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Abstract: After a careful study of the mixed curvatures of the Berwald-type (in particular, Berwald) connec-
tions, we present an axiomatic description of the so-called Yano-type Finsler connections. Using the Yano
connection, we derive an intrinsic expression of Douglas’ famous projective curvature tensor and we also
represent it in terms of the Berwald connection. Utilizing a clever observation of Z. Shen, we show in a
coordinate-free manner that a “spray manifold” is projectively equivalent to an affinely connected manifold
iff its Douglas tensor vanishes. From this result we infer immediately that the vanishing of the Douglas tensor
implies that the projective Weyl tensor of the Berwald connection “depends only on the position”.

Keywords: Horizontal endomorphisms, Berwald endomorphisms, sprays, Finsler connections, Berwald-type
connections, Yano-type connections, Douglas tensor, projective Weyl tensor.

MS classification: 53C05, 53C60.

Introduction

In the context of affinely connected manifolds, i.e., in manifolds endowed with a linear con-
nection, a “projective curvature tensor” with zero trace has already been constructed by H.
Weyl [18]. The vanishing of this famous tensor, called Weyl tensor, characterizes the “projec-
tively flat manifolds”. The nonlinear generalizations of the affinely connected manifolds, i.e.,
manifolds endowed with a nonlinear connection, have also been playing an increasing role in
differential geometry and its applications since the twenties. The most important examples of
these structures are the “manifolds with a spray”, where the spray is not necessarily smooth on
the zero section. Their local study is the subject of the classical “geometry of paths”, devel-
oped by L. Berwald, J. Douglas, M.S. Knebelman, T.Y. Thomas, O. Veblen and others in the
twenties-thirties. The counterpart of the Weyl tensor in this nonlinear context was intrinsically
constructed by L. del Castillo [6] in 1976, using the Fr¨olicher–Nijenhuis formalism, see also
[12]. It is known, but not so widely known, that in the nonlinear theory there is another projec-
tively invariant “curvature tensor” discovered by Jesse Douglas [8] and calledDouglas tensor
after him. This tensor always vanishes in affinely connected manifolds (hence, in particular, in
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Riemannian manifolds), so, in the phrase of L.P. Eisenhart, it has a typically “non-Riemannian”
character.

The importance of the Douglas tensor can be readily realized. Those Finsler manifolds which
have vanishing projective Weyl tensor and Douglas tensor are just the solutions of Hilbert’s
fourth problem [11]. Note that a complete classification of these manifolds is clearly not an easy
task, for a solution see Z.I. Szab´o’s wonderful paper [16]. Another immediate and important
question also comes up at this point.Can we hope for an elegant description of the(Finsler)
manifolds with vanishing Douglas tensor, but non-vanishing projective Weyl tensor? Finsler
manifolds with vanishing Douglas tensor were baptizedDouglas manifoldsby S. Bácsó and
M. Matsumoto. Their papers [1]–[3] seem to be promising first steps in attacking the problem.

In the present paper our aim is less ambitious. We want only to present an intrinsic construction
of the Douglas tensor, using also the Fr¨olicher–Nijenhuis formalism. Nevertheless we hope
that this contribution makes available further, efficient modern tools for the study of Douglas
manifolds. The achievement of this modest aim still remains troublesome: a quite long process
will culminate in a compact and transparent presentation of the Douglas tensor. Now we are
going to sketch the skeleton of our ideas.

We shall represent the nonlinear connections byhorizontal endomorphisms, i.e., by projec-
tors whose kernel is the vertical subbundle (differentiability on the zero section is not required!).
Any horizontal endomorphism gives rise to a special Finsler connection, called aBerwald-type
connection. A Berwald-type connection is said to be aBerwald connectionif the horizontal
endomorphism is generated by a spray. In this case the horizontal endomorphism will be men-
tioned as aBerwald endomorphism. Any Berwald-type connection has two surviving “partial
curvatures”, the horizontal and the mixed curvature. A careful analysis of the behavior of the
mixed curvature of a Berwald connection under a projective change of the associated spray
yields the Douglas tensor. However, in order to identify the Douglas tensor we shall follow
a slightly different path. As a generalization of Berwald-type connections, we introduce the
so-calledYano-type connections. If, in particular, we start from a Berwald endomorphism, then
the construction results in aYano connection, called also—unfortunately—a projective connec-
tion. Indeed, the parameters of this connection were originally found by K. Yano, motivated by
purely technical considerations. (For the quite curious story of this connection, see Matsumoto’s
instructive remarks in [1].) Thus in our present approach the definition, as well as the proof of
the projective invariance of the Douglas tensor will be given in terms of a Yano connection.
Although the central object of this study is the Douglas tensor, a very brief section will also be
devoted to the projective Weyl tensors. This includes a simple proof of the following, recently
discovered (see [2]) important fact: the vanishing of the Douglas tensor implies that one of the
Weyl tensors is a vertical lift, i.e., its components depend only on the position.

We tried to make this paper as readable as possible, so we hope: the outcome of our efforts
will be an essentially self-contained work. As for basic sources of preparatory material, we refer
to [7, 9, 13], and [14]. Chapters 13–17 of Z. Shen’s recent preprint [15] also provides a good
introduction to the projective geometry of sprays.

1. Notations and background

1.1. Throughout this paper,M will denote a connected, smooth (i.e.,C∞), sometimes orientable
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manifold of dimensionn > 2.C∞(M) is the ring of real-valued smooth functions onM , X(M)
denotes theC∞(M)-module of vector fields onM . For (r, s) ∈ N × N, Tr

s(M) is the module
over C∞(M) of smooth tensor fields (briefly tensors) of type(r, s), contravariant of orderr
and covariant of orders. We define the symmetric productω1 ¯ ω2 of the covariant tensors
ω1 ∈ T◦s1

(M), ω2 ∈ T◦s2
(M) by the formula

ω1¯ ω2 := (s1+ s2)!

s1! s2!
Sym(ω1⊗ ω2). (1.1)

Äk(M) (0 6 k 6 n) is the module of differential forms onM , Ä◦(M) := C∞(M). The
differential forms constitute the graded algebraÄ(M) := ⊕n

k=0Ä
k(M), with multiplication

given by the wedge product.

1.2. Vector forms and derivations. A vectork-form on the manifoldM is a skew-symmetric
C∞(M)-multilinear map [X(M)]k → X(M) if k ∈ N+, and a vector field onM if k = 0.
The set of all vectork-forms onM is aC∞(M)-module, denoted by9k(M). In particular, the
elements of91(M) are just the(1,1) tensor fields onM . To any vectork-form K ∈ 9k(M)
two derivations ofÄ(M), denoted byi K anddK , are associated. Now we briefly recall some of
their basic properties.

(i) i K is a derivation of degrek− 1;

i K ¹ C∞(M) = 0, i Kω := ω ◦ K , if ω ∈ Ä1(M).

