
VO1. 53 (2004) REPORTS ON MATHEMATICAL PHYSICS No. 2 

A GENERALIZATION OF WEYL'S THEOREM 
ON PROJECTIVELY RELATED AFFINE CONNECTIONS 

JOZSEF SZILASI and AKOS GY6RY 

Institute of Mathematics, University of Debrecen, 
H~1010 Debrecen, P.O.B. 12, Hungary 

(e-mails: szilasi@math.klte.hu; gyorya@math.klte.hu) 

(Received April 24, 2003 - -  Revised November 10, 2003) 

From a physical point of view, the geodesics in a four-dimensional Lorentzian spacetime 
are really significant only as point sets. In 1921 Weyl proved that two torsion-free covariant 
derivative operators DM and D M on a manifold M have the same geodesics with possibly 
different parametrizations if and only if there is a 1-form a on M such that b = D + o~ ® 1 
+ 1 ® ~, where 1 is the identity (1,1) tensor on M. By a theorem of Ambrose, Palais 
and Singer [1], torsion-free covariant derivative operators are generated by affine sprays, and 
vice versa. More generally, any (not necessarily affine) spray induces a number of covariant 
derivatives in the tangent bundle r of M, or in the pull-back bundle r*r .  We show that 
in the context of sprays, similarly to Weyl's relation, a correspondence between the Yano 
derivatives can be detected. 
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1. Introduction 

The 6clat of the general relativity theory of A. Einstein inspired an intensive 
development of Riemannian geometry and its generalizations in the twenties-thirties 
of the 20th century. H. Weyl was the first leading mathematician who devoted a 
whole monograph to the geometrical background of Einstein's gravitational theory 
and proposed at the same time a unified field theory [22]. Weyl also recognized the 
importance of a (torsion-free) covariant derivative operator, called an affine connec- 
tion by him, independently of a metric [21]. We are inclined to think that Weyl's 
other outstanding work [23] from this period also has a physical motivation. Let us 
try to reconstruct a possible train of thoughts. 

General relativity models aspects of the physical universe by (time-orientable, 
connected, non-fiat) four-dimensional Lorentz manifolds. Thus 'time' is an integral 
part of the fundamental structure, therefore the parameter of a freely falling particle 
(mathematically: a geodesic) does not have a physical meaning as Newtonian time 
in classical mechanics. This suggests that the relevant transformations in general 
relativity are the projective transformations which respect geodesics only as point 
sets and not as parametrized curves (see also [11]). Now a quite natural question 
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may be raised: to what extent is the geometric structure (more precisely, the affine 
connection) determined by the system of freely falling particles? In purely geometric 
terms, translated into our contemporary language, Weyl's answer is the following. 

THEOREM 1 [23]. Let DM and D¥  be two torsion-free covariant derivative op- 
erators on a manifold M. DM and DM have the same geodesics up to a (strictly 
increasing) parameter transformation if and only if there is a 1-form oL on M such 
that 

D M = D~¢ + oe ® IX(M) + I~(M) @ 0~. 

Two covariant derivative operators connected by this Weyl relation are called 
projective& equivalent. (Weyl, of course, used the Christoffel symbols of /~M and 
DM in his formulation.) For a proof of Weyl's theorem in the context of the classical 
tensor calculus we refer to [10]. Coordinate-free ('intrinsic') proofs are available 
e.g. in [13, 14 or 17]. It is also well known that there is a canonical bijective 
correspondence between the set of (torsion-free) covariant derivative operators on a 
manifold M and the set of some special vector fields, called affine sprays, on T M  
in such a way that the corresponding objects have the same geodesics. A modern 
formulation of this interplay is due to Ambrose, Palais and Singer [1], see also [5]. 
From this point of view, Weyl's theorem belongs to the theory of affine sprays. The 
purpose of the present work is to extend Weyl's result to the more general class of 
non-affine (i.e. not necessarily affine) sprays. To sketch a more precise preliminary 
picture, suppose that (5/, ~0) is an n-dimensional chart on the manifold M. Then, 
locally, the tangent manifold T M  is identified with ~0(/Z) x 11~ n C R2n. An affine 
spray over M has a local expression 

(p, v) e q)(lg) x R n w-~ (p, v, v, f (p, v)) e ~o(bl) x 1R ~ x IR" x ~ ,  

where the map f : q)(L/) x R n -+ R n is of class C 2, smooth on q)(b/) x (I~ n \ {0}), 
and has the homogeneity property 

Yt e R : f (p, tv) --- t2 f (p, v), (p, v) e q)(bl) x R ~. 

