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Abstract
Using the theorem of Carnot we give elementary proofs of two statements

of C. Bradley. We prove his conjecture concerning the tangents to an arbitrary
conic from the vertices of a triangle. We give a synthetic proof of his theorem
concerning the “Cevian conic”, and we also give a projective generalization of
this result.
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1. Preliminaries

Throughout this paper we work in the Euclidean plane and in its projective closure,
the real projective plane. By XY we denote the signed distance of points X, Y
of the Euclidean plane. This means that we suppose that on the line

←−→
XY an

orientation is given, and XY = d(X,Y ) or XY = −d(X,Y ) depending on the
direction of the vector

−−→
XY . The simple ratio of the collinear points X, Y , Z

(where Y 6= Z and X 6= Y ) is defined by

(XY Z) :=
XZ

ZY

and it is independent of the choice of orientation on the line
←−→
XY , thus in our for-

mulas we can use the notation XY without mentioning the orientation.
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We recall here the most important tools that we use in our paper. The proofs
of these theorems can be found in [4].

Theorem 1.1. Let ABC be an arbitrary triangle in the Euclidean plane, and let
A1, B1, C1 be points (different from the vertices) on the sides

←−→
BC,

←→
CA,

←−→
AB,

respectively. Then

• (Menelaos) A1, B1, C1 are collinear if and only if

(ABC1)(BCA1)(CAB1) = −1,

• (Ceva)
←−→
AA1,

←−−→
BB1,

←−→
CC1 are concurrent if and only if

(ABC1)(BCA1)(CAB1) = 1.

Referring to the theorem of Ceva, if P is a point that is not incident to any
side of the triangle, we call the lines

←→
AP ,

←−→
BP ,

←−→
CP Cevians, and we call the points←→

AP ∩←−→BC, ←−→BP ∩←→AC, ←−→CP ∩←−→AB the feet of the Cevians through P .

Now we formulate the most important theorem on projective conics, the theorem
of Pascal (together with its converse). We note that this theorem is valid not only
in the real projective plane, but in any projective plane over a field (i.e. in any
Pappian projective plane).

Theorem 1.2. (Pascal) Suppose that the points A, B, C, D, E, F of the real
projective plane are in general position (i.e. no three of them are collinear). Then
there is a conic incident with these points if and only if the points

←−→
AB ∩ ←−→DE,←−→

BC ∩←−→EF and
←−→
CD ∩←→FA are collinear.

2. The theorem of Carnot

The theorem of Menelaos gives a necessary and sufficient condition for points on the
sides of a triangle to be collinear. The theorem of Carnot is a natural generalization
of this theorem, and gives a necessary and sufficient condition for two points on
each side of a triangle to form a conic. The proof ([4]) depends on the theorems of
Menelaos and Pascal. For completeness we recall it here.

Theorem 2.1. (Carnot) Let ABC be an arbitrary triangle in the Euclidean plane,
and let (A1, A2), (B1, B2), (C1, C2) be pairs points (different from the vertices) on
the sides

←−→
BC,

←→
CA,

←−→
AB, respectively. Then the points A1, A2, B1, B2, C1 and C2

are on a conic if and only if

(ABC1)(ABC2)(BCA1)(BCA2)(CAB1)(CAB2) = 1.
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Proof. Let A3 :=
←−→
BC ∩←−−→B2C1, B3 :=

←→
AC ∩←−−→A1C2 and C3 :=

←−→
AB ∩←−−→A2B1. By the

theorem of Pascal A1, A2, B1, B2, C1, C2 are on a conic if and only if A3, B3,
C3 are collinear. Thus we have to prove that the collinearity of these points is
equivalent to the condition above.

Since A3, B2, C1 are collinear, by the theorem of Menelaos

(ABC1)(BCA3)(CAB2) = −1.
Similarly,

(ABC2)(BCA1)(CAB3) = −1
and

(ABC3)(BCA2)(CAB1) = −1.
Multiplying these equalities we get

(ABC1)(ABC2)(ABC3)(BCA1)(BCA2)(BCA3)(CAB1)(CAB2)(CAB3) = −1.
Using the theorem of Menelaos again, A3, B3, C3 are collinear if and only if

(ABC3)(BCA3)(CAB3) = −1.
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By our previous relation this holds if and only if

(ABC1)(ABC2)(BCA1)(BCA2)(CAB1)(CAB2) = 1.

A similar generalization of the theorem of Menelaos can be formulated not only
for curves of second order (i.e., for conics), but also for the more general class of
algebraic curves of order n. By the general theorem, if we consider n points on each
side of a triangle (different from the vertices), these 3n points are on an algebraic
curve of order n if and only if the product of the 3n simple ratios as above is (−1)n.
The most general version of this theorem has been obtained by B. Segre, cf. [5].

