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Introduction

In the context of affinely connected manifolds, i.e., in manifolds endowed with a linear con-
nection, a “projective curvature tensor” with zero trace has already been constructed by H.
Weyl [18]. The vanishing of this famous tensor, called Weyl tensor, characterizes the “projec-
tively flat manifolds”. The nonlinear generalizations of the affinely connected manifolds, i.e.,
manifolds endowed with a nonlinear connection, have also been playing an increasing role in
differential geometry and its applications since the twenties. The most important examples of
these structures are the “manifolds with a spray”, where the spray is not necessarily smooth on
the zero section. Their local study is the subject of the classical “geometry of paths”, devel-
oped by L. Berwald, J. Douglas, M.S. Knebelman, T.Y. Thomas, O. Veblen and others in the
twenties-thirties. The counterpart of the Weyl tensor in this nonlinear context was intrinsically
constructed by L. del Castillo [6] in 1976, using theokeher—Nijenhuis formalism, see also
[12]. It is known, but not so widely known, that in the nonlinear theory there is another projec-
tively invariant “curvature tensor” discovered by Jesse Douglas [8] and dabedlas tensor
after him. This tensor always vanishes in affinely connected manifolds (hence, in particular, in
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Riemannian manifolds), so, in the phrase of L.P. Eisenhart, it has a typically “non-Riemannian”
character.

The importance of the Douglas tensor can be readily realized. Those Finsler manifolds which
have vanishing projective Weyl tensor and Douglas tensor are just the solutions of Hilbert's
fourth problem [11]. Note that a complete classification of these manifolds is clearly not an easy
task, for a solution see Z.I. Szalb 'wonderful paper [16]. Another immediate and important
guestion also comes up at this poi@an we hope for an elegant description of {k@nsler)
manifolds with vanishing Douglas tensbut non-vanishing projective Weyl ten8adFinsler
manifolds with vanishing Douglas tensor were baptipamliglas manifolddy S. Bics and
M. Matsumoto. Their papers [1]-[3] seem to be promising first steps in attacking the problem.

Inthe present paper our aimis less ambitious. We want only to present an intrinsic construction
of the Douglas tensor, using also theokeher—Nijenhuis formalism. Nevertheless we hope
that this contribution makes available further, efficient modern tools for the study of Douglas
manifolds. The achievement of this modest aim still remains troublesome: a quite long process
will culminate in a compact and transparent presentation of the Douglas tensor. Now we are
going to sketch the skeleton of our ideas.

We shall represent the nonlinear connectionfibgizontal endomorphismse., by projec-
tors whose kernel is the vertical subbundle (differentiability on the zero section is not required!).
Any horizontal endomorphism gives rise to a special Finsler connection, cdledhald-type
connection A Berwald-type connection is said to beBarwald connectionf the horizontal
endomorphism is generated by a spray. In this case the horizontal endomorphism will be men-
tioned as 8Berwald endomorphisnAny Berwald-type connection has two surviving “partial
curvatures”, the horizontal and the mixed curvature. A careful analysis of the behavior of the
mixed curvature of a Berwald connection under a projective change of the associated spray
yields the Douglas tensor. However, in order to identify the Douglas tensor we shall follow
a slightly different path. As a generalization of Berwald-type connections, we introduce the
so-calledyano-type connectionH, in particular, we start from a Berwald endomorphism, then
the construction results in¥ano connectiorcalled also—unfortunately—a projective connec-
tion. Indeed, the parameters of this connection were originally found by K. Yano, motivated by
purely technical considerations. (For the quite curious story of this connection, see Matsumoto’s
instructive remarks in [1].) Thus in our present approach the definition, as well as the proof of
the projective invariance of the Douglas tensor will be given in terms of a Yano connection.
Although the central object of this study is the Douglas tensor, a very brief section will also be
devoted to the projective Weyl tensors. This includes a simple proof of the following, recently
discovered (see [2]) important fact: the vanishing of the Douglas tensor implies that one of the
Weyl tensors is a vertical lift, i.e., its components depend only on the position.

We tried to make this paper as readable as possible, so we hope: the outcome of our efforts
will be an essentially self-contained work. As for basic sources of preparatory material, we refer
to [7, 9, 13], and [14]. Chapters 13—-17 of Z. Shen’s recent preprint [15] also provides a good
introduction to the projective geometry of sprays.

1. Notations and background

1.1. Throughout this papel! will denote a connected, smooth (i.€%°), sometimes orientable
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manifold of dimensiom > 2.C*(M) is the ring of real-valued smooth functions bh X (M)
denotes th&€>(M)-module of vector fields oM. For (r,s) € N x N, T{(M) is the module
over C*(M) of smooth tensor fields (briefly tensors) of tyges), contravariant of order
and covariant of ordes. We define the symmetric produet © w, of the covariant tensors
w1 € Tg (M), w2 € T, (M) by the formula
S+ 9)!

w1 O wy = ﬁSym(wl(@wz) (11)
QX(M) (0 < k < n) is the module of differential forms oM, Q°(M) := C®(M). The
differential forms constitute the graded algeltaM) = P;_, (M), with multiplication
given by the wedge product.

1.2. Vector forms and derivations. A vectork-form on the manifoldM is a skew-symmetric
C>°(M)-multilinear map E(M)]* — %(M) if k € N*, and a vector field oM if k = 0.
The set of all vectok-forms onM is aC*>(M)-module, denoted by*(M). In particular, the
elements of’1(M) are just the(1, 1) tensor fields orM. To any vectok-form K e WX(M)
two derivations of2 (M), denoted byx anddy, are associated. Now we briefly recall some of
their basic properties.