Then it follows that f is quadratic in its second variable, namely 

f ( p ,  v) = ~D2D2f(p ,  O)(v, v) for all (p, v) e q)(b/) x IR n 

(see e.g. [9], p. 100). To avoid this strong consequence, we weaken the differentiabi- 
lity hypothesis and require only the 1-times continuous differentiability of f on its 
whole domain. Thus we get the concept of (non-affine) sprays. (An elegant intrinsic 
formulation of these ideas will be presented in Section 4.) This seemingly mild 
generalization leads us to another world. The appearance of non-affine sprays is 
typical in Finsler geometry (see e.g. [16]), while the geodesic spray in Riemannian 
geometry is always affine. 

To obtain a Weyl-type relation in the general situation, we need an appropriate 
covariant derivative operator; it will be the so-called Yano derivative. The Yano 



GENERALIZATION OF WEYL'S THEOREM 263 

derivative lives no longer on the base manifold M but in the pull-back bundle of 
the tangent bundle of M by its own projection. So we also need a machinery, 
the pull-back formalism, in a presentation, which is more or less known in Finsler 
geometry (see e.g. [3] or [18]), well known in recent investigations in the geometry 
of second-order ordinary differential equations or in the inverse problem of calculus 
of variations [4, 12], but quite new in the present context. For the convenience of 
the reader, we devote Sections 1-3 mainly to the necessary technicalities. Then, in 
Section 4, we examine how some basic geometric data transform under a projective 
change of the spray. Finally, in the last section, we find and prove the analogue of 
Weyl's theorem in the general framework of sprays. 

We hope that our approach may be a stimulating initial step for a development 
of a new theory of 'projective connections' compared with the very elegant theory 
of 'Thomas-Whitehead projective connections' elaborated by C. W. Roberts [15] at 
the level of affine sprays. There exist, of course, indispensable classical sources as 
starting points for such a theory; we refer here only to J. Douglas's paper on the 
general geometry of paths [6]. 

CONVENTIONS. (1) Our base manifold is an n-dimensional (n ___ 1) smooth 
manifold M, whose topology is assumed to be Hausdorff, second-countable and 
connected. C a ( M )  stands for the ring of real-valued smooth functions on M. 
TpM is the tangent space to M at p ~ M, T M  is the 2n-dimensional tangent mani- 

fold of M, and TM is the open submanifold of the non-zero tangent vectors to M. 
r denotes the natural projection of T M  onto M. The tangent bundle of M is the 
triple (TM, r, M), the shorthand for this bundle will be r. If F : M --+ N is a 
smooth map, then F, : T M  --+ T N  denotes its induced tangent map. The velocity 
vector field of a smooth path c : I -+ M (I C IR is an open interval) is the smooth 
path ~ : I --+ TM, t ~+ b(t) given by b ( t ) f  := ( f  o c)'(t) for all f c Ca (M) .  

(2) We denote by X(M) the C~(M)-module  of (smooth) vector fields on M. 
oil(M) is the dual of 2E(M), i.e. the module of 1-forms on M. d is the exterior 
derivative on every manifold. The symbols ® and Q are used for the tensor product 
and the symmetric product, respectively. Concerning the numerical factor to be 
employed in symmetric products, we adopt the convention of [7], p. 5. 

(3) fv  and f c  stand for the vertical and the complete lift of a smooth function 
f on M into TM. f~ := f o r, while f c  is defined by 

v ~ T M  ~ fC(v) := (df ) (v)  := v ( f )  c R. 