(ii) dK is a derivation of degreek given by

dK := [i K ,d] := i K ◦ d − (−1)k−1d ◦ i K ,

whered is the operator of the exterior derivative. In particular,

∀ f ∈ C∞(M) : dK f = i K d f
(i)= d f ◦ K ,

anddK is uniquely determined by this formula.
(iii) If K ∈ 91(M), then we define the endomorphism

K ∗ : Ä(M)→ Ä(M), ω ∈ Ä`(M) 7→ K ∗ω

by the formula

K ∗ω(X1, . . . , X`) := ω(K (X1), . . . , K (X`)
)
, (Xi ∈ X(M), 16 i 6 `).

If ` = 1, K ∗ω = i Kω. If ` > 1,

i Kω (X1, . . . , X`) =
∑̀
i=1

ω (X1, . . . , K (Xi ), . . . , X`)

andi Kω 6= K ∗ω.
(iv) In case of a vector 0-formX ∈ 9◦(M) = X(M) i X means the usual insertion operator,

while dX reduces to the Lie derivativeLX.
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1.3. The Frölicher–Nijenhuis bracket. Suppose thatK ∈ 9k(M), L ∈ 9`(M). The graded
commutator ofdK anddL is defined by the formula

[dK ,dL ] = dK ◦ dL − (−1)k`dL ◦ dK .

A substantial result of theFrölicher–Nijenhuis theory[9] states that there exits a unique vector
form [K , L] ∈ 9k+`(M) such that

[dK ,dL ] = d[K ,L] .

[K , L] is said to be theFrölicher–Nijenhuis bracketof K andL. If K andL are vector 0-forms,
i.e., vector fields onM , then [K , L] reduces to the ususal Lie bracket of vector fields. In our
considerations we shall need the evaluation of the Fr¨olicher–Nijenhuis bracket only in some
special cases.

If K ∈ 91(M), Y ∈ 9◦(M) = X(M), then∀X ∈ X(M) :

[K ,Y](X) = [K (X),Y] − K [X,Y].
(1.3a)

If K , L ∈ 91(M), then∀X,Y ∈ X(M) :

[K , L](X,Y) = [K (X), L(Y)] + [L(X), K (Y)] + K ◦ L[X,Y]

+ L ◦ K [X,Y] − K [X, L(Y)] − K [L(X),Y]

− L[X, K (Y)]−L[K (X),Y].

(1.3b)

In particular, theNijenhuis torsion NK := 1
2[K , K ] of a vector 1-fromK can be given by the

formula

NK (X,Y) = [K (X), K (Y)] + K 2[X,Y] − K [X, K (Y)] − K [K (X),Y]. (1.3c)

A quite complete list of useful identities concerning the Fr¨olicher–Nijenhuis bracket can be
found in [20]. We shall explicitly need only the following of them:

∀K ∈ 9k(M), X ∈ X(M), f ∈ C∞(M) :

[ f X, K ] = f [X, K ] + d f ∧ i X K − dK f ⊗ X.
(1.3d)

1.4. The tangent bundle of the manifoldM will be denoted byπ : T M → M , while π0 :
TM → M stands for the subbundle of the nonzero tangent vectors. The kernel of the tangent
mapTπ : T T M→ T M is a distinguished subbundle ofT T M, thevertical subbundle, whose
total space will be denoted byTvT M. The sections of this bundle consitute theC∞(T M)-module
Xv(T M) of thevertical vector fields. In our calculations we shall frequently use thevertical lift
Xv and thecomplete lift Xc of a vector fieldX ∈ X(M). Their usefulness is established by the
following simple observation.

Local basis property. If (Xi )
n
i=1 is a local basis for the moduleX(M), then(Xv

i , Xc
i )

n
i=1 is a

local basis forX(T M).
We also recall that

∀X,Y ∈ X(M) : [Xv,Yv] = 0, [Xv,Yc] = [X,Y]v, [Xc,Yc] = [X,Y]c. (1.4)
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1.5. Tangent bundle geometry is dominated by two canonical objects: theLiouville vector field
C ∈ Xv(T M) and thevertical endomorphism J∈ 91(T M) ∼= T1

1(T M) ∼= EndX(T M). The
following well-known relations will also be useful in our considerations.

Im J = Ker J = Xv(T M), J2 = 0; (1.5a)

[ J,C] = J, [ J, J] = 0; (1.5b)

∀ X ∈ X(M) : J Xc = Xv, [ J, Xv] = [ J, Xc] = 0; (1.5c)

∀ X ∈ X(M) : [C, Xv] = −Xv, [C, Xc] = 0. (1.5d)

1.6. Semibasic tensors, semibasic trace.A symmetric or skew-symmetric tensorA ∈ T0
s(T M)

(s 6= 0) is calledsemibasicif

∀ X ∈ X(T M) : i J X A = 0.

Analogously, a symmetric or skew-symmetric tensorL ∈ T1
s(T M) (s 6= 0) is said to be

semibasic if

∀ X ∈ X(T M) : i J XL = 0 and J ◦ L = 0.

Now let us suppose thatF is an almost complex structure onT M, i.e., F ∈ T1
1(T M) ∼=

EndX(T M) and F2 = −1X(T M). Consider a semibasic tensorL ∈ T1
s(T M). We define the

semibasic tracẽL of L by recurrence as follows:

if L is a(1,1)-tensor, theñL := tr(F ◦ L); (1.6a)

if L ∈ T1
s(M), s> 2, then∀ X ∈ X(T M) : i X L̃ := ĩ X L. (1.6b)

It can easily be seen that̃L does not depend on the choice of the almost complex structureF .
We shall need the following technical results.

1.7. Lemma. Letω ∈ T0
s(T M) be a symmetric semibasic tensor and L∈ T1

1(T M) a semibasic
tensor. Then

J̃ = n, ω̃ ⊗ J = nω. (1.7a)

∀ X ∈ X(T M) : ω̃⊗L X = i F L Xω,

where F∈ EndX(T M) is an arbitrary almost complex structure.
(1.7b)

1.8. Definition and lemma. The symmetric product of tensorsω ∈ T0
s(T M), L ∈ T1

r (T M) is
the(1, s+ r ) tensorω ¯ L given by the formula

ω ¯ L(X1, . . . , Xs+r ) := 1

s! r !

∑
σ∈Ss+r

ω
(
Xσ(1), . . . , Xσ(s)

)
L
(
Xσ(s+1), . . . , Xσ(s+r )

)
.

If ω ∈ T0
s(T M) (s > 1) is a symmetric, semibasic tensor and L∈ T1

1(T M) is a semibasic
tensor, then

ω̃ ¯ L = L̃ω + i F Lω (1.8)

(F is an arbitrary almost complex structure on T M).
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Using mathematical induction, the proofs of 1.7 and 1.8 are quite straightforward; we omit
the tedious calculations. We remark that analogous results concerning the semibasic trace of
vector formscan be found in [20].

2. Horizontal endomorphisms and semisprays

2.1. In our approach the role of a “nonlinear connection” is played by thehorizontal endo-
morphisms. A vector 1-formh ∈ 91(T M) ∼= EndX(T M), smooth only onTM , is said to
be a horizontal endomorphism onM if it is a projector (i.e., h2 = h) and Kerh = Xv(T M).
ν := 1X(T M)−h is thevertical projectorbelonging toh. Xh(T M) := Im h is called the module
of horizontal vector fields. It is a direct summand, namely

X(T M) = Xv(T M)⊕Xh(T M).