3. The theorem of Carnot from the point of view of
barycentric coordinates

In this section we work in the real projective plane and represent its points by ho-
mogeneous coordinates. It is well-known that any four points A, B, C, D of general
position (no three of the points are collinear) can be transformed by collineation to
the points A′[1, 0, 0], B′[0, 1, 0], C ′[0, 0, 1], D′[1, 1, 1]. Thus working with the im-
ages under this collineation instead of the original points, we may assume for any
four points of general position that their coordinates are [1, 0, 0], [0, 1, 0], [0, 0, 1],
[1, 1, 1], respectively.

Let us choose the four-point above such that D is the centroid of the triangle
ABC. Then, using the mentioned collineation we call the coordinates of the image
of any point P the barycentric coordinates of P with respect to the triangle ABC.

Then [0, 1, α], [β, 0, 1] and [1, γ, 0] are the barycentric coordinates of the points
A1, B1, C1 such that (BCA1) = α, (CAB1) = β és (ABC1) = γ.

We prove this claim for the point A1 of barycentric coordinates [0, 1, α]. Let
AM be the midpoint of BC. Since D is the centroid of ABC, AM =

←−→
AD ∩ ←−→BC,

so an easy calculation shows that the barycentric coordinates of AM are [0, 1, 1].
Since the original points are sent to the points determined by the barycentric
coordinates by a collineation, and collineations preserve cross-ratio, it means that
(BCA1AF ) = α. Otherwise, since AM is the midpoint of BC, (BCAM ) = 1, so

(BCA1AM ) =
(BCA1)

(BCAM )
= (BCA1).

Thus we indeed have (BCA1) = α.

In terms of barycentric coordinates the theorem of Menelaos states that the
points [0, 1, α], [β, 0, 1], [1, γ, 0] are collinear if and only if αβγ = −1. Similarly,
we have the following reformulation of the theorem of Ceva: the lines of [0, 1, α]
and [1, 0, 0], [β, 0, 1] and [0, 1, 0], [1, γ, 0] and [0, 0, 1] are concurrent if and only if
αβγ = 1.
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Finally, the theorem of Carnot takes the following form: [0, 1, α1], [0, 1, α2],
[β1, 0, 1], [β2, 0, 1], [1, γ1, 0] and [1, γ2, 0] are on a conic if and only if

α1α2β1β2γ1γ2 = 1.

4. Tangents to a conic from the vertices of a triangle

The next result was formulated by C. Bradley [1] as a conjecture. In this section
we prove Bradley’s conjecture applying the theorem of Carnot and using barycen-
tric coordinates. We note that our proof remains valid in any projective plane
coordinatized by a field, so we may state our theorem in any Pappian projective
plane.

Theorem 4.1. Let a triangle ABC and a conic C in the real projective plane be
given. The tangent lines from the vertices of ABC to C intersect the opposite sides
of the triangle in six points that are incident to a conic.

Proof. Let the vertices of the triangle be A = [1, 0, 0], B = [0, 1, 0] and C = [0, 0, 1].
Suppose that the tangents of C incident to A intersect

←−→
BC in A1[0, 1, α1] and

A2[0, 1, α2]; the tangents incident to B intersect
←→
AC in B1[β1, 0, 1] and B2[β2, 0, 1],

the tangents incident to C intersect
←−→
AB in C1[1, γ1, 0] and C2[1, γ2, 0].

If [0, 1, α] is an arbitrary point of
←−→
BC, then the points of the line of A and [0, 1, α]

have coordinates of the form [1, λ, αλ], where λ ∈ R. If this line is a tangent of c,
then there is exactly one λ such that [1, λ, αλ] satisfies the equation

a11x
2
1 + a22x

2
2 + a33x

2
3 + 2a12x1x2 + 2a13x1x3 + 2a23x2x3 = 0
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of C. This condition implies that the equation

λ2(a22 + 2a23α+ a33α
2) + λ(2a12 + 2a23α) + a11 = 0

has exactly one solution λ. This holds if and only if the discriminant of this
quadratic equation vanishes, i.e.,

4(a12 + αa13)
2 − 4a11(a22 + 2a23α+ a33α

2) = 0.

From this an easy calculation leads to the following equation:

α2(a213 − a11a33) + α(2a12a13 − 2a11a23) + (a212 − a11a22) = 0.

The solutions of this equation are the α1 and α2 coordinates of A1 and A2. The
product of the roots of this quadratic equation is the quotient of the constant and
the coefficient of the second order term, i.e.,

α1α2 =
a212 − a11a22
a213 − a11a33

.

By similar calculations we find that

β1β2 =
a223 − a22a33
a212 − a11a22

and

γ1γ2 =
a213 − a11a33
a223 − a22a33

.

Thus

α1α2β1β2γ1γ2 =
a212 − a11a22
a213 − a11a33

· a
2
23 − a22a33
a212 − a11a22

· a
2
13 − a11a33
a223 − a22a33

= 1,

and by theorem of Carnot, this implies our claim.

5. The Cevian conic

In [2] C. Bradley proved the following theorem using barycentric coordinates. We
give here a purely synthetic proof, applying again the theorem of Carnot.