2. Tensor fields along the tangent bundle projection 
2.1. The pull-back bundle z*z of z by r is the vector bundle (z*TM, Pl, TM),  
where the total manifold is defined by 

T M  XM T M  := {(v, w) C T M  x T M  [ r(v) : r(w)}, 

and the projection Pl is the restriction of the first projection T M × T M  --> T M  
to T M  xM TM. The fibres of r*r  are the n-dimensional real vector spaces {v} x 
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T~(~)M ~- T~(v)M, v ~ TM. Any section of r*l: is of the form 

X :  v e T M  e--> ~:(v) = (v, X(v))  E T M  ×m TM, 

where X : T M  ---> T M  is a smooth map such that r o X__ = r.  X and X__ may be 
identified; we shall use this identification without any comment. The set i f ( r )  of  
all sections of r*~: is a module over C ~ ( T M )  which will be mentioned as the 
module of vector fields along r. An immediate example: if X is a vector field on 
M, then X := X o r is a vector field along r,  called a basic vector field, or the 
lift of X into 3~(r). Clearly, every vector field along r can locally be combined 
from basic vector fields with coefficients in C ~ ( T M ) .  The dual of  3~(r) is the 
C°°(TM)-module A1(7:) of 1-forms along r. AI ( r )  is locally generated by the set 
{~ : =  Ot o ~: E AI(T)  I Ot E A I ( M ) }  of  basic 1-forms. 

2.2. By a tensor field of  type (k, l) (5~ (0, 0)) along r we mean a C~(TM)-mul t i  - 
linear map (AI(v)) k × (~(v))  l ---> C°°(TM). The set ~ ( r )  of  all tensor fields of 
type (k, l) along r is a module over C~(TM) .  A tensor field of type (0, 0) along 
r is simply an element of C ~ ( T M ) .  In what follows we shall freely identify ~Y~(r) 
with Hom(3~(r), 3E(r)) and O'~(~:) with Mult((~(l:)) l, ~ ( r ) )  (the latter is the module 
of C°°(TM)-multilinear maps (3~(~:)) 1 --> :~(r)). 

CONVENTION. X, Y . . . .  will d e n o t e  vector fields on the base manifold M; ~', 
A 

Y , . . .  stand for their lifts into ~ ( r ) .  X, Y , . . .  denote general vector fields along r. 
We shall use Greek letters ~, ~7 . . . .  for arbitrary vector fields on T M _ a ,  3 . . . .  
denote 1-forms on M; ~,  fl . . . .  are the corresponding basic 1-forms. A, B , . . .  are 
written for arbitrary tensor fields along r.  

2.3. As in the case of any tensor algebra over a module, we also have a fa- 
mily of C°°(TM)-linear maps cj : ~ 0 : )  --+ ~_- l ( r )  (1 ___ i < k, 1 < j < l) 
called (i, j)-contraction. An important particular example is the trace of a (1, l) 
tensor: if A ~ T~(r), then t rA := c~(A) e ~ _ l ( r ) .  For any (1,1) tensor field K e 

Horn(:~(r), :~(r)) and type (0, l) tensor field A (l > 1), we define the tensor field 
i~:A e ~ ( r )  by 

l 
i~-A(XI . . . . .  X1) :--~-- ~ . ~ ( 2 1  . . . . .  ~7(2 j )  . . . . .  Xl);  ~ E ~C(I'), l < _ j < l .  

j=l  

If Y is a vector field along r ,  i? will denote the usual substitution operator. 