The mapping

X ∈ X(M) 7→ Xh := hXc ∈ Xh(T M)

is called thehorizontal liftingby h. We have the following basic relations among the vertical
endomorphismJ, a horizontal endomorphismh and the horizontal lifting:

h ◦ J = 0, J ◦ h = J; (2.1a)

∀ X ∈ X(M) : J Xh = Xv. (2.1b)

2.2. Definition. Suppose thath is a horizontal endomorphism on the manifoldM . The vector
forms

H := [h,C] ∈ 91(T M), (2.2a)

t := [ J, h] ∈ 92(T M), (2.2b)

R := −Nh := −1
2[h, h] ∈ 92(T M) (2.2c)

are called thetension, thetorsionand thecurvatureof h, respectively. A horizontal endomor-
phism is said to behomogeneousif its tension vanishes.

2.3. Remark. H, t andR were introduced by Grifone [10]. It is easy to check that all of these
tensors are semibasic, so they are completely determined by the following mappings:

η : X ∈ X(M) 7→ η(X) := H(Xc) = [Xh,C]; (2.3a)

τ : (X,Y) ∈ X(M)×X(M) 7→ τ(X,Y) := t (Xc,Yc)

= [Xh,Yv] − [Yh, Xv] − [X,Y]v;
(2.3b)

% : (X,Y) ∈ X(M)×X(M) 7→ %(X,Y) := R(Xc,Yc) = −ν[Xh,Yh]. (2.3c)

For details we refer to [17].

2.4. We recall (see [10]) that any horizontal endomorphismh ∈ EndX(T M) gives rise to a
unique almost complex structureF ∈ EndX(T M), smooth overTM , characterized by the
relations

F ◦ J = h, F ◦ h = −J. (2.4a)
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From these one can easily deduce the useful identities

J ◦ F = ν, F ◦ ν = h ◦ F; (2.4b)

ν ◦ F = F − F ◦ ν = F − h ◦ F = −J. (2.4c)

2.5. Definition. A semisprayon the manifoldM is a mapping

S : T M→ T T M, v 7→ Sv ∈ TvT M

satisfying the following conditions:
(i) S is smooth onTM ,

(ii) J S= C.
A semisprayS is called asprayif

(iii) S is of classC1 on T M, and
(iv) [C, S] = S (i.e., S is homogeneous of degree 2).

2.6. Lemma. If S is a semispray on the manifold M, then

∀ Z ∈ X(T M) : J[ J Z, S] = J Z. (2.6)

Proof. See [10, p. 295]. ¤

2.7. The fundamental relation between the horizontal endomorphisms and the semisprays was
discovered, independently, by M. Crampin and J. Grifone [4,5,10]. Their main result can be
summarized as follows.

(i) If h ∈ EndX(T M) is a horizontal endomorphism andS′ is an arbitrary semispray onM ,
thenS := hS′ is also a semispray onM . This semispray does not depend on the choice ofS′, it
is horizontal with respect toh and satisfies the relationh[C, S] = S. S is called thesemispray
associated to h.

(ii) Any semisprayS : T M → T T M generates in a canonical way a horizontal endomor-
phism which can be given by the formula

h := 1
2

(
1X(T M) + [ J, S]

)
. (2.7)

Thenh is torsion free (i.e.,t = 0) and the semispray associated toh is 1
2(S+ [C, S]). If, in

addition,S is a spray, thenh is homogeneous and its associated semispray is just the starting
sprayS.

(iii) A horizontal endomorphism is generated by a semispray according to (2.7) if and only if
it is torsion free.

2.8. In the sequel we shall call a horizontal endomorphism aBerwald endomorphismif it
is generated by aspray. We emphasise that the Berwald endomorphisms are homogeneous
and torsion free, but the converse is not true. It follows immediately that ifh is a Berwald
endomorphism with associated sprayS, then the horizontal lifting with respect toh can be
given by the formula

X ∈ X(M) 7→ Xh = 1
2

(
Xc+ [Xv, S]

)
. (2.8)
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2.9. Two spraysSandSare said to beprojectively equivalentif there is a functionλ : T M→ R
satisfying the conditions

(i) λ is smooth onTM , andC1 on T M;
(ii) S= S+ λC.
Thenλ is automatically 1-homogeneous (i.e.,Cλ = λ). Conversely, if a sprayS and a 1-

homogeneous functionλ, satisfying (i), are given, thenS= S+ λC is also a spray. In this case
we speak of aprojective changeof the spray.

2.10. Lemma. Suppose that h is a Berwald endomorphism with associated spray S. Consider
a projective change S→ S := S+ λC of S. Then h changes by the formula

h→ h = h+ 1
2λJ + 1

2dJλ⊗ C. (2.10a)

h remains homogeneous and torsion free. The horizontal lifting with respect toh is the mapping

X ∈ X(M) 7→ Xh = Xh+ 1
2λXv + 1

2(X
vλ)C. ¤ (2.10b)

3. Finsler connections of Berwald type

3.1. Suppose thath is a horizontal endomorphism on the manifoldM and letF be the almost
complex structure determined byh. A pair (D, h) is said to be aFinsler connectionon M , if D
is a linear connection on the manifoldT M or TM and the following conditions are satisfied:

Dh = 0 (D is reducible); (3.1a)

DF = 0 (D is almost complex). (3.1b)

Then the mapping

h∗DC : X ∈ X(T M) 7→ DC(hX) = DhXC

is called the h-deflectionof (D, h).
An easy, but important consequence of (3.1b) is thatD is completely determined by the

restricted mapD ¹ X(T M)×Xv(T M). Explicitly, for any vector fieldsX, Y on T M,

DνXhY = F DνX JY, (3.1c)

DhXhY = F DhX JY. (3.1d)

3.2. Suppose(D, h) is a Finsler connection on the manifoldM . Denote byT andK the (classical)
torsion and the curvature ofD, respectively. In view of (3.1a) it is readily verified that the
mappings

A : (X,Y) 7→ hT(hX, hY) h-horizontal torsion,

B : (X,Y) 7→ hT(hX, JY) h-mixed torsion,

R1 : (X,Y) 7→ νT(hX, hY) v-horizontal torsion,

P1 : (X,Y) 7→ νT(hX, JY) v-mixed torsion,

S1 : (X,Y) 7→ νT(J X, JY) v-vertical torsion
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determineT completely. Similarly,K can be described by the following three mappings:

R : (X,Y, Z) 7→ K(hX, hY)J Z horizontal curvature,

P : (X,Y, Z) 7→ K(hX, JY)J Z mixed curvature,

Q : (X,Y, Z) 7→ K(J X, JY)J Z vertical curvature.

The tensorsR,P,Q ∈ T1
3(T M) are semibasic.

3.3. Definition. Let (D, h) be a Finsler connection onM . If L ∈ T1
3(T M) is one of the

horizontal, the mixed or the vertical curvatures of(D, h), then the(0,2)-tensor

L̃ : (X,Y) ∈ X(T M)×X(T M) 7→ L̃(X,Y) := tr [F ◦ (Z 7→ L(Y, Z)X)]

is said to be thehorizontal, themixed, or thevertical Ricci tensorof the Finsler connection,
respectively (F is an almost complex structrure, e.g., the almost complex structure induced
by h).