() ik is a derivation of degrie — 1;

ik [C®(M)=0, ikw:=woK, if weQYM).
(ii) dk is a derivation of degrele given by
dk :=[ik,d] =ik od — (=D* doik,
whered is the operator of the exterior derivative. In particular,

VEeC®M) :dx f =ixdf 2dfoK,

andd is uniquely determined by this formula.
(iii) If K € w1(M), then we define the endomorphism

K : QM) » Q(M), e QM) Ko
by the formula
K*o (X1, ..., Xo) == o(K(Xy), ..., K(Xp)), (Xi € X(M), 1<i<0).

fe=1K'ow=ikw. If£>1,

0
Ko (Xa, oo X) = ) o (X, KX, Xo)
i=1
andigxw # K*w.
(iv) In case of a vector O-fornX € w°(M) = X(M) ix means the usual insertion operator,
while dx reduces to the Lie derivativgy.
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1.3. The Frolicher—Nijenhuis bracket. Suppose thak € WX(M), L € w¢(M). The graded
commutator oflk anddy is defined by the formula

[di,d ] = dk od. — (—=D)*dy o dk.

A substantial result of thErolicher—Nijenhuis theor{Q] states that there exits a unique vector
form [K, L] € W*+¢(M) such that

[dk,di] =dk -

[K, L]is said to be thé&rolicher—Nijenhuis bracketf K andL. If K andL are vector O-forms,
i.e., vector fields orM, then K, L] reduces to the ususal Lie bracket of vector fields. In our
considerations we shall need the evaluation of tt@iéhrér—Nijenhuis bracket only in some
special cases.

If K e (M), Y € ¥°(M) = X (M), then¥X € X(M) :

(1.3a)
[K, Y](X) = [K(X), Y] = K[X, Y].
If K,L € WY(M), thenVX,Y € (M) :
[K, L](X,Y) = [K(X), L(V)] + [L(X), K(Y)] + Ko L[X, Y] (1.3b)

+ LoK[X, Y] = K[X, L(Y)] = K[L(X), Y]
— L[X, K(V)]=L[K(X), Y].

In particular, theNijenhuis torsion \ = %[K, K] of a vector 1-fromK can be given by the
formula

Nk (X, Y) = [K(X), K(V)] + KX, Y] — K[X, K(Y)] = K[K(X),Y]. (1.3¢)

A quite complete list of useful identities concerning thelkefier—Nijenhuis bracket can be
found in [20]. We shall explicitly need only the following of them:

VK € UK(M), X € X(M), f € C®(M) :

(1.3d)
[fX, K] = f[X,K] +df AixK —dx f ® X.

1.4. The tangent bundle of the manifod will be denoted byr : TM — M, while g :

TM — M stands for the subbundle of the nonzero tangent vectors. The kernel of the tangent
mapTx : TTM — T M is a distinguished subbundle ®fT M, thevertical subbundlgwhose

total space willbe denoted By T M. The sections of this bundle consitute @& (T M)-module

XY(T M) of thevertical vector fieldsln our calculations we shall frequently use trestical lift

XY and thecomplete lift X of a vector fieldX € X(M). Their usefulness is established by the
following simple observation.

Local basis property. If (X;)'_, is a local basis for the modul& (M), then(X}, X?){, is a
local basis forX (T M).
We also recall that

VX, Y e X(M): [XY, Y] =0, [XV,Y]=[X Y] [X&Y=[X VY] (14)
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1.5. Tangent bundle geometry is dominated by two canonical objecttidhgille vector field
C € XV(T M) and thevertical endomorphism & W1(T M) = THT M) = EndX(T M). The
following well-known relations will also be useful in our considerations.

ImJ =KerJd = X" (TM), J2=0; (1.5a)
[J,C]=J, [J,3]=0; (1.5b)
VX eXM):IX =X, [J, X']=[J, X]=0; (1.5¢)
VX eXM):[C, X]=-X", [C, X°] = 0. (1.5d)

1.6. Semibasic tensors, semibasic tracé symmetric or skew-symmetric tens@re T(T M)
(s # 0) is calledsemibasidf

VXeX(TM):ijxA=0.
Analogously, a symmetric or skew-symmetric tengore T2(T M) (s # 0) is said to be
semibasic if

VXeX(TM):ijxL =0 and JoL=0.

Now let us suppose thd is an almost complex structure @M, i.e., F € TH(T M) =
Endx(T M) and F2 = —1xwm. Consider a semibasic tensbre T(T M). We define the
semibasic tracé. of L by recurrence as follows:

if Lisa(l, 1)-tensor, therl := tr(F o L); (1.6a)
if L e M), s> 2 thenvX € £(TM) :ixL :=ixL. (1.6b)
It can easily be seen thatdoes not depend on the choice of the almost complex struEture

We shall need the following technical results.

1.7.Lemma. Letw € ‘JS(T M) be a symmetric semibasic tensor and ISF}(T M) a semibasic
tensor. Then

~——

J=n o0®J=no. (1.7a)
VX e X(TM): 0®LX = ifLxo,
where Fe EndX (T M) is an arbitrary almost complex structure

(1.7b)

1.8. Definition and lemma. The symmetric product of tensasse TX(T M), L € TH(T M) is
the (1, s+r) tensorw ® L given by the formula

w ® L(Xl, e, Xs—i—r) = — Z a)(XG(l), A Xg(s))L(Xg(s+l), cee, XJ(S_H)).

If o € TATM) (s > 1) is a symmetricsemibasic tensor and k T1(T M) is a semibasic
tensorthen

wOL=Lwtiro (1.8)

(F is an arbitrary almost complex structure on )M
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Using mathematical induction, the proofs of 1.7 and 1.8 are quite straightforward; we omit
the tedious calculations. We remark that analogous results concerning the semibasic trace of
vector formscan be found in [20].

