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1 Preliminaries

First of all, we recall some basic definitions and constructions. By an incidence geometry
we mean a triple (P, L, I ) consisting of a set P of points, a set L of lines and a relation
I ⊂ P × L called incidence. Two incidence geometries (P1, L1, I1) and (P2, L2, I2) are
said to be isomorphic, if there are bijections ϕ1 : P1 → P2 and ϕ2 : L1 → L2 such
that (A, l) ∈ I1 if and only if (ϕ1(A), ϕ2(l)) ∈ I2. Such a pair of bijections is called an
isomorphism from (P1, L1, I1) onto (P2, L2, I2). A collineation is an isomorphism from
an incidence geometry onto itself. If (A, l) is a point-line pair and (A, l) ∈ I , we say that
“A is incident with l”, “A lies on l”, “l passes through A”, and so on; and we write AIl of
l I A. However, all incidence geometries are isomorphic to an incidence geometry whose
lines are sets of points, so instead of (A, l) ∈ I we may also write (and think) A ∈ l. Points
that are incident with a common line are called collinear, lines that pass through the same
point are called concurrent. Throughout the paper the word “distinct” will be understood

.

Unter den klassischen Inzidenzsätzen der ebenen projektiven Geometrie gehören die
Sätze von Pappos und Desargues sicherlich zu den prominentesten Vertretern. Im Rah-
men der Einführung abstrakter ebener Inzidenzgeometrien kann man sich nun fragen,
welche Folgerungen aus der Gültigkeit der Sätze von Pappos und/oder Desargues für
die zugrunde gelegte Inzidenzgeometrie gezogen werden können. So wird in der vor-
liegenden Arbeit beispielsweise das folgende Ergebnis unter der Voraussetzung der
Gültigkeit des Satzes von Pappos bewiesen: Ist A′B ′C ′ bzw. A′′B ′′C ′′ ein in das Drei-
eck ABC bzw. A′B ′C ′ einbeschriebenes Dreieck, so dass die Dreiecke ABC und
A′B ′C ′ bzw. A′B ′C ′ und A′′B ′′C ′′ zueinander perspektivisch sind, so sind es auch
die Dreiecke ABC und A′′B ′′C ′′.
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whenever a special number is mentioned. On the other hand, a phrase like “let A and B be
points” includes the possibility A = B .

An incidence geometry is a projective plane if

(P1) for every pair of distinct points A and B there is a unique line incident with A and B

(we denote this line by
←→
AB);

(P2) for every pair of distinct lines m and n there is a unique point incident with m and n
(we denote this point by m ∩ n);

(P3) there are four points no three of which are collinear.

In a projective plane an ordered triple of noncollinear points is a triangle. Then the points
are called the vertices, and the lines joining the three possible distinct pairs of vertices are
called sides. We say that two triangles ABC and A′B ′C ′ are centrally perspective from

a point O if the lines
←→
AA′,

←→
B B ′, and

←→
CC ′ are incident with O. The triangles are called

axially perspective from a line l if the points
←→
AB ∩←−→A′B ′,

←→
AC ∩←−→A′C ′, and

←→
BC ∩←−→B ′C ′ are

incident with l. An ordered quadruple ABC D of points is called a four-point, if no three
of the points are collinear. A complete quadrangle is a four-point ABC D, together with

the six lines, called sides, determined by pairs of the four points. The points
←→
AB ∩ ←→C D,←→

AC ∩←→B D,
←→
AD ∩←→BC are the diagonal points of the quadrangle.

The following incidence properties are fundamental in the theory of projective planes:

(P) If A, B , C and A′, B ′, C ′ are triples of distinct points on distinct lines l and l ′,
respectively, and l ∩ l ′ is different from all six points, then the points

←→
AB ′ ∩ ←→A′B ,←→

AC ′ ∩←→A′C , and
←→
BC ′ ∩←→B ′C are collinear.

(D) If two triangles are perspective from a point, then they are perspective from a line.

(F) There is no complete quadrangle whose diagonal points are collinear.

Projective planes that satisfy (P) or (D) are said to be Pappian and Desarguesian, respec-
tively. If in a projective plane (F) is true, we say that it has the Fano property. By a famous
theorem of Hessenberg every Pappian projective plane is Desarguesian. (For a neat proof
of this fact we refer to [7], other complete proofs can be found in [3], [8], [9], or [11].)

Let K be a skewfield. Let (x1, x2, x3) and (y1, y2, y3) be two triples of elements of K

different from (0, 0, 0). We call them equivalent, if there is a λ ∈ K such that xi = λyi for
all i ∈ {1, 2, 3}. Let the elements of P and the elements of L be the equivalence classes
induced by this relation. We denote the equivalence class represented by (x1, x2, x3) by
[x1, x2, x3]. We say that ([x1, x2, x3], [e1, e2, e3]) ∈ I if x1e1 + x2e2 + x3e3 = 0. Then
(P, L, I ) is a projective plane, this is the projective plane over K. Equivalently, the points
of this projective plane are the one-dimensional subspaces of the three-dimensional vector
space K

3 over K, the lines are the two-dimensional subspaces of the same vector space,
and the incidence is the subset relation. If a projective plane is isomorphic to the projective
plane over K we say that it can be coordinatized by the skewfield K.

It can be shown (see e.g. [3], [6], [9]) that a projective plane is Desarguesian if and only if
it can be coordinatized by a skewfield; a projective plane is Pappian if and only if it can be
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coordinatized by a field; and a Desarguesian projective plane satisfies the Fano property if
and only if it can be coordinatized by a skewfield in which 1+ 1 �= 0.