3.4. Berwald-type connections.We set out from a horizontal endomorphismh ∈ 91(T M)
and define the mapping

D◦ : X(T M)×X(T M)→ X(T M),

(X,Y) 7→ D◦XY

by the following rules:

D◦J X JY := J[ J X,Y], (3.4a)

D◦hX JY := ν[hX, JY], (3.4b)

D◦νXhY := h[νX,Y], (3.4c)

D◦hXhY := hF[hX, JY] (3.4d)

and
D◦XY := D◦νXνY + D◦hXνY + D◦νXhY+ D◦hXhY.

It is straightforward to prove that(D◦, h) is a Finsler connection onM ; this Finsler connection
is said to be theBerwald-type Finsler connection induced by h. If, in particular,h is a Berwald
endomorphism, then we call(D◦, h) aBerwald connection.

Replacing the vector fields in (3.4a)–(3.4d) by complete liftsXc, Yc, and taking into account
(1.5c), 2.1 and (2.4b), we get the useful formulas

D◦XvYv = 0, (3.4e)

D◦XhYv = [Xh,Yv], (3.4f)

D◦XvYh = 0, (3.4g)

D◦XhYh = F [Xh,Yv]. (3.4h)

3.5. Lemma. Suppose(D◦, h) is a Berwald-type Finsler connection on M.
(i) The h-deflection of(D◦, h) coincides with the tension of h.
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(ii) The torsionT◦ of D◦ can be represented in the form

T◦ = F ◦ t + R, (3.5)

where t and R are the torsion and the curvature of h, and F is the almost complex structure
induced by h.

Proof. (i) Let Sbe an arbitrary semispray. For each vector fieldX on T M,

H(hX) := [h,C]hX = [hX,C] − h[hX,C] = ν[hX,C] = ν[hX, J S]
(3.4b)= D◦hX J S= h∗

(
D◦C

)
(X) = h∗

(
D◦C

)
(hX).

This proves our assertion sinceH andh∗
(
D◦C

)
are semibasic tensors.

(ii) Let X,Y ∈ X(M). Then, using (3.4e)–(3.4h) we get

T◦(Xh,Yv) = 0,

T◦(Xv,Yv) = 0;
T◦(Xh,Yh) = F

(
[Xh,Yv] − [Yh, Xv]

)− [Xh,Yh]

= F
(
[Xh,Yv] − [Yh, Xv]

)− h[Xh,Yh] − ν[Xh,Yh]
(2.4a), (2.3c)= F

(
[Xh,Yv] − [Yh, Xv] − [X,Y]v

)+ R(Xh,Yh)

(2.3b)= (F ◦ t + R)(Xh,Yh),

thus (3.5) is also true. ¤

3.6. Corollary. If (D◦, h) is a Berwald-type Finsler connection then
(i) the h-deflection of(D◦, h) vanishes if and only if h is homogeneous;

(ii) the h-horizontal torsionA◦ of D◦ is related to the torsion of h by the formulaA◦ = F ◦ t ,
thereforeA◦ = 0⇔ t = 0, and thenT◦ = R. ¤

3.7. Lemma. Suppose(D◦, h) is a Berwald-type Finsler connection and A∈ T1
s(T M) is a

semibasic tensor. Then

∀ X ∈ X(M) : D◦Xv A = LXv A, (3.7a)

more precisely,

∀ X1, . . . , Xs ∈ X(M) : (D◦Xv A)(Xc
1, . . . , Xc

s) = (LXv A) (Xc
1, . . . , Xc

s)

= [Xv, A(Xc
1, . . . , Xc

s)
]
. (3.7b)

Proof. Since∀ X ∈ X(M) : [Xv, Xh
i ] ∈ Xv(T M),1 6 i 6 s, andA is semibasic, it follows

that

(LXv A)(Xh
1, . . . , Xh

s) =
[
Xv, A(Xh

1, . . . , Xh
s)
]
.
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Here[
Xv, A(Xh

1, . . . , Xh
s)
] (2.4b)= − [J F A

(
Xh

1, . . . , Xh
s

)
, Xv

]
(1.3a)= −[ J, Xv]

(
F A(Xh

1, . . . , Xh
s)
)− J

[
F A(Xh

1, . . . , Xh
s), Xv

]
(1.5c)= J

[
J Xc, F A(Xh

1, . . . , Xh
s)
] (3.4a)= D◦Xv A

(
Xh

1, . . . , Xh
s

)
(3.4g)= (

D◦Xv A
) (

Xh
1, . . . , Xh

s

)
,

so we obtain the result.¤

3.8. Lemma. Suppose that h is a homogeneous horizontal endomorphism with vanishing
torsion, and let F be the almost complex structure associated to h. If A∈ T1

s(T M) is semibasic
and homogeneous of degree k(i.e., LC A = (k − 1)A) then F◦ A is homogeneous of degree
k+ 1.

Proof. By the assumption, for any vector fieldsX1, . . . , Xs ∈ X(M),

(k− 1)A(Xc
1, . . . , Xc

s) = (LC A)(Xc
1, . . . , Xc

s) =
[
C, A(Xc

1, . . . , Xc
s)
]
,

since [C, Xc
i ]

(1.5d)= 0,1 6 i 6 s. Now we consider the Berwald-type connection(D◦, h). It
follows by the preceding arguments that(

D◦C A
)
(Xc

1, . . . , Xc
s) = D◦C A(Xc

1, . . . , Xc
s).

The right-hand side of this equation can be formed as follows:

D◦C A(Xc
1, . . . , Xc

s) = D◦J SJ F A(Xc
1, . . . , Xc

s)
(3.4a)= J

[
C, F A(Xc

1, . . . , Xc
s)
]

(1.3a)= [ J,C]
(
F A(Xc

1, . . . , Xc
s)
)− [ J F A(Xc

1, . . . , Xc
s),C]

(1.5b)= J F A(Xc
1, . . . , Xc

s)+
[
C, J F A(Xc

1, . . . , Xc
s)
]

(2.4b)= A(Xc
1, . . . , Xc

s)+ (LC A) (Xc
1, . . . , Xc

s)

= k A(Xc
1, . . . , Xc

s).

Thus
kF A(Xc

1, . . . , Xc
s) = F

[
D◦C A(Xc

1, . . . , Xc
s)
] (3.4a)= F J

[
C, F A(Xc

1, . . . , Xc
s)
]

(2.4a)= h
[
C, F A(Xc

1, . . . , Xc
s)
]

(1.3a)= [h,C]
(
F A(Xc

1, . . . , Xc
s)
)− [hF A(Xc

1, . . . , Xc
s),C

]
2.2, (2.4b)= [

C, F A(Xc
1, . . . , Xc

s)
] = [LC(F ◦ A)

]
(Xc

1, . . . , Xc
s),

which proves our assertion.¤

4. The mixed curvature and the mixed Ricci tensor of a Berwald-type connection

4.1. If (D◦, h) is a Finsler connection of Berwald-type, then we denote the horizontal, the mixed
and the vertical curvature ofD◦ by R◦, P◦ andQ◦, respectively. In the centre of interest in this
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work is the mixed curvature, but for completeness we recall thatQ◦ always vanishes, while R◦

can be given by the following formula:

∀ X,Y, Z ∈ X(TM) : R◦(X,Y)Z = [J, R(X,Y)
]
Z. (4.1)

For a good study of the surviving curvatures (in the Finslerian case) we refer to [19].