2. Horizontal endomorphisms and semisprays

2.1. In our approach the role of a “nonlinear connection” is played byhikzontal endo-
morphismsA vector 1-formh € WX(T M) = EndX (T M), smooth only orTM, is said to
be a horizontal endomorphism o if it is a projector (i.e., h? = h) and Keth = XY(T M).
v := 1lxwm — his thevertical projectorbelonging tah. X"N(T M) := Imhis called the module
of horizontal vector fielddt is a direct summand, namely

X(TM) =X (TM) @ X"(TM).

The mapping

XeXM)— X":=hX¢exNTM)

is called thehorizontal lifting by h. We have the following basic relations among the vertical
endomorphisml, a horizontal endomorphismand the horizontal lifting:

hodJ=0, Joh=J; (2.1a)
VX eXM):IX" =X (2.1b)

2.2. Definition. Suppose thah is a horizontal endomorphism on the maniféfd The vector
forms

H :=[h,C] € ¥}TM), (2.2a)
t:=[J,h] € ¥3(TM), (2.2b)
R:= —Np = —3[h,h] € V(T M) (2.2¢)

are called theension thetorsionand thecurvatureof h, respectively. A horizontal endomor-
phism is said to bbomogeneouif its tension vanishes.

2.3. Remark. H, t andR were introduced by Grifone [10]. It is easy to check that all of these
tensors are semibasic, so they are completely determined by the following mappings:

n:XeXM) > n(X):=HX =[X"C]; (2.3a)
(X, Y) € X(M) x £(M) = (X, Y) :=t(XE Y®)
= [X" Y] = [Y", XY = [X, Y]%;
0: (X, Y) e XM) x X(M) = o(X,Y) := R(X, Y& = —[X", Y".  (2.3c)
For details we refer to [17].

(2.3b)

2.4. We recall (see [10]) that any horizontal endomorphisra EndX(T M) gives rise to a
unigue almost complex structufe € EndX(T M), smooth overTM, characterized by the
relations

FodJ=h, Foh=-J (2.4a)
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From these one can easily deduce the useful identities
JoF=v, Fov=hoF; (2.4b)
voF=F—-Fov=F—-hoF=-J (2.4¢)

2.5. Definition. A semisprayn the manifoldM is a mapping
SSTM>TTM, v S eT,TM

satisfying the following conditions:
(i) Sis smooth oM,
(i) Is=_C.
A semispraySis called asprayif
(i) Sis of classCtonT M, and
(iv) [C, § = S(i.e., Sis homogeneous of degree 2).

2.6. Lemma. If S is a semispray on the manifold,¥hen
VZeX(TM):J[JZ, 9 =JZ (2.6)
Proof. See [10, p. 295]. O

2.7. The fundamental relation between the horizontal endomorphisms and the semisprays was
discovered, independently, by M. Crampin and J. Grifoné[40]. Their main result can be
summarized as follows.

() If h € EndX(T M) is a horizontal endomorphism alis an arbitrary semispray du,
thenS:= hS is also a semispray oM. This semispray does not depend on the choic®,at
is horizontal with respect th and satisfies the relatidiiC, S| = S. Sis called thesemispray
associated to h

(ii) Any semisprayS: TM — TT M generates in a canonical way a horizontal endomor-
phism which can be given by the formula

h:.= %(1X(TM) +[J, S]) (2.7)

Thenh is torsion free (i.e.t = 0) and the semispray associatechts %(S+ [C, 9. If, in
addition, Sis a spray, thet is homogeneous and its associated semispray is just the starting
sprayS.

(i) A horizontal endomorphism is generated by a semispray according to (2.7) if and only if
it is torsion free.

2.8. In the sequel we shall call a horizontal endomorphisfBeawald endomorphisni it

is generated by apray We emphasise that the Berwald endomorphisms are homogeneous
and torsion free, but the converse is not true. It follows immediately thiatisfa Berwald
endomorphism with associated spraythen the horizontal lifting with respect to can be
given by the formula

X € X(M) > X" = 3(X°+[X", 9]). (2.8)
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2.9. Two spraysSandSare said to berojectively equivalerifthere is afunctio. : TM — R
satisfying the conditions

(i) A is smooth orT™M, andC* on T M;

(i) S= S+ AC.

Thena is automatically 1-homogeneous (i.€A = A). Conversely, if a sprag and a 1-
homogeneous functiaon, satisfying (i), are given, theB = S+ AC is also a spray. In this case
we speak of grojective changef the spray.

2.10. Lemma. Suppose that h is a Berwald endomorphism with associated spray S. Consider
a projective change S»> S:= S+ AC of S. Then h changes by the formula

h—h=h+31J+3d;A®C. (2.10a)
h remains homogeneous and torsion free. The horizontal lifting with respleds tthe mapping

XeX(M) - XM= X"+ Lx'+ ixwe. O (2.10b)

3. Finsler connections of Berwald type

3.1. Suppose that is a horizontal endomorphism on the maniféidand letF be the almost
complex structure determined by A pair (D, h) is said to be &insler connectioron M, if D
is a linear connection on the manifoldM or TM and the following conditions are satisfied:

Dh=0 (D is reducible) (3.1a)
DF =0 (D is almost complex) (3.1b)
Then the mapping

h*DC : X € X(TM) = DC(hX) = DpxC

is called the kdeflectionof (D, h).
An easy, but important consequence of (3.1b) is that completely determined by the
restricted maD | X(T M) x XY(T M). Explicitly, for any vector fieldsX, Y on T M,

D,xhY = FD,xJY, (3.1¢)
DhxhY = FDpxJY. (3.1d)

3.2. SupposéD, h)isaFinsler connection on the manifditl Denote byl andK the (classical)
torsion and the curvature dd, respectively. In view of (3.1a) it is readily verified that the
mappings

A:(X,Y) = hT(hX, hY) h-horizontal torsion

B:(X,Y)~ hT(hX, JY) h-mixed torsion

RY: (X,Y)~ vT(hX, hY)  v-horizontal torsion

PL:(X,Y) > vT(hX,JY)  v-mixed torsion

St:(X,Y) > vT(JIX, JY)  v-vertical torsion
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determinel completely. SimilarlyK can be described by the following three mappings:

R:(X,Y,2)— K(hX, hY)JZ horizontal curvature
P:(X,Y,Z2)—~ KX, IY)IZ mixed curvature
Q: (XY, )~ KWIX,JIY)JZ vertical curvature

The tensorfKk, P, Q € 7§(T M) are semibasic.