LEMMA 1. Let 7i be a symmetric (0,1) (l _ 1) tensor field and K a (1,1) 
tensor field along r. Then we have 

tr (A (2) K') = tr (K)A + i~:A; (1) 

tr A ® R" (X)) = i~(~)A, X e X(r) .  (2) 

The proof is straightforward but lengthy, so we omit it. 
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3. Canonical objects and horizontal maps 

3.1. Consider the canonical exact sequence 

0 > r * T M  i j > T T M  > r * T M  > 0 (3) 

of strong bundle maps, where i (v ,w)  :=  (t c I~ w-> tv + w)'(0) and j(z) :=  
(z, (3.)6(z)), if z c TvTM.  Ira(i) = Ker(j) is called the vertical subbundle of the tan- 
gent bundle of T M .  The sections of the vertical subbundle form the C ~ ( T M ) - m o d  - 
ule ~ V ( T M )  of vertical vector fields on T M .  The sequence (3) gives rise to a short 
exact sequence 

0 > a~(r) i j > > X ( T M )  X(3) > 0 (4) 

of C ~ ( T M ) - h o m o m o r p h i s m s  of modules, where, by a tolerable abuse of notation, 
the induced maps between the sections are also denoted by i and j. The endomor- 
phism J :=  i o j is called the vertical endomorphism. We have a canonical vector 
field along 3, denoted by ~ and defined by ~(v) :=  (v, v) for all v ~ T M .  Then 
C :=  i o 3 is another canonical object, the Liouville vector field (or radial vertical 
vector field). 

3.2. It is well known that any vector field on T M  is uniquely determined by its 
action on the set { fc  E 3~(TM) [ f ~ C a ( M ) }  of complete lifts of smooth functions 
on M (see e.g. [25] or [18]). This observation is very useful to define the vertical 
lift X ~ and the complete lift X ¢ of a vector field X on M: X ~ f  c :=  ( X f )  ~ 
and X C f  c :=  ( X f )  C, for all X 6 ~(M).  If  (Xi)in=l is a local frame field on M, 
then c ((Si)i=l, (XY)in_l) is a local frame field on T M .  We shall need the following 
familiar relations: 

XV f v = O, i X  = X v, j X  c = X ,  J X  v = O, J X  c = XV; (5) 

[X ~, yv] = O, [C, X ~] = - X  ~, [C, X c] = 0. (6) 

3.3. By a horizontal map for  r (called also a nonlinear connection on M) we 
mean a strong bundle map 9£" r * T M  ---> T T M ,  smooth only on ~'M ×M T M ,  

such that j o 9£ = lr*rM. Briefly: 9£ is a smooth right splitting of (3) over ~rM. 
Specifying a horizontal map J-C for r ,  we also get a unique strong bundle map 
32 : T T M  --+ T M  XM T M ,  smooth on T T M ,  such that Ker32 = ImP.  32 is the 
vertical map belonging to 9£. Then h :=  5£ o j and v :=  i o 32 are projection 
operators in T T M  such that h o v = 0, h + v = l r rM and hence T T M  = Imh @ 
Imv; b and v are called the horizontal and the vertical projectors belonging to 9£. 

o 

The bundle maps J£, 32, h and v induce naturally C ~ ( T M ) - h o m o m o r p h i s m s  at the 
level of sections, the induced maps will also be denoted by the same symbols. The 
direct decomposition of T T M  gives rise to the decomposition :E(TM) = 2~h(TM)@ 
XV(TM) ,  where 2Eh(TM) :=  J-C(2E(r)) = h(2E(TM)) is the module of horizontal 
vector fields on T M .  If  X ~ i f(M) then the horizontal lift o f  X by ~ is the 

horizontal vector field X h :=  5£(X) (5__) h(XC). Notice that J S  h = i o j o ~(_~) : 

(52 x 
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4. Covariant derivative operators in r*r  

4.1. By a covariant derivative operator in r*r  we mean, as usual, an ~-bilinear 

(~, Y) w-> O(~, Y) =: D~]~ 
map 

D : Y.(TM) × ~( r )  --+ Y(r), 

satisfying the conditions 

DF~Y = FD~Y and D F? = + 

concerning the multiplication with a smooth function F on TM.  We define the 
curvature R D of D by 

RD(~, ~I)Z := D~D~Z - D~D~Z - D[~,~]Z; ~, ~/a ~E(TM), Z E 3~(v). 