4.2. SupposeD is a linear connection on the manifoldT M (or TM). It will be convenient to
introduce the operator

DJ : A ∈ Tr
s(T M) 7→ DJ A ∈ Tr

s+1(T M)

by the rule

i X DJ A := DJ X A (X ∈ X(T M)).

Then, for example, (3.4a) can be written in the more compact form

∀Y ∈ X(T M) : D◦JJY = [ J, JY].

4.3. Lemma. The mixed curvatureP◦ of a Berwald-type Finsler connection(D◦, h) can be
given by

∀ X,Y, Z ∈ X(M) : P◦(Xc,Yc)Zc = [[ Xh,Yv], Zv]. (4.3)

P◦ is symmetric in its second and third arguments. If, in addition, h is torsion free, thenP◦ is
totally symmetric.

Proof.

P◦(Xc,Yc)Zc := K(hXc, JYc)J Zc = K(Xh,Yv)Zv

:= D◦Xh D◦Yv Zv − D◦Yv D◦Xh Zv − D◦[Xh,Yv] Z
v

(3.4e,f)= −D◦Yv [Xh, Zv] − D◦[Xh,Yv] Z
v.

Since [Xh,Yv] is vertical, it can be combined from vertically lifted vector fields, so (3.4e)
implies thatD◦[Xh,Yv] Z

v = 0. The remainder term can be formed as follows:

−D◦Yv [Xh, Zv] = −D◦JYc J F[Xh, Zv]
(3.4a)= −J[Yv, F [Xh, Zv]]

= J[F [Xh, Zv],Yv]
(1.3a)= −[ J,Yv]F [Xh, Zv] + [ J F[Xh, Zv],Yv]

(1.5c), (2.4b)= [[ Xh, Zv],Yv]
Jacobi-identity= − [[ Zv,Yv], Xh] − [[Yv, Xh], Zv]

(1.4)= [[ Xh,Yv], Zv].

Thus(4.3) is verified, and, at the same time, we have got the relation

P◦(Xc, Zc)Yc = [[ Xh, Zv],Yv] = P◦(Xc,Yc)Zc.

If h is torsion free and hence, in view of (2.3b),

[Xh,Yv] − [Yh, Xv] − [X,Y]v = 0,
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it follows that

[[ Xh,Yv], Zv] = [[Yh, Xv], Zv] + [[ X,Y]v, Zv]
(1.4)= [[Yh, Xv], Zv]

= P◦(Yc, Xc)Zc,

thusP◦ is totally symmetric. ¤

4.4. Proposition. If h is a homogeneous and torsion free horizontal endomorphism, then the
mixed curvature of the Berwald-type connection(D◦, h) has the following properties:

i SP◦ = 0 for any semispray S; (4.4a)

LCP◦ = −2P◦, i.e., P◦ is homogeneous of degree− 1; (4.4b)

D◦JP◦ is totally symmetric. (4.4c)

Proof. (a) Owing to Lemma 4.3, it is enough to check that

∀ X,Y ∈ X(M) : P◦(Xc, S)Yc = 0.

Calculating as before, we get

P◦(Xc, S)Yc = D◦Xh D◦J SY
v − D◦J SD◦XhYv − D◦[Xh,J S]Y

c

= D◦Xh J[C,Yc] − D◦J S[X
h,Yv] − D◦[Xh,C]Y

c

(1.5d), 2.2, (2.4b)= − D◦J SJ F[Xh,Yv]
(3.4a)= −J[C, F [Xh,Yv]]

= J[F [Xh,Yv],C]
(1.3a)= −[ J,C]F [Xh,Yv] + [ J F[Xh,Yv],C]

(1.5b), (2.4b)= −[Xh,Yv] + [[ Xh,Yv],C]
Jacobi identity= − [Xh,Yv] − [[Yv,C], Xh] − [[C, Xh],Yv]

(1.5d), 2.2= −[Xh,Yv] − [Yv, Xh]

= 0.

(b) Since the Lie brackets ofC and the complete lifts vanish, for any vector fieldsX,Y, Z
on M we have(

LCP◦
)
(Xc,Yc, Zc) = [C,P◦(Xc,Yc, Zc)]

(4.3)= [C, [[ Xh,Yv], Zv]] .

Using the Jacobi identity repeatedly, in view of (1.5d) and the homogeneity ofh it follows that

[C, [[ Xh,Yv], Zv]] = −[[ Xh,Yv], [Zv,C]] − [Zv, [C, [Xh,Yv]]]

= −[[ Xh,Yv], Zv] − [Zv, [C, [Xh,Yv]]]

= −[[ Xh,Yv], Zv] + [Zv, [Xh, [Yv,C]]] + [Zv, [Yv, [C, Xh]]]

= −[[ Xh,Yv], Zv] − [[ Xh,Yv], Zv]
(4.3)= −2P◦(Xc,Yc)Zc.

ThusLCP◦ = −2P◦.
(c) For any vector fieldsX,Y, Z,U ∈ X(M),(

D◦JP◦
)
(Xc,Yc, Zc,U c)

4.2= (D◦J XcP◦
)
(Yc, Zc,U c) = D◦J XcP◦(Yc, Zc)U c,
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sinceP◦ is semibasic, and, for example,

D◦J XcYc = D◦J Xc(νYc+ hYc) = D◦J XcνYc+ D◦XvYh(3.4g)= D◦J XcνYc ∈ Xv(T M).

Thus in view of Lemma 4.3 and the calculation in its proof, we get

(D◦JP◦)(Xc,Yc, Zc,U c) = D◦J Xc[[Yh, Zv],U v] = D◦J Xc J F[[Yh, Zv],U v]
(3.4a)= J

[
Xv, F [[Yh, Zv],U v]

] = [Xv, [[Yh, Zv],U v]
]

= −[[Yh, Zv], [U v, Xv]
]− [U v, [Xv, [Yh, Zv]]

]
= [U v, [[Yh, Zv], Xv]

] = [U v,P◦(Yc, Zc)Xc]
(3.7b)= (

D◦U vP◦
)
(Yc, Zc, Xc) = (D◦JP◦

)
(U c,Yc, Zc, Xc).

This symmetry property together with the total symmetry ofP◦ implies the total symmetry of
D◦JP◦. ¤

4.5. Corollary. Under the hypothesis of4.4, the mixed Ricci tensor̃P◦ of the Berwald-type
connection(D◦, h) has the following properties:

LCP̃◦ = D◦CP̃◦ = −P̃◦ (i.e., P̃◦ is (−1)-homogeneous); (4.5a)

D◦JP̃◦ is totally symmetric. (4.5b)

Proof. (4.5a) is a consequence of (4.4b) and Lemma 3.8. Since the semibasic trace operator
clearly commutes with the tensor derivations, (4.5b) follows from (4.4c).¤

5. Yano-type connections

We start with a slight generalization of the Berwald-type connections.