3.3. Definition. Let (D, h) be a Finsler connection oNl. If L € T3(T M) is one of the
horizontal, the mixed or the vertical curvatureq B, h), then the(0, 2)-tensor
L:(XY)eX(TM) x X(TM) = L(X,Y) i=tr[F o (Z+— L(Y, Z)X)]

is said to be théworizontal the mixed or thevertical Ricci tensorof the Finsler connection,
respectively F is an almost complex structrure, e.g., the almost complex structure induced
by h).

3.4. Berwald-type connections.We set out from a horizontal endomorphisme W1(T M)
and define the mapping

D°: X(TM) x X(TM) - X(TM),

(X,Y) — DY

by the following rules:
D3xJY = J[IX VY], (3.4a)
DnyJdY :=v[hX JY], (3.4b)
D, xhY :=h[vX, Y], (3.4c)
DnxhY :=hF[hX, JY] (3.4d)

and
DYY = D xvY + DpyvY + D)xhY + DphY.

Itis straightforward to prove th&D°, h) is a Finsler connection d ; this Finsler connection
is said to be th&erwald-type Finsler connection induced bylfyin particular,h is a Berwald
endomorphism, then we calD°, h) aBerwald connection

Replacing the vector fields in (3.4a)—(3.4d) by complete MtsY€, and taking into account
(1.5¢), 2.1 and (2.4b), we get the useful formulas

DS.YY =0, (3.4e)
D5 YV = [X", Y], (3.4f)
D3 Y" =0, (3.49)
D5, Y" = F[X", YY]. (3.4h)

3.5. Lemma. Supposé&D®°, h) is a Berwald-type Finsler connection on M.
(i) The h-deflection ofD°, h) coincides with the tension of h.
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(ii) The torsionT° of D° can be represented in the form
T°=Fot+R, (3.5)

where t and R are the torsion and the curvature pahd F is the almost complex structure
induced by h.

Proof. (i) Let Sbe an arbitrary semispray. For each vector fi€ldn T M,

H(hX) :=[h,ClhX =[hX,C] —h[hX,C] =v[hX,C] =v[hX,JY

Ab) o * ° * o
€29 pp IS=h*(D°C)(X) = h*(D°C)(hX).
This proves our assertion sinbéandh*(DOC) are semibasic tensors.
(i) Let X, Y € X(M). Then, using (3.4e)—(3.4h) we get

To(X" YY) =0,

T° (XY, YY) =0;

ToX" YN = F(IX YY] = [Y™, XY]) — [XM, Y]

= F([X", Y] = [Y", X¥]) = h[ X", Y] — o[ X", Y]

(2.4&):,(2.30# ([Xh, YV] _ [Yh, Xv] _ [X, Y]V) + R(Xh, Yh)

@3 E ot + R)(XM, YN,

thus (3.5) is also true. [J
3.6. Corollary. If (D°, h) is a Berwald-type Finsler connection then
(i) the h-deflection ofD°, h) vanishes if and only if h is homogenepus

(i) the h-horizontal torsio\° of D° is related to the torsion of h by the formuta = F ot,
thereforeA° =0« t =0,and thenT° = R. [

3.7. Lemma. Suppos&D°©, h) is a Berwald-type Finsler connection and AT(T M) is a
semibasic tensor. Then

VXeX(M): DGWA=LxA, (3.7a)
more precisely
VX1, ..o, Xs € X(M) 1 (DSWA(XS, ..., X)) = (LxvA) (XS, ..., X9)

=[XY, ACXS, ..., X9)]. (3.7b)

Proof. SincevV X € X(M) : [X", Xih] e XV(TM),1<i <s,andAis semibasic, it follows
that

(LxA(X], .. XD = [XY, AXE, ... XD
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Here
[XY, ACXD, ... XD @Y —[arA(XD, ..., X1), XV]

23 X (A, . XD) = I[FAKE .. XD, X']
(1.5¢) J[J Xe, FAXD, ... XQ)] (3.4a) DQVA(XE’ e, XE)
G249 Dy, A) (XI, ... XD,

SO we obtain the result. J

3.8. Lemma. Suppose that h is a homogeneous horizontal endomorphism with vanishing
torsion, and let F be the almost complex structure associated to h.elﬂ%(T M) is semibasic

and homogeneous of degredile., Lc A = (k — 1) A) then Fo A is homogeneous of degree
k+ 1.

Proof. By the assumption, for any vector fields, ..., Xs € X(M),
(k—DAXS, ..., X9 = (LcA(XE, ..., X)) = [C, AX], ..., XD].

since [C, X{] (1'=5d)0, 1 < i < s. Now we consider the Berwald-type connectidd®, h). It
follows by the preceding arguments that

(DEA) (XS, ..., X9 = DZA(XY, ..., X9).

The right-hand side of this equation can be formed as follows:

DEAXS, ..., X9 = D5 FAXS, ..., X9 “9J[C, FAKXS, ..., X9)]

(a5 CI(FACXS. ... X9) — [IFACXS, ... X9), C]
CUIFAG. L X9+ [CLIFAXKS, .. XD)]
CEIAXE, . XY+ (LA (XS ... XO)

=KkAXS, ..., X9).