Theorem 5.1. Let ABC be an arbitrary triangle in the Euclidean plane, and let
P be an arbitrary point not incident to any of the sides of ABC. Denote the feet
of the Cevians through P by A0, B0 and C0. Suppose that the circle through A0,
B0 and P intersect

←−→
BC in A1 and

←→
AC in B2; the circle through B0, C0 and P

intersect
←−→
AB in C1 and

←→
AC in B1; the circle through A0, C0 and P intersect

←−→
BC

in A2 and
←−→
AB in C2. Then A1, A2, B1, B2, C1, C2 are on a conic (called the

Cevian conic of P with respect to ABC).

140 Z. Szilasi



Proof. Let the circle through B0, C0 and P be ca; the circle through A0, C0 and P
be cb; and the circle through A0, B0 and P be cc. The power of the point A with
respect to the circle ca is

AC1 ·AC0 = AB1 ·AB0,

whence

AC1 = AB1 ·
AB0

AC0
. (5.1)

Similarly we get

BA2 = BC2 ·
BC0

BA0

and
CB2 = CA1 ·

CA0

CB0
.

The point A is on the power line of cb and cc, thus

AC2 ·AC0 = AB2 ·AB0.
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Hence
AC2 = AB2 ·

AB0

AC0
.

Similarly we get

BA1 = BC1 ·
BC0

BA0

and
CB1 = CA2 ·

CA0

CB0
.

Using these results,

AC1 ·AC2 ·BA1 ·BA2 · CB1 · CB2 =

=
(AB0)

2 · (AB1) · (AB2) · (BC0)
2 ·BC1 ·BC2 · (CA0)

2 · (CA1) · (CA2)

(AC0)2 · (BA0)2 · (CB0)2
.

Applying the theorem of Ceva to the Cevians through P , we get

(C0B)2

(AC0)2
· (A0C)

2

(BA0)2
· (B0A)

2

(CB0)2
= 1,

thus

AC1 ·AC2 ·BA1 ·BA2 · CB1 · CB2 = C1B · C2B ·A1C ·A2C ·B1A ·B2A,

AC1

C1B
· AC2

C2B
· BA1

A1C
· BA2

A2C
· CB1

B1A
· CB2

B2A
= 1,

(ABC1)(ABC2)(BCA1)(BCA2)(CAB1)(CAB2) = 1.

By the theorem of Carnot this proves our claim.

Remark. It is well known that for any triangle the lines connecting the vertices
to the point of contact of the incircle on the opposite sides are concurrent. (This
statement can easily be proved using the theorem of Ceva, or the theorem of Bri-
anchon, which is the dual of the theorem of Pascal.) The point of concurrency
is called the Gergonne point of the triangle. In [3] Bradley proved, using lengthy
calculations, that the Cevian conic of the Gergonne point with respect to a triangle
is a circle, whose centre is the incentre of the triangle. We give an easy elementary
proof of his result.

We use the notations of the previous proof and we suppose that P is the Ger-
gonne point of ABC. In this case AB0 = AC0, so from (5.1) we get AC1 = AB1.
So B1C1A is an isosceles triangle, thus the perpendicular bisector of B1C1 is the
bisector of the angle ∠BAC. Similarly we can prove that the perpendicular bisec-
tor of B2C2 is the bisector of ∠BAC, the perpendicular bisector of A1C1 and A2C2

is the bisector of ∠ABC, and the perpendicular bisector of A2B1 and A1B2 is the
bisector of ∠BCA. Thus the perpendicular bisectors of the sides of the hexagon
A1B2C2A2B1C1 pass through the incentre of ABC, so the vertices of the hexagon
are on a circle whose centre is the incentre of ABC.

The following result is a projective generalization of the previous theorem.
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Corollary 5.2. Let ABC be an arbitrary triangle in the real projective plane, and
let P , I, J be arbitrary points not incident to any of the sides of ABC. Denote the
feet of the Cevians through P by A0, B0 and C0. Suppose that the conic through
I, J , A0, B0 and P intersect

←−→
BC in A1 and

←→
AC in B2; the conic through I, J ,

B0, C0 and P intersect
←−→
AB in C1 and

←→
AC in B1; the conic through I, J , A0, C0

and P intersect
←−→
BC in A2 and

←−→
AB in C2. Then A1, A2, B1, B2, C1, C2 are on a

conic (called the Cevian conic of P with respect to ABC and (IJ)).

Proof. The real projective plane is a subplane of the complex projective plane,
so we may consider our configuration in the complex projective plane. Apply a
projective collineation of the complex projective plane that sends I and J to [1, i, 0]
and [1,−i, 0] (i.e., to the circular points at infinity), respectively. It is well known
(see e.g. [6]) that a conic of the extended euclidean plane is a circle if and only if
(after embedding to the complex projective plane) it is incident with the circular
points at infinity. Thus applying our collineation we get the same configuration as
in our previous theorem.
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