5.1. Proposition. Suppose h is a horizontal endomorphism on the manifold M with associated
almost complex structure F. Letβ ∈ T0

2(TM) be a symmetric tensor, satisfying the condition

for any semispray S, i Sβ = 0. (∗)
Let, finally, a vertical vector field U∈ X(T M) be given. Then there exists a unique Finsler
connection(D, h) on M such that

(i) thev-mixed torsion of D isP1 := β ⊗U ;
(ii) the h-mixed torsionB of D vanishes.

The table of rules for calculation of the covariant derivatives with respect to D is

DJ X JY = J[ J X,Y] = D◦J X JY, (5.1a)

DhX JY = ν[hX, JY] + β(X,Y)U = D◦hX JY+ β(X,Y)U, (5.1b)

DνXhY = h[νX,Y] = D◦νXhY, (5.1c)

DhXhY = hF[hX, JY] + β(X,Y)FU = D◦hXhY+ β(X,Y)FU. (5.1d)

If, in addition,
(iii) the h-deflection of(D, h) vanishes,
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(iv) the h-horizontal torsion of D vanishes,
then the horizontal endomorphism h is homogeneous and torsion free.

Proof. (a)Unicity. We show that (i) and (ii) imply (5.1a)–(5.1d).
(i)⇒ (5.1b) ∀X,Y ∈ X(T M) :

β(X,Y)U
(i)= P1(X,Y)

3.2= ν (DhX JY− DJYhX− [hX, JY]) = DhX JY−ν[hX, JY],

so (5.1b) is valid.
(ii) ⇒ (5.1c) For any vector fieldsX,Y ∈ X(T M),

0
(ii)= B(Y, X)

3.2= h (DhY J X− DJ XhY− [hY, J X]) = −DJ XhY− h[hY, J X],

thusDJ XhY = h[ J X, hY]. ReplacingX by F X, we getDνXhY = DJ F XhY = h[νX, hY] =
h[νX,Y] − h[νX, νY] = h[νX,Y]. This means that (5.1c) also holds. Now (5.1a) and (5.1d)
follow from (5.1b) and (5.1c) by (3.1c) and (3.1d).

(b) Existence. Having the datah, β, U , we define a linear connectionD on T M by the rules
(5.1a)–(5.1d). A straightforward calculation shows that(D, h) is a Finsler connection satisfying
(i) and (ii).

(c) The remainder is an immediate consequence of Lemma 3.5.

5.2. Corollary. A Finsler connection(D◦, h) on M is a Berwald-type connection if and only
if the following axioms are satisfied:

(i) Thev-mixed torsion of D vanishes.
(ii) The h-mixed torsion of D vanishes.¤

5.3. Corollary and definition. Suppose h is a homogeneous and torsion free horizontal en-
domorphism on M. Let̃P◦ be the mixed Ricci tensor of the Berwald-type connection(D◦, h).
There exists a unique Finsler connection(D, h) on M such that

(i) thev-mixed torsion of D is

P1 := 1

n+ 1
(P̃◦ ⊗ C);

(ii) the h-mixed torsion of D vanishes.
This Finsler connection is said to be theYano-type connectioninduced by h. If, in particular,

h is a Berwald endomorphism, then we speak of aYano connection.

Proof. Recall that̃P◦ is symmetric by Lemma 4.3, while the validity of the condition(∗) in 5.1
is assured by (4.4a).¤

5.4. Remark. If (D◦, h) and(D, h) are the Berwald-type and the Yano-type connections in-
duced byh, then we see from (5.1a) and (5.1c) thatD◦J = DJ . In view of Lemma 3.7 and
Proposition 4.4 this implies that

for any vector fieldX ∈ X(M) and semibasic tensorA ∈ T1
s(T M),

DXv A = LXv A;
(5.4a)

DJP◦ is totally symmetric. (5.4b)



112 J. Szilasi, Sz. Vattaḿany

5.5. Proposition. Suppose that h is a torsion free, homogeneous horizontal endomorphism.
Let (D◦, h) and (D, h) be the induced Berwald-type and Yano-type connections with mixed
curvature and mixed Ricci tensorsP◦, P and P̃◦, P̃, respectively. Then for any vector fields
X,Y, Z on M,

P(Xc,Yc)Zc =
[
P◦ − 1

n+ 1
(DJP̃◦ ⊗ C)

]
(Xc,Yc, Zc)

− 1

n+ 1
(P̃◦ ⊗ J)(Xc, Zc,Yc).

(5.5a)

P̃= 2

n+ 1
P̃◦. (5.5b)

Proof. (a) By the rules of calculation (5.1a)–(5.1c),

P(Xc,Yc)Zc = DXh DYv Zv − DYv DXh Zv − D[Xh,Yv] Z
v = −DYv DXh Zv

= −DYv

(
[Xh, Zv] + 1

n+ 1
P̃◦(Xc, Zc)C

)
.

Thus, taking into account (4.3) and (5.4),

P(Xc,Yc)Zc = P◦(Xc,Yc)Zc− 1

n+ 1
DYv(P̃◦(Xc, Zc)C).

Now using the fact that(DJP̃◦)(Xc,Yc, Zc) = DJ Xc

[
P̃◦(Yc, Zc)

]
and, taking a semisprayS,

DJC(Yc) = DJYcC = DJYc J S
(5.1a)= J[Yv, S]

(2.6)= Yv = J(Yc),

it follows that

DYv(P̃◦(Xc, Zc)C) = Yv(P̃◦(Xc, Zc))C + P̃◦(Xc, Zc)DYvC

= (DJP̃◦ ⊗ C)(Yc, Xc, Zc)+ (P̃◦ ⊗ J)(Xc, Zc,Yc)

(5.4b)= (DJP̃◦ ⊗ C)(Xc,Yc, Zc)+ (P̃◦ ⊗ J)(Xc, Zc,Yc).

This proves (5.5a).
(b) In view of Definition 3.3 and the symmetry of̃P◦ andDJP̃◦,

P̃(Xc,Yc) = tr [F ◦ (Zc 7→ P(Yc, Zc)Xc)]

(5.5a)= tr

[
F ◦

(
Zc 7→

(
P◦(Yc, Zc)Xc− 1

n+ 1
(DJP̃◦ ⊗ C)(Yc, Zc, Xc)

− 1

n+ 1
(P̃◦ ⊗ J)(Yc, Xc, Zc)

)]
= P̃◦(Xc,Yc)− 1

n+ 1
˜DJP̃◦⊗C(Xc,Yc)− 1

n+ 1
˜̃P◦ ⊗ J(Xc,Yc).