Thus
KFAXS, ..., X9 = F[DEAXS, ..., X9] “VFa[C, FAXS, ..., X9)]

@2h[C, FAXS, ..., X9)]
2, CI(FAXS. ... X9) — [NFAXS, ... X9).C]
22LC FAKXS, ..., X9] = [Lc(F o A]XS, ..., X9,

which proves our assertion.[]

4. The mixed curvature and the mixed Ricci tensor of a Berwald-type connection

4.1. If (D°, h) is a Finsler connection of Berwald-type, then we denote the horizontal, the mixed
and the vertical curvature @° by R°, P° andQ°®, respectively. In the centre of interest in this



108 J. Szilasj Sz. Vattarany

work is the mixed curvature, but for completeness we recall@ialways vanishesvhile R°
can be given by the following formula:

VXY, ZeX(TM):R(X,Y)Z =[J, R(X,V]Z. (4.1)
For a good study of the surviving curvatures (in the Finslerian case) we refer to [19].

4.2. SupposeD is a linear connection on the manifoldM (or TM). It will be convenient to
introduce the operator

Dy:AeT{(TM) > D;jAe Tl (TM)

by the rule
ixDjA:=DjyxA (X e X(T M)).

Then, for example, (3.4a) can be written in the more compact form
VY e £(TM):D3JY =[J,JV].

4.3. Lemma. The mixed curvatur®° of a Berwald-type Finsler connectiqid°, h) can be
given by

VX, Y, Z e XM):P°(XS,Y9Z = [[X", Y], ZY]. (4.3)

P° is symmetric in its second and third argumentsirifaddition, h is torsion freethenP” is
totally symmetric.

Proof.
Po(X®, Y9Z%:=K(hX® JYHIZ¢ = K(Xh VA
= th Dyv ZV - DYV D;h Zv - xh YV] ZV
(34 1f) e} o]
=L DGIX", 2] — Diynyy 2"

Since [X", Y] is vertical, it can be combined from vertically lifted vector fields, so (3.4e)

implies thatD? [Xn YV]Z = 0. The remainder term can be formed as follows:

—D[X", 2] = —D5y IFIXN, 2 gy, FXN, 2]
= J[F[X", 21, Y] 293, YIF[X, 2Y] + [JF[XN, 2V, YY]
(L.5¢), (2.4b)[[xh 7Y, Y] Jacobi-identity_ 02", Y. XM — [Y". XM, Y]
(14) [[Xh YY], 2Y.
Thus(4.3) is verified, and, at the same time, we have got the relation
P°(XS, Z9YC = [[X", Z'], YV] = P°(X®, Y©)Z°.
If his torsion free and hence, in view of (2.3b),

[XM, Y] = [Y", XY] = [X,Y]Y =0,
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it follows that
(X" YY1, 2] = [[Y", X'], 2] +[[X, Y1¥, 2"]
— P°(YC, X9)Z°,
thusP” is totally symmetric. O

(1 4) [[Yh, XV]’ ZV]

4.4. Proposition. If h is a homogeneous and torsion free horizontal endomorphtsen the
mixed curvature of the Berwald-type connecti@?, h) has the following properties

isP° = Ofor any semispray ;S (4.4a)
LcP° = —2P°, i.e, P°is homogeneous of degree 1; (4.4b)
D3P° is totally symmetric (4.4c)

Proof. (a) Owing to Lemma 4.3, it is enough to check that

VX, Y € X(M): P(X% 9Y =0
Calculating as before, we get

P° (X%, 9Y® = D5xD3sY" — D5gD5Y" — Dixn 55 Y°

0 J[C. Y] = DX, Y] — Dy o Y©
(1.5d), 2.2, (24b) D3 J F[Xh YY) (3:49) _J[C, F[Xh YV
= J[F[X", ¥¥]. €] “22—[3, CIF[X", Y] + [IF[X", Y], C]
(1.5b), (2.4b) [Xh YY) +[[Xh Y'], C]

[X" Y] =YY, C1, X" - [[C, X", Y]
(XM YY) = [YY, X

Jacobi |dent|ty

(15d). 2.2

=0.
(b) Since the Lie brackets @ and the complete lifts vanish, for any vector fieksY, Z
on M we have

(LcP?) (XS, Y8, 29 = [C, PP (X, Y©, 29 €[, [1x", Y1, 211

Using the Jacobi identity repeatedly, in view of (1.5d) and the homogenéeiityt é6llows that
[C.IIX", YY), 211) = —[[X", Y"1, [2", CT) = [2, [C. [X", Y"II

X", Y1, 2] - [2*,[C. [X", Y]]

= —[[X" Y] 2T+ (2", [X". [Y". CIIl +[2Z". [Y".[C. X"]

—[[X" ¥, 2] = [[X" Y], 2]

) _2P°(X°, Y9 Z°.

IIJ> Il

ThusLcP° = —2P°,
(c) For any vector fieldX, Y, Z,U € X(M),

(Dj PO)(XC, Y€, Z°U% 12 (DjXCPO)(YC, Z°,U°% = D5 .P°(YS, Z9U°,
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sinceP” is semibasic, and, for example,

D3y YS = D3ye(wY®+hY®) = D3y Y + DL Y EIDs Y € 2Y(T M),
Thus in view of Lemma 4.3 and the calculation in its proof, we get
(D5P)(XC, Y5, 2% U%) = D3yellY", 2, U] = D3y IFI[Y", 2], UY]
(3.:4a)J[XV’ F[[Yh, ZV]’ UV]] — [XV, [[Yh, ZV], UV]]
— —[[Yh, ZV]’ [UV, XV]] o [UV, [xV’ [Yh, ZV]]]
— [UV, [[Yh, ZV], XV]] — [UV, PO(YC, ZC)XC]
(3-:7b)(DaVPo)(YC’ ZC, XC) — (DSPO)(U C, YC, ZC, XC)
This symmetry property together with the total symmetryoimplies the total symmetry of
DsP°. O

4.5. Corollary. Under the hypothesis @4, the mixed Ricci tensd?’ of the Berwald-type
connection(D°, h) has the following properties
LCISO = Dgﬁo — P (i.e. P is (=1)-homogeneoys (4.5a)
Djlgo is totally symmetric (4.5b)

Proof. (4.5a) is a consequence of (4.4b) and Lemma 3.8. Since the semibasic trace operator
clearly commutes with the tensor derivations, (4.5b) follows from (4.4€).