Specifying a horizontal map ~ for r,  R D may be decomposed into a horizontal, a 
vertical and a mixed part (see e.g. [3, 15]). We shall need only the mixed curvature 
P given by 

P(X, Y)Z := RD(3(X, iY )Z  = Dg£TcDi~Z - DIFDg£~Z - D[9£~,i~]Z. 

4.2. Any horizontal map 9( for r gives rise to a covariant derivative operator V 
in r*r  by the rule 

V~Y := j[v~, J£Y] + V[h~, iY] (7) 

(using the notation of Subsection 3.3). V is said to be the Berwald derivative 
induced by J£. From (7) we immediately get the more convenient formulae 

Vx~Y = O, VXhY = 7[X h, yv] for all X, Y ~ if(m).  (8) 

LEMMA 2. Let V be the Berwald derivative induced by a horizontal map ~,  
and let t '  denote the mixed curvature of V. For any vector fields X, Y, Z on M 
we have 

~ (~ ,  ~) '~ = V[[X h, yv], ZV]. (9) 

is symmetric in its second and third arguments. 

For a proof (in terms of the 'tangent bundle formalism') the reader is referred 
to [19]; see also [18]. 

With the help of the mixed curvature P, we define an important change of the 
Berwald derivative V by the formula 

1 
D~Y := V~Y + (trP(j~, Y))8. (10) ---5 n +  

The covariant derivative operator D so obtained is called the Yano derivative in- 
duced by 9£. The idea of this modification of V can be found in Yano's book [24], 
as for our modern interpretation, see also [19]. 
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4.3. Let V be the Berwald derivative induced by a horizontal map Jr. For each 
vector field X along r, we define the v-covariant derivative operator V x in Y(r) 

by VxY := Vi2Y. Actually, this operator does not depend on the choice of Jr. 
(7) 

Indeed, representing Y in the form jo, ~7 c Y.(TM), we find VxJ ~ = Vi~jt/ := 

j[v o i(X), Jr o j(r/)] + V[h o i(X), i o j(o)] = j[iX, ho] = j[iX, ~ - vo] = j[iX, 0]. 
1) Let us define the action of V2 on functions by the formula 

VxF := (iX)F, F E C°°(TM).  (11) 

Then, by a reasonable product rule, the operators V x can be extended to operate on 
arbitrary tensor fields along r. Moreover, it is possible to define a single operator 
V v that associates to a tensor field A 6 ~ ( r )  the tensor field v ~  ~ ~+l(r) such 
that 

(Vv~) (~ ,  ~1 . . . . .  ~k, X1 . . . . .  Sl)  :~"~- (VX*~)(~I . . . . .  ~ k  -gl, . . . ,  Xl) (12) 

for all ~', ~7i c X(r) and ~J e Al(r) .  

4.4. Let F be a smooth function on T M  (or on ~rM). F is called 1-homogeneous 
if V~F = F, i.e. if CF = F. By the Hessian of F we mean the type (0, 2) tensor 
field V~V~F := Vv(V~F) along r. Applying (11) and (12), we immediately get 

V~V~F(X, Y) = x ' ( g v F )  for all X, Y ~ X(M). (13) 

From this it follows that VvVVF is actually symmetric. 

LEMMA 3. If  F • T M --+ R is a 1-homogeneous smooth function, then its Hessian 
has the homogeneity property V~(VVVVF)=-V~V~F.  

Proof: Let, temporally, A :=~ V~VVF'A ~. F°r ~an2 two vectorN fieldsA ~. X~and... Y A°n 
M we have (V~A)(X, Y) = (VcA)(X ,  Y) = C(A(X,  Y)) - A (VcX ,  Y) - A(X,  VcY)  

(8),(13) C(Xv(Y~F))" On the other hand, by the homogeneity of F, and using re- 
peatedly the second relation of (6), we obtain 

-7 t (X ,  Y)  = -XO (Y~ F) = [C, X~](Y~ F) = C(X~ (YV F)) - Xo (C(Y~ F) ) 

= C(Xv(y~F))  - X'([C,  YV]F + yv(CF))  

= C(XV(YVF)) - X V ( _ y v F  + YVF) = C(XV(YVF)). 