Since˜̃P◦ ⊗ J = nP̃◦, and (taking a semisprayS)

˜DJP̃◦⊗C = ˜DJP̃◦⊗J S
(1.7b)= i F J SDJP̃◦ = i hSDJP̃◦

= DJhSP̃◦ = DCP̃◦ = LCP̃◦ (4.5a)= −P̃◦,
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we have

P̃= P̃◦ − n

n+ 1
P̃◦ + 1

n+ 1
P̃◦ = 2

n+ 1
P̃◦. ¤

5.6. Remark. Using the symmetric product(1.1), (5.5a) can also be written in the form

P= P◦ − 1

n+ 1

[
(DJP̃◦)⊗ C + P̃◦ ¯ J − P̃◦ ⊗ J − J ⊗ P̃◦

]
. (5.6)

6. The Douglas tensor of a Berwald endomorphism

6.1. Definition. Supposeh is a Berwald endomorphism on the manifoldM . If (D, h) is the
Yano connection induced byh andP is the mixed curvature ofD, then the tensor

D := P− 1
2

(̃
P⊗ J + J ⊗ P̃

)
(6.1)

is said to be theDouglas tensorof the Berwald endomorphism.

6.2. Remark. (a) It is clear thatD is semibasic and symmetric. By the definition, for any vector
fields X,Y, Z ∈ X(M),

D(Xc,Yc)Zc = P(Xc,Yc)Zc− 1
2

(̃
P(Xc,Yc)Zv + P̃(Yc, Zc)Xv

)
. (6.2a)

(b) It is easy to expressD in terms of the Berwald connection(D◦, h): in view of (6.2a),
(5.5a) and (5.5b)

D(Xc,Yc)Zc = P◦(Xc,Yc)Zc− 1

n+ 1
(D◦JP̃◦ ⊗ C)(Xc,Yc, Zc)

− 1

n+ 1
P̃◦(Xc, Zc)Yv − 1

1+ n
P̃◦(Xc,Yc)Zv − 1

n+ 1
P◦(Yc, Zc)Xv

=
[
P◦ − 1

n+ 1

(
D◦JP̃◦ ⊗ C + P̃◦ ¯ J

)]
(Xc,Yc, Zc).

In a more compact form:

D = P◦ − 1

n+ 1

(
D◦JP̃◦ ⊗ C + P̃◦ ¯ J

)
. (6.2b)

6.3. Proposition. LetD be the Douglas tensor of a Berwald endomorphism. Then

for any semispray S, i SD = 0; (6.3a)

D̃ = 0 (i.e., the semibasic trace ofD vanishes). (6.3b)

Proof. (a) Let us first observe thati SP̃◦ := ˜i SP◦ (4.4a)= 0, so for any vector fieldsY, Z ∈ X(M),

(i SP) (Yc, Zc)
(5.5a), (4.4a)= − 1

n+ 1

[
(DCP̃◦)(Yc, Zc)⊗ C + [i SP̃◦(Zc)]Yv

]
= − 1

n+ 1
(DCP̃◦)(Yc, Zc)⊗ C

(4.5a)= 1

n+ 1
P̃◦(Yc, Zc)C.
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Thus
(i SD) (Yc, Zc) = D(S,Yc, Zc) = (i SP) (Yc, Zc)− 1

2

[̃
P(S,Yc)Zv + P̃(Yc, Zc)C

]
= 1

n+ 1
P̃◦(Yc, Zc)C − 1

2

(
i S̃P(Yc)Zv + P̃(Yc, Zc)C

)
(5.5b)=

(
1

n+ 1
P̃◦ ⊗ C − 1

n+ 1
i SP̃◦ ⊗ J − 1

n+ 1
P̃◦ ⊗ C

)
(Yc, Zc)

(4.4a)= 0.

(b) Since

˜D◦JP̃◦⊗C = ˜D◦JP̃◦⊗J S
(1.7b)= i F J SD◦JP̃◦ = i hSD◦JP̃◦ = D◦JhSP̃

◦ = D◦CP̃◦ (4.5a)= −P̃◦

and
˜̃P◦ ¯ J

(1.8)= J̃P̃◦ + i F JP̃◦ (1.7a)= nP̃◦ + i hP̃◦ 1.2= (n+ 2)P̃◦;
using (6.2b) we get

D̃ = P̃◦ − 1

n+ 1

(−P̃◦ + (n+ 2)P̃◦
) = P̃◦ − P̃◦ = 0. ¤

6.4. Theorem. The Douglas tensor of a Berwald endomorphism is invariant under the projec-
tive changes of the associated spray.

Proof. Supposeh is a Berwald endomorphism onM with associated sprayS. Denote byD the
Douglas tensor ofh. Consider a projective change

S→ S := S+ λC, Cλ = λ.
Then S generates a Berwald endomorphismh (2.10); letD be the Douglas tensor ofh. First
we express the mixed curvatureP◦ of the Berwald connection

(
D◦, h

)
in terms of the mixed

curvatureP◦ of the Berwald connection(D◦, h).
For any vector fieldsX,Y, Z ∈ X(M),

P◦(Xc,Yc)Zc (4.3)= [[ Xh,Yv], Zv]
(2.10b)= [[ Xh+ 1

2λXv + 1
2(X

vλ)C,Yv], Zv]

= [[ Xh,Yv], Zv] + 1
2[[λXv,Yv], Zv] + 1

2[[(Xvλ)C,Yv], Zv]

= P◦(Xc,Yc)Zc+ 1
2[Zv(Yvλ)]Xv + 1

2[Zv[Yv(Xvλ)]]C

+ 1
2[Zv(Xvλ)]Yv + 1

2[Yv(Xvλ)]Zv.

Consider the tensor

α : (X,Y) ∈ X(T M)×X(T M) 7→ α(X,Y) := ddJλ(J X,Y).

α is obviously symmetric and semibasic, and it makes possible to abbreviate the above expression
as follows:

P◦ = P◦ + 1
2α ¯ J + 1

2 (DJα)⊗ C. (6.4a)
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In the next step we derive the relation between the semibasic traces ofP◦ andP◦. By (1.7a),
(1.7b) and (1.8) we obtain from (6.4a):

P̃◦ = P̃◦ + 1
2nα + 1

2i F Jα + 1
2i F J SDJα = P̃◦ + 1

2nα + α + 1
2 DCα.

Now we calculate the covariant derivativeDCα. For any vector fieldsX,Y ∈ X(M)

(DCα)(X
c,Yc) = (LCα)(X

c,Yc) = Cα(Xc,Yc) = C[Xv(Yvλ)]

= [C, Xv](Yvλ)+ Xv[C(Yvλ)]
(1.5d)= −Xv(Yvλ)+ Xv([C,Yv]λ+ Yv(Cλ))
(1.5d)= −Xv(Yvλ)− Xv(Yvλ)+ Xv(Yvλ) = −Xv(Yvλ)

= −α(Xc,Yc).