5. Yano-type connections

We start with a slight generalization of the Berwald-type connections.

5.1. Proposition. Suppose h is a horizontal endomorphism on the manifold M with associated
almost complex structure F. Lgte T9(TM) be a symmetric tensagatisfying the condition

for any semispray S isB=0. (%)

Let, finally, a vertical vector field Ue X(T M) be given. Then there exists a unique Finsler
connection(D, h) on M such that

(i) the v-mixed torsion of D i! := 8 @ U;

(i) the h-mixed torsiom of D vanishes.
The table of rules for calculation of the covariant derivatives with respect to D is

DyxJY = J[IX Y] = D5,JY, (5.1a)

DhxJdY =v[hX, IY] 4+ B(X,Y)U = DpxJY + B(X, Y)U, (5.1b)

D,xhY = h[vX, Y] = D;xhY, (5.1¢)

DhxhY = hF[hX, JY] + B(X,Y)FU = DyxhY + B(X, Y)FU. (5.1d)
If, in addition,

(i) the h-deflection ofD, h) vanishes
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(iv) the h-horizontal torsion of D vanishes
then the horizontal endomorphism h is homogeneous and torsion free.

Proof. (a) Unicity. We show that (i) and (ii) imply (5.1a)—(5.1d).
() = (5.1b) VX,Y € X(TM):

B YU L P Y)Y 220 (DhxdY — Dyyh X — [hX, JY]) = DhxdY—v[h X, JY],

so (5.1b) is valid.
(i) = (5.1c) For any vector fieldX, Y € X(T M),

0L B(Y, X) ¥h (Dpyd X — DyxhY — [hY, IX]) = —DyxhY — h[hY, IX],

thusDjxhY = h[J X, hY]. ReplacingX by F X, we getD,xhY = DjexhY = h[vX, hY] =
h[vX, Y] — h[vX, vY] = h[vX, Y]. This means that (5.1c) also holds. Now (5.1a) and (5.1d)
follow from (5.1b) and (5.1c) by (3.1c) and (3.1d).

(b) ExistenceHaving the dat#, 8, U, we define a linear connectidd on T M by the rules
(5.1a)—(5.1d). A straightforward calculation shows ttiat h) is a Finsler connection satisfying
(i) and (ii).

(c) The remainder is an immediate consequence of Lemma 3.5.

5.2. Corollary. A Finsler connectiorfD°, h) on M is a Berwald-type connection if and only
if the following axioms are satisfied

(i) Thev-mixed torsion of D vanishes.

(ii) The h-mixed torsion of D vanishes[]

5.3. Corollary and definition. Suppose h is a homogeneous and torsion free horizontal en-
domorphism on M. Le®” be the mixed Ricci tensor of the Berwald-type conneatidh h).
There exists a unique Finsler connectidd, h) on M such that

(i) the v-mixed torsion of D is

P (P° ® C);

T n+1
(ii) the h-mixed torsion of D vanishes.
This Finsler connection is said to be tifano-type connectiomduced by h. Ifin particular,
h is a Berwald endomorphisrthen we speak of #ano connection

Proof. Recall thaf” is symmetric by Lemma 4.3, while the validity of the conditia) in 5.1
is assured by (4.4a). O

5.4. Remark. If (D°, h) and(D, h) are the Berwald-type and the Yano-type connections in-
duced byh, then we see from (5.1a) and (5.1c) ti2§ = D,. In view of Lemma 37 and
Proposition 4 this implies that

for any vector fieldX € X(M) and semibasic tensax € ‘ISl(T M),
DXVA = va A;
D;P° is totally symmetric (5.4b)

(5.4a)
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5.5. Proposition. Suppose that h is a torsion frelegomogeneous horizontal endomorphism.
Let (D°, h) and (D, h) be the induced Berwald-type and Yano-type connections with mixed
curvature and mixed Ricci tensoPs, P and P°, P, respectively. Then for any vector fields
X,Y,ZonM,

1 ~
P(X®,Y%)Z¢ = [PO - —5(DF® C)](XC, Ye, Z9
”1+ (5.5a)
— —— (PP ® J)(XE, Z°, Y.
n+1( ® J)( )
2 ~

B o (5.5b)
n+1

Proof. (a) By the rules of calculation (5.1a)—(5.1c),

P(Xc, YC)ZC = th DYVZV - DYV thzv - D[xh YV ZV == —DYV thzv
1
= —Dyv ([xh 2+ P°(X° C)C).

Thus, taking into account (4.3) and (5.4),

1 ~
P(X® Y9 Z% = P° (X% Y%Z° — 1 Dy (P°(X®, Z90).