This concludes the proof. [] 

4.5. Let Jr be a horizontal map for r. In terms of the Berwald derivative induced 
by Jr we define the torsion T of Jr by 

T(X, Y) := Vj(JrX, JrY) = VJry, Y - VJrpX - j [ j r X ,  JrY]. (14) 
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Using basic vector fields, this formula takes the more convenient form 

T(X, Y) = IX h, yv] _ [yh, X ~] _ IX, Y]~. (15) 

Another important concept, the homogeneity of a horizontal map, may also be ex- 
pressedby means of the Berwald derivative: 9£ is called homogeneous if V 5 £ ~ : 0  
for all X • 3fir). 5{ has this property if and only if [X h, C] = 0 for all X • 3~(M). 

LEMMA 4. I f  a horizontal map 9{ has vanishing torsion, or i f  it is homoge- 
neous, then the mixed curvature of  the Berwald derivative induced by 9{ is totally 
symmetric. In the homogeneous case we also have 

P(X, Y)3 = P(X, 3)Y = P(6, ~:)Y = 0 for all ~:, Y • :~(r), (16) 

and, consequently, 

t rP(X, 3) = trP(~, X) = 0 for all X e 3~(r). (17) 

For a proof the reader is referred to [18] or [19]. 

5. Projectively related sprays 

5.1. A semispray over the manifold M is a C 1 vector field ~ on T M  which is 
smooth on TM and has the property J~ = C. We define a spray to be a semispray 

which satisfies the homogeneity condition [C, ~] = ~. A spray is called affine if 
it is of class C 2 on the whole tangent manifold TM. A smooth path c • I -+ M in 
M, defined on an interval I, is said to be a geodesic of a semispray ~ if ~ = ~ o ~. 

LEMMA 5. I f  ~ is a semispray over M, then 

J[Jo,  ~] = Jrl for all ~ • ~(TM) .  (18) 

Proof: Since XV(TM) is generated by vertical lifts X v (X • 3~(M)) and 
J [ F X  v, ~] = F J [ X  v, ~] for all F • C ~ ( T M ) ,  it is enough to show that J[X v, ~] = 
X v for all X • 3XM). Recall that the Lie derivatives of the (1,1) tensor field J 
on T M  may be computed by using the formula 

(L~I J)(02) = [~1, J t l 2 ]  - -  J[~l,/'/2]; r/l, ~12 • 3E(TM). 

It is now easy to check that the Lie derivative of J by a vertical lift vanishes. 

Hence 0 = (Lx~J)(~) = [X ~, J~] - J[X °, ~] (6) X V  _ J[XV ' ~] for all X • X(M). 
This proves (18). [] 

5.2. Any semispray ~ over M generates a horizontal map ~ for r by 

1 c 9Q(X) = ~(X + [X v, ~]) for all X • ~(M) (19) 
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(see e.g. [2, 18]). The torsion of ~ vanishes, so by Lemma 4 the mixed curvature 
of the Berwald derivative induced by 5{~ is totally symmetric. If, in particular, 
is a spray, then 5/~ is homogeneous, and ~ itself is a horizontal vector field with 
respect to ~ .  Conversely, if ~ is a horizontal map with vanishing torsion, then 

is generated by a semispray according to (19) (a theorem of Crampin). If, in 
addition, 3f is homogeneous, then it can always be generated by a spray. 

LEMMA 6. If ~ is a spray and V is the Berwald derivative induced by ~C~, then 
V~3 = O. 

Proof: Since ~ is horizontal with respect to 5-C~, ~ = ( ~  o j)~ = ~ (3), and 

(8) V~[~C~3, C] V~[~,C] -V~(~) -V~ o ~ ( 3 )  0, as therefore V~3 = V~(~)3 . . . . .  
was to be checked. [] 

5.3. Two sprays ~ and ~ over M are said to be (pointwise) projectively related if 
there exists a function f which is of class C 1 on TM, smooth on irM, such that 

= ~ + f C .  Then f is automatically 1-homogeneous. On the other hand, if ~ is a 
sp rayand  f is a 1-homogeneous function (of class C a on TM, smooth on TM), 
then ~ := ~ + f C  is a spray again, called a projective change of ~. 

