ vk) = f(v1) ∧ · · · ∧ f(vk) for all v1, . . . vk ∈ V,

then ∧ is a covariant functor from A into B.
(b) In particular, let VS be the category of the finite-dimensional real vector

spaces. In this case for any two objects V,W ∈ Ob(VS)

Mor(V,W ) = HomR(V,W ) =: L(V,W ).

A covariant functor F from VS into VS is said to be smooth if the maps

L(V,W ) −→ L(F (V ), F (W ))

are smooth as maps between smooth manifolds. (Recall that in view of 1.9 every
finite-dimensional real vector space carries a natural smooth structure.) If

F (V ) := ∧k(V ) or F (V ) := Tk(V ) (V ∈ Ob(VS))

then F is a smooth functor.
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[8] S. Bácsó and M. Matsumoto, On Finsler spaces of Douglas
type. A generalization of the notion of Berwald spaces, Publ.
Math. Debrecen 51 (1997), 385–406.

[9] A. Bejancu, Finsler Geometry and Applications, Ellis Horwood,
New York, 1990.

269



270 BIBLIOGRAPHY

[10] A. L. Besse, Manifolds all of whose Geodesics are Closed, Ergeb-
nisse der Math. 93, Springer-Verlag, Berlin, 1978.

[11] A. L. Besse, Einstein Manifolds, Ergebnisse der Math. 3. Folge,
10, Springer-Verlag, Berlin, 1987.

[12] N. Bourbaki, Elements of Mathematics, Algebra I, Chapters 1–
3, Springer-Verlag, Berlin, 1989.

[13] F. Brickell and R. S. Clark, Differentiable Manifolds, Van
Nostrand Reinhold, London 1970.
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[64] A. Rapcsák, Über die bahntreuen Abbildungen metrischer
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[78] J. Szilasi and Sz. Vattamány, On the Finsler-metrizabilities
of spray manifolds, Periodica Mathematica Hungarica 44(1),
81–100.
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