Now using the fact thatD Ig’)(xc, Y€, 2% = D; Xc[ISO(YC, ZC)] and, taking a semispra,

D;C(Y%) = DyveC = Dyved SV 31y, 5 €9 vv — (v©),
it follows that
Dyv(P*(X®, Z9C) = Y'(P*(X®, Z%)C + P*(X°, ZDysC
— (D3P° ® C)(YE, XE, Z% + (P° ® J)(XS, Z5, Y©)
G2 D3P ® C) (XS, Y, Z° + (P° @ J) (XS, Z5, Y©).
This proves (5.5a). _ N
(b) In view of Definition 3.3 and the symmetry Bf and D ;P°,
P(XC, Y®) = tr[F o (Z° > P(Y®, Z°)X®%)]
1 ~
G52y, [F o <z° > (PO(YC, Z¢) X — m(D 3P° ® C)(YS, Z°, X®)
1 ~
- n—(P° ® J)(YC, XC, zc)ﬂ
/_\_/ l /_\_/
= P°(X5,Y®) — —DJP°®C(X° ¢ — P°® J(XC, Y©).
SinceP® ® J = nP°, and (taking a semispray)

—_~—

D\]I’D\;J@C = DJISB(X)JS(lgb)iF\jsDJISB = ihsDJISO
= Dynd® = DcP =LcP P,
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we have
p_p- " pr tep__ 25 O
- n+1 n+1  n+4+1 °

5.6. Remark. Using the symmetric produ¢t.1), (5.5a) can also be written in the form

1 ~ ~ ~ ~
P=P - [(D:F)eC+Fol-FPai-JoF] (5.6)

6. The Douglas tensor of a Berwald endomorphism

6.1. Definition. Supposen is a Berwald endomorphism on the manifditl. If (D, h) is the
Yano connection induced byandP is the mixed curvature dD, then the tensor

Di=P-1(P®JI+JI®P) (6.1)
is said to be th®ouglas tensopof the Berwald endomorphism.

6.2. Remark. (a) Itis clear thaD is semibasic and symmetric. By the definition, for any vector
fields X, Y, Z € X(M),

D(XC, Y©)Z° = P(XS, Y Z¢ — 3(P(X®, Y Z¥ 4 P(YC, Z9XY). (6.2a)

(b) It is easy to expresb in terms of the Berwald connectiaiD®, h): in view of (6.2a),
(5.5a) and (5.5hb)

1 ~
D(XE, Y& Z¢ = P°(XE, Y&)Z¢ — (DsP e C)(XE, Y¢, Z%

1 -~ 1
PO(XC C)YV _ PO(XC, YC)ZV _ PO(YC, ZC) XV
1+n n+1

T+l
1 ~ ~
_ [P = (DPoCLPOJI } XS, YC, 7.
[ (D3P @C+F o) )
In a more compact form:
1
D=P - (DFFRC+P0J 6.2b
n+1( ®C+P0J) (6.2b)

6.3. Proposition. LetD be the Douglas tensor of a Berwald endomorphism. Then
for any semispray S isD = 0; (6.3a)
D = 0 (i.e. the semibasic trace db vanishek (6.3D)

Proof. (a) Let us first observe tha§I§> = i;ﬁo (4':4a)0, so for any vector field¥, Z € X(M),

(isP) (v©, 29 * P —[(DP) (Y%, 2% ® C + [P (Z9]Y"]

+1

1 ~
_ Y pePyyt 2o ec 4L sy zoc
n+1(C)(’)® n+1(’)
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Thus
(isD) (Y, 2% = D(S, Y, 2% = (isP) (Y©, 2% — 3 [P(S. Y9 2" + P(Y*, Z2°C]
1
=53 1P°(Y° z°C - 1 (isP(Y9)Z" + P(Y®, Z°C)
syl 1 ~ 1 . ~ 1 ~ . —c
= —=P° ®C~ P®J-—P®C)(Y",Z
(n+1 ® 1S ® ] ® )( Ay
@2,
(b) Since
D3P°®C = D5P°®JS "L ik sD5P° = insD5P° = D5, = DeP” 2P
and

Pod Y¥WIF Lip,P “9np 40, 2 (n+ 2P
using (6.2b) we get

1 ~ ~ ~

D=F - (P +0+2P)=F -P =0 O

6.4. Theorem. The Douglas tensor of a Berwald endomorphism is invariant under the projec-
tive changes of the associated spray.

Proof. Supposé is a Berwald endomorphism dvl with associated spra$. Denote byD the
Douglas tensor dfi. Consider a projective change

S— S:=S+1C, Ci=2.

Then S generates a Berwald endomorphi&ng2.10); letD be the Douglas tensor &f. First

we express the mixed curvature of the Berwald connectlo("nDo ) in terms of the mixed
curvatureP° of the Berwald connectiotD?, h).
For any vector fieldX, Y, Z € X(M),

PP(XS, Y9 ze E X" v, 21 A2 XN 4 1Y + 1(XAC, YY), 2]
= [[X" Y'], 2] + 3[[AXY, YY1, 2¥] + 3[[(X"A)C, Y'], Z¥]
= P°(X%, Y)Z + [ ZV(YYMIXY + 3[Z[YV(X"M]IC

+3[ZY XYY + LYV (XYD] 2,

Consider the tensor

a1 (X, Y)eX(TM) x E(TM) —» a(X,Y) :=ddya(I X, Y).

« is obviously symmetric and semibasic, and it makes possible to abbreviate the above expression
as follows:

P =P+le0d+iDmeC. (6.4a)
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In the next step we derive the relation between the semibasic traBesafiP°. By (1.7a),
(1.7b) and (1.8) we obtain from (6.4a):

& = P+ %na—i— %iFJa-i— %iFJSDJa = P+ %na+a+ %Dca.
Now we calculate the covariant derivatiilg.«c. For any vector field, Y € X(M)
(Dca)(XC, Y9 = (Lca)(XC YO = Ca(X® Y% = C[X"(YY)L)]
[C, XY](YYL) + XY[C(YVL)]
D_XV(YYA) + XV([C, YY]A + YV (CA))
W2 yvivvay — XYOYYA) 4+ XY(YYA) = —XY(Y'R)

= —a(X Y.
(using the 1-homogeneity @f). ThusDca = —«, therefore

1.