PROPOSITION 1. I f  ~ = ~ + f C is a projective change of the spray ~, then the 
horizontal maps generated by ~ and ~ are related by 

1 
J£~ = O£~ + ~ ( f i  + V~f  ® C), (20) 

and the relations between the corresponding vertical maps and horizontal projectors 
are given by 

1 1 
V~ =V~ - ~ f j -  ~(V f o j ) ®  3, (21) 

1 1 
hg =h~ + -~fJ + ~(V f o j) ® C. (22) 

-a- 

If P and P are the mixed curvatures of the Berwald derivatives induced by ~Q 
and ~C~ respectively, then we have 

P = O + (V~VVf) 0 13;(, ) + ~(V~VOVVf) ® 3; (23) 

in particular 

t rP  = t rP  + ~(n + 1)V~VVf. (24) 

A 1 c l ( x  c + [ x  v , ~ ] ) +  Proof: (a) The routine gives: Jr ,(X) := ~(X + [X ~, ~]) = 

I[X~, fC] (6~ j£~(~.) + l ( f x  ~ + (X~f)C) = ( ~  + ½(fi + VVf ® C))(X'), which 
proves formula (20). This implies immediately relations (21) and (22). 
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= trP + 

=trP+ 

= t r P  + 

This concludes the proof. 

(b) Now we turn to the change of the mixed curvature. The result comes from 
applying (20) and (21) to (9): 

P(X, Y)Z = V~[[~C~(X), Y~], Z v] = V¢[[~¢(X) + -~(fX + (X~ f)C), Y~], Z v] 

~ ( f j  ^ + (VOf o j) ® a)([[gg~(X), Y~], ZV]) 

+ ~ V ~ [ - ( r v f ) X  v - ( X v f ) r  v - y v ( xv f )C ,  Z v] (*=) 

= P(X, Y)Z + ~V~(Z~(Y~f)iX + Zv(X~f) iY  
I 

+ Z~(Y~(X~f))i* + Y~(XVf)iZ) 

= (P + ~(V V f Q 13~(r ) + VVVVVVf N 3))(X, Y, Z). 

(At step (*) we used the fact that [[~C~(X), Y~], Z ~] is vertical, hence it is in the 
kernel of the homomorphism j.) 

(c) Finally, we act by the trace operator on both sides of (23). By (1), (2) and 
Lemma 3 we obtain 

~tr (VVVVf Qly . (~ ) )+~ t r (VVVVV~fQ, )  

~nVVVV f + VvVV f + ~i~VV(VVVV f )  

~nV~V~f  + VvV~f + ~V~(V~V~f) 

1 
~(n + 1)V~VVf. 

[] 

6. The main result 

THEOREM 2. Let ~ and ~ be two sprays over the manifold M. The following 
conditions are equivalent: 

(i) ~ and ~ are projectively related: there is a function f ,  of class C 1 on TM, 
smooth on T M such that ~ = ~ + f C. 

(ii) The geodesics of ~ and ~ differ only in a strictly increasing parameter trans- 
formation. 

(iii) The Yano derivatives D and D induced by ~ and ~ respectively, are related 
by 

1 
/) = D - ~((V f o j) ® ix(r) + j  ® VVf). (25) 
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Proof: The equivalence of (i) and (ii) is easy and known (see e.g. [8] or [16]), 
but it is stated for the record. 