(using the 1-homogeneity ofλ). ThusDCα = −α, therefore

P̃◦ = P̃◦ + 1
2(n+ 1)α (6.4b)

and, in view of (5.5b),

P̃= P̃+ α. (6.4c)

On the other hand, by (5.6),

P= P◦ − 1

n+ 1

[
(DJP̃◦)⊗ C + P̃◦ ¯ J − P̃◦ ⊗ J − J ⊗ P̃◦

]
(6.4a), (6.4b)= P◦ + 1

2α ¯ J + 1
2(DJα)⊗ C − 1

n+ 1
(DJP̃◦)⊗ C − 1

2 (DJα)⊗ C

− 1

n+ 1
P̃◦ ¯ J − 1

2α ¯ J + 1

n+ 1
P̃◦ ⊗ J + 1

2α ⊗ J

+ 1

n+ 1
J ⊗ P̃◦ + 1

2 J ⊗ α (5.6)= P+ 1
2(α ⊗ J + J ⊗ α)

= P+ 1
2

[
(̃P− P̃)⊗ J + J ⊗ (̃P− P̃)

]
,

thus
P− 1

2 (̃P⊗ J + J ⊗ P̃) = P− 1
2 (̃P⊗ J + J ⊗ P̃),

i.e.,D = D, as was to be shown.¤

6.5. Now we are going roughly to clarify the meaning of the Douglas tensor. Suppose(M,∇)
is an affinely connected manifold. Then∇ determines a horizontal endomorphismh (smooth
on the whole tangent manifoldT M!) which is related toh by

[Xh,Yv] = (∇XY)v , (X,Y ∈ X(M)). (6.5)

Of course,h is a Berwald endomorphism, and the Berwald connection(D◦, h) is just(∇h, h),
where∇h is the horizontal lift ([7]) of∇. Then for any vector fieldsX,Y, Z ∈ X(M),

P◦(Xc,Yc)Zc 4.3= [[ Xh,Yv], Zv] = [(∇XY)v , Zv]
(1.4)= 0,

thus the mixed curvature ofD◦ vanishes, hencethe Douglas tensor of h also vanishes. As for
the converse and the whole story, we have the following important result.
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6.6. Theorem (J. Douglas, Z. Shen). Suppose M is an orientable manifold and let h be a
Berwald endomorphism on M. The associated spray of h is projectively equivalent with the
spray determined by a linear connection on M if and only if the Douglas tensor of h vanishes.

Proof. The “if” part is an immediate consequence of the preceding remark and Theorem 6.4.
Now we prove the “only if” part. Following Shen’s idea, we consider an arbitrary volume form
µ on M and extend it to a volume form̃µ on T M as follows:

µ̃ := µ1 ∧ µ2; µ1 := π∗µ, µ2 : v ∈ T M 7→ (µ2)v ∈ ∧nTv
v T M,

∀ z1, . . . , zn ∈ Tv
v T M : (µ2)v(z1, . . . , zn) := µπ(v)

(
jv(z1), . . . , jv(zn)

)
,

where jv : Tv
v T M → Tπ(v)M is the well-known canonical isomorphism. Having this volume

form, one can speak of thedivergenceof any vector fieldX ∈ X(T M) in the usual manner:
divµ̃ X is defined by the relation

LXµ̃ = (divµ̃ X)µ̃.

It is easy to check that, in particular,

divµ̃ C = n.

Now we turn to the associated spraySof h. Observe that diṽµ S is 1-homogeneous, i.e.,

LC divµ̃ S= divµ̃ S.

Indeed,

LCLSµ̃ = LC
[
(divµ̃ S)µ̃

] = [LC(divµ̃ S)
]
µ̃+ (divµ̃ S)LCµ̃

= [LC
(
divµ̃ S

)]
µ̃+ (n divµ̃ S

)
µ̃.

The left-hand side can also be written as follows:

LCLSµ̃ = L[C,S]µ̃+ LSLCµ̃ = LSµ̃+ nLSµ̃

= (divµ̃ S)µ̃+ (n divµ̃ S)µ̃.

Comparing the right-hand sides, we get the results.
Now let

λ := − 1

n+ 1
divµ̃ S, S := S+ λC = S− 1

n+ 1

(
divµ̃ S

)
C.

ThenS is divergence-free:

divµ̃ S= divµ̃ S− 1

n+ 1

(
divµ̃ Sdivµ̃ C + LC divµ̃ S

)
= divµ̃ S− 1

n+ 1

(
n divµ̃ S+ divµ̃ S

)
= 0.

After some calculation, for the tensorα constructed in the proof of 6.4 now we obtain the relation

α = − 2

n+ 1
P̃◦.
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Substituting this into 6.4(a), we get:

P◦ = P◦ − 1

n+ 1

(
DJP̃◦ ⊗ C + P̃◦ ¯ J

) (6.2b)= D. (6.6a)

From this follows (c.f. 6.5) that the vanishing ofD implies the desired projective equivalence.
¤

6.7. Remark. The local version of 6.6 was proved by J. Douglas [8], the global result is due to
Z. Shen [15]. Our proof is a more conceptual and coordinate-free realization of Shen’s ingenious
thought. Pay attention to the remarkable relation (6.6a): the mixed curvature of the Berwald
endomorphism induced by the projectively deformed (divergence-free) spray is just the Douglas
tensor!

7. Remarks on the Weyl tensors

7.1. First we recall del Castillo’s result mentioned in the Introduction. Ifh is a horizontal
endomorphism onM , R is the curvature tensor ofh and

σ := 1

n+ 1

(
R̃+ 1

n− 1
dJi SR̃

)
(7.1a)

(S is a semispray onM), then the tensor

W := R− σ ∧ J + dJσ ⊗ C (7.1b)

is invariant under the projective changes of the associated spray ofh. W is said to be theWeyl
tensor of the Berwald endomorphism h.

7.2. Proposition and definition. Assume h is a Berwald endomorphism on the manifold M,
andR◦ is the horizontal curvature of the Berwald connection(D◦, h). Let for any vector fields
X,Y ∈ X(M) and for a semispray S

A(Xc) := 1

n2− 1

(
niSR̃(Xc)+ R̃(Xc, S)

)
,

B(Xc,Yc) := 1

n+ 1

(
R̃(Xc,Yc)− R̃(Yc, Xc)

)
.

Then the tensor W∗ defined by

W∗(Xc,Yc)Zc := R◦(Xc,Yc)Zc− (D◦J A⊗ J − D◦J B⊗ C
)
(Zc, Xc,Yc)

+ (D◦J A⊗ J
)
(Zc,Yc, Xc)+ (B⊗ J)(Xc,Yc, Zc)

(X,Y, Z ∈ X(M)) is invariant under the projective changes of the associated spray of h. We
call W∗ the Weyl tensor of the Berwald connection(D◦, h). W∗ and the Weyl tensor W of h are
related by the formula

D◦JW(Zc, Xc,Yc) = W∗(Xc,Yc, Zc), X,Y, Z ∈ X(M). (7.2)

The proof is a very long and tedious computation, so we have to omit it.
Now we are in a position to derive an essential result of [2], without any calculation.
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7.3. Proposition. Suppose h is a Berwald endomorphism with vanishing Douglas tensor. Then
the Weyl tensor of the Berwald connection(D◦, h) is a vertical lift, i.e., roughly speaking, its
components depend only on the position.

Proof. In view of 6.6 the associated spray ofh is projectively equivalent with the associated
spray of a linear connection∇. Since the Weyl tensorW∗ is a projective invariant by(7.2), it
follows thatW∗ is the Weyl tensor of∇. More preciesely,W∗ is the Weyl tensor of the Berwald
connection(∇h, h), whereh is the Berwald endomorphism determined by∇ (c.f., 6.5). ¤
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[2] S. Bácsó and M. Matsumoto, On Finsler spaces of Douglas type II. Projectively flat spaces,Publ. Math. Debrecen
53 (1998) 423–438.
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