,\
e |l

a1

PP = P+ i+ 1a (6.4b)

and, in view of (5.5b),

~

P=P+a. (6.4c)
On the other hand, by (5.6),

_ _ 1 ~ ~ ~ ~
P= Po—m[(DJPO)®C+P°®J—P°®J—J®P"]

4a), (6.4b), 1 5
(6.42), (6.4b), +%a®\]+%(DJC()®C—m(DJP)@C_%(DJQ)(gC

1 - 1 -
- — P 0ol-100l+ —PRI+ilax®]
POl e0lt P eltiee
+n+1J®|§>+%J®a(¥’P+%(a®J+J®a)

—P+i[P-P®I+I®P-P)],

thus _ _

P-3P®J+JQP)=P-3P®JI+JIQP),
i.e.,D = D, as was to be shown.
6.5. Now we are going roughly to clarify the meaning of the Douglas tensor. Sugpbs¥)
is an affinely connected manifold. Th&hdetermines a horizontal endomorphisnfsmooth
on the whole tangent manifold M!) which is related td by

[X" Y= (VxY), (XY e EM)). (6.5)
Of courseh is a Berwald endomorphism, and the Berwald connedtidnh h) is just(V", h),
whereV" is the horizontal lift ([7]) ofV. Then for any vector fieldX, Y, Z € £(M),

P (X%, Y9 Z X", ¥, 2] = [(vxY)", 211 0,

thus the mixed curvature d° vanishes, hencthe Douglas tensor of h also vanishés for
the converse and the whole story, we have the following important result.
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6.6. Theorem (. Douglas, Z. Shén Suppose M is an orientable manifold and let h be a
Berwald endomorphism on M. The associated spray of h is projectively equivalent with the
spray determined by a linear connection on M if and only if the Douglas tensor of h vanishes.

Proof. The “if” part is an immediate consequence of the preceding remark and Theorem 6.4.
Now we prove the “only if” part. Following Shen'’s idea, we consider an arbitrary volume form
w on M and extend it to a volume forfia on T M as follows:

Hoi= 1A p2; 1= T, pa v € TM > (u2)y € A'T/TM,
Vi, ..z € TVTM: (02)u(Z. ... Z0) = pagy (Jo(20). - (@),

wherej, : T)TM — T,),M is the well-known canonical isomorphism. Having this volume
form, one can speak of ttivergenceof any vector fieldX € X(T M) in the usual manner:
divy X is defined by the relation

Lxp = (divy X)1L.
It is easy to check that, in particular,
div; C =n.
Now we turn to the associated spr@yf h. Observe that diySis 1-homogeneouys.e.,
Lcdivy S=divy S
Indeed,
Lckst = Le[(divy 9] = [Lc(divi 9] + (divy SLclt
= [Lc (divi S)] & + (ndivy S) [i.
The left-hand side can also be written as follows:
Lelsit = Lic gt + Lslept = Lsit + nlsi
= (divz St + (ndivy SK.

Comparing the right-hand sides, we get the results.
Now let

1 ~ 1 .
A= ~ = A = _ ~ .
g 0VES S=S4iC=S— o (dv;S)C

ThenSis divergence-free:
I _ 1 _ : _
div; S=div; S— T (divy Sdivi C + Lc divy S)

1
= div; S— = (ndivy S+ div; S)

+1
=0.
After some calculation, for the tenseconstructed in the proof of 6.4 now we obtain the relation
2 -
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Substituting this into 6.4(a), we get:
_ 1 ~ ~
P° = Po_—n+1(DJP°®C+P°®J)(6'=2b)D. (6.6a)

From this follows (c.f. 6.5) that the vanishing Bfimplies the desired projective equivalence.
O

6.7. Remark. The local version of 6.6 was proved by J. Douglas [8], the global result is due to
Z. Shen [15]. Our proof is a more conceptual and coordinate-free realization of Shen’s ingenious
thought. Pay attention to the remarkable relation (6.6a): the mixed curvature of the Berwald
endomorphisminduced by the projectively deformed (divergence-free) spray is just the Douglas
tensor!

7. Remarks on the Weyl tensors

7.1. First we recall del Castillo’s result mentioned in the Introductionh lis a horizontal
endomorphism oMM, R is the curvature tensor ¢fand

1 (r+ L gsk (7.1a)
T hnr1 n—1°° '

(Sis a semispray oM), then the tensor

W:=R—-0AJ+djo®C (7.1b)

is invariant under the projective changes of the associated sptayéfis said to be th&Veyl
tensor of the Berwald endomorphism h

7.2. Proposition and definition. Assume h is a Berwald endomorphism on the manifold M
andRe is the horizontal curvature of the Berwald connecti@r, h). Let for any vector fields
X,Y € X(M) and for a semispray S

A(X®) =

1, = ~
5 1(n|5R(X°)+R(X°,S)),

1 ~ ~
B(XS, Y®) = m(R(XC, Y% — R(YS, X9).
Then the tensor Wdefined by
W*(XE, Y9 ZC:= R°(X® Y%Z° — (D3A® J-DjB® C)(ZC, X%, Y°)
+ (DSA® J)(Z° Y, X9 + (B® I)(XE, YC, 29

(X,Y, Z € X(M)) is invariant under the projective changes of the associated spray of h. We
call W* the Weyl tensor of the Berwald connecti@r, h). W* and the Weyl tensor W of h are
related by the formula

DIW(Z°, X, Y©) = W*(X®, Y€, Z9), XY, Z e X(M). (7.2)

The proof is a very long and tedious computation, so we have to omit it.
Now we are in a position to derive an essential result of [2], without any calculation.
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7.3. Proposition. Suppose h is a Berwald endomorphism with vanishing Douglas tensor. Then
the Weyl tensor of the Berwald connectid»’, h) is a vertical lift, i.e., roughly speakingits
components depend only on the position.

Proof. In view of 6.6 the associated spray lofs projectively equivalent with the associated
spray of a linear connectiovi. Since the Weyl tensoV* is a projective invariant by7.2), it
follows thatw* is the Weyl tensor o¥. More precieselyW* is the Weyl tensor of the Berwald
connectior(Vﬁ, h), whereh is the Berwald endomorphism determinedWyc.f., 6.5). O
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