(i) ~ (iii): Since the vertical parts of the Berwald and Yano derivatives coincide 
(V~c = D x := Di2 for all X c Y(r)) and the second term of (25) kills the pairs 

of form (J17, Y), it is enough to check that (25) holds for the pairs of form 
(X c, Y); X, Y c if(M). Let V be the Berwald derivative induced by ~. Then 

- -  A - -  A - -  A 

Dx~Y = D~(:2)Y + D~V~(x~)Y 

1 - g - ~ " -  - ' .  - 

= V ~ ( ~ ) Y +  (trP(X, Y))~ + DiV~(x~)Y 
n + l  

(8__) +  7- (trP(X, Y))a 

1 ~ 1 o A ~  
(21),(24) V~ [~C~ (X), y v ]  _ 2 fj[9£8 (X), Yo] + ~ - ~  (tr P(X, r ) )a  

+ ~(VvVVf)(X, Y)3 

1 = v q  + 

+ V~[fX v + (XVf)C, yv] + .~(Xv(yvf))3 

1 *'- A 
= Dxc'Y+ ~ ( - ( Y ~ f ) X -  Y~(X~f)3 - (X~f )Y  + XV(YVf)8) 

= D x c y -  ~ ( ( V ' f  o j ) (XC)y+  (V ' f (Y) ) jX  ~) 

1 
= (D - ~ ( ( V ' f  o j) ® lX(~) + j  ® VVf))(Xc,'Y), 

thus proving implication (i) ~ (iii). 
(iii) ~ (i): We evaluate both sides of (25) on the pair (~, 3). Applying Lemma 

6 and (17), we have on the one hand 
1 ~- 

bg3 := V~3 + ( t r P ( &  3 ) ) 3  = O. 
n + l  

On the other hand, 

1 v 1 
(D - ~((V f o j) ® l:g(r ) + j  ® VVf))(~, 3) = D~3 - -~((Cf)8 + (Cf)3) 

1 -~- 
= V~3 + 1 (trP(3, 3))3 - f 3  = V~(j~)3 + V~v~(~)3 - f 3  

n +  

= V~3 + j [ i V ~ ( ~ ) ,  9£~(3) ]  - f 3  = j [ i V ~ ( ~ ) ,  ~]  - f3  

(12) V~(~) -- f3,  
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thus we obtain V~(~) -  f 8  = 0. Acting on both sides of this relation by the ho- 
momorphism i, it follows that 

0 - - i  o Y ~ @ )  - f C  = ~ - 9£~ o j ~  - f C  

= ~  - ~C~(8) - f C  = ~ - ~ - f C  

i.e., ~ = ~ + f C ,  as was to be shown. [] 

D i s c u s s i o n  

Assume, in particular, that ~ and ~ are affine sprays. Then the mixed curvatures 
of the Berwald derivatives induced by ~ and ~ vanish (see e.g. [16] or [18]), 
therefore D = V, b = V, and by (8), (25) specializes to 

1 ~-- A 
,7~[X ~, yv] = ~7q[X h, rv] _ .~((VV f ) ( X ) g  v + (VV f ) ( y ) x v )  

for all X, Y 6 3¢(M), where X ~ := fff~ (X). The vanishing of the mixed curvatures 
also implies that there exist unique, necessarily torsion-flee covariant derivative op- 
erators DM and DM on M such that 

[X h, yv] = ((DM)xy)v, [X ~, yv] = ((DM)xY)V. 

The geodesics of DM and /gM are just the geodesics of ~ and ~, respectively. 
Observe now that the 1-homogeneity of f implies V { ( V V f ) =  0. This means that 
V~f  is homogeneous o f  degree 0. Then there is a 1-form a on M such that 

= - 1 V ~ f .  Since if(X) = (a(X)) v for all X E 3¢(M), we deduce that (25) takes 
the form 

((DM)xY) v = ((DM)xY) v + (a(X)Y + a(Y)X)  ~, 

which yields immediately the Weyl relation. Thus, for affine sprays, our Theorem 
reduces to Weyl's classical theorem. Notice finally that there is an important class 
of Finsler manifolds in which the canonical spray ~ arising from the energy E : 
T M  --+ M by i~d(dE o J) = - d E  is an affine spray. Finsler manifolds with this 
property are called Berwald manifolds. By our preceding discussion the projective 
relatedness of the canonical sprays of two Berwald manifolds with common base 
manifold can also be characterized by the Weyl relation. 
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