In a Desarguesian projective plane we can choose a basis of the corresponding vector space
such that the vertices of an arbitrarily chosen complete quadrangle ABC D are coordina-
tized by [1, 0, 0], [0, 1, 0], [0, 0, 1], and [1, 1, 1], respectively.

In a projective plane we call a quadruple (ABC D) of collinear points a harmonic tetrad,
if there is a complete quadrangle such that A and C are vertices, D is a diagonal point
of the complete quadrangle, and the line of the other two diagonal points intersects the

line
←→
AC at B . If a Desarguesian projective plane satisfies the Fano property, then for any

triples (A, B, C) of distinct collinear points there is a unique point D such that (ABC D)

is a harmonic tetrad. This point is called the harmonic conjugate of C with respect to A
and B .

Let A[a1, a2, a3] and B[b1, b2, b3] be two points in the projective plane over a skewfield K.

Then any point of
←→
AB can be represented by a vector of form α(a1, a2, a3)+β(b1, b2, b3);

α, β ∈ K, not both of them are equal to zero. If C is represented by α(a1, a2, a3) +
β(b1, b2, b3) and D is represented by µ(a1, a2, a3) + δ(b1, b2, b3), then (ABC D) is a
harmonic tetrad if and only if β(α)−1µ(δ)−1 = −1.

2 The Cevian nest property

We say that a triangle A′B ′C ′ is inscribed in the triangle ABC if A′ ∈ ←→BC, B ′ ∈ ←→AC , and

C ′ ∈ ←→AB. A projective plane satisfies the Cevian nest property, if the following is true:

(CN) Let A′B ′C ′ be an inscribed triangle of the triangle ABC , A′′B ′′C ′′ an inscribed tri-
angle of the triangle A′B ′C ′. If ABC and A′B ′C ′ as well as A′B ′C ′ and A′′B ′′C ′′
are centrally perspective, then ABC and A′′B ′′C ′′ are also centrally perspective.

Fig. 1 illustrates the preceding definition.
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Fig. 1 The Cevian nest property
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It is well-known that (CN) is valid in the classical projective plane (i.e., the projective
closure of the Euclidean plane). The first purely incidence geometric proof of this fact was
presented by J.-L. Ayme in his manuscript [1]. He proved, in fact, the following:
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Fig. 2 Proof of Theorem 2.1

Theorem 2.1. If a projective plane is Pappian, then it satisfies the Cevian nest property.

Proof. For the reader’s convenience, we reproduce here Ayme’s reasoning.

We use that by Hessenberg’s theorem the projective plane is Desarguesian as well. Let
A′B ′C ′ be an inscribed triangle of ABC and A′′B ′′C ′′ be an inscribed triangle of A′B ′C ′.
Suppose that ABC and A′B ′C ′, A′B ′C ′ and A′′B ′′C ′′ are centrally perspective. (Cf. to

Fig. 2.) Let C1 := ←→AB∩←−→A′B ′, B1 := ←→AC∩←−→A′C ′, and A1 := ←→BC∩←−→B ′C ′. By the Desargues

property A1, B1, and C1 are collinear. Similarly, C2 :=
←−→
A′B ′∩←−−→A′′B ′′, B2 :=

←−→
A′C ′ ∩←−−→A′′C ′′,

and A2 :=
←−→
B ′C ′ ∩ ←−−→B ′′C ′′ are also collinear. We have to show that C3 := ←→AB ∩ ←−−→A′′B ′′,

B3 := ←→AC ∩←−−→A′′C ′′, and A3 := ←→BC ∩←−−→B ′′C ′′ are collinear as well.

Since the triangles A1 A2 A3 and C1C3C2 are axially perspective from the line incident to
C ′′, B ′′, and A′, they are also perspective from a point Y . Then Y is incident to the line of
the points A1, B1, and C1. Similarly, the triangles B1 B2 B3 and A1 A3 A2 are perspective
from a line, so they are perspective from a point Z ; finally the triangles C1C2C3 and
B1 B3 B2 are perspective from a line, therefore they are perspective from a point X . Then Z
and X are on the line of the points A1, B1, C1. Using Pappos property (P) to the collinear
triples of points Z , Y , X and A2, C2, B2, we find that the points B ′′, C ′′, and A′′ are
collinear, as was to be proved. �

It is easy to see that in the Desarguesian case (CN) has a meaning only if the Fano property
is also satisfied. Indeed, if in a Desarguesian projective plane the Fano property does not
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hold, then the diagonal points of every complete quadrangle are collinear (for a proof see
for example [6]). Therefore, if in such a projective plane ABC is a triangle, A′ is a point

on
←→
BC, and B ′ is a point on

←→
AC , then the diagonals of the complete quadrangle AB A′B ′

are collinear, thus the points C , P := ←→AA′ ∩←→B B ′ and
←→
AB∩←−→A′B ′ are collinear. This means

that the point C ′ := ←→C P ∩←→AB coincides with
←→
AB ∩←−→A′B ′, so A′, B ′, and C ′ are collinear.

Consequently, in this case the “triangle” A′B ′C ′ degenerates to a collinear set of points,
so (CN) is meaningless.

It is natural to ask whether the usage of the Pappos property in the previous proof is
necessary. We answer this question affirmatively.

Theorem 2.2. A Desarguesian projective plane satisfying the Fano axiom has the Cevian
nest property if and only if it is Pappian.

Proof. By the previous theorem, every Pappian projective plane satisfies the Cevian nest
property. We have only to show that if a Desarguesian projective plane with the Fano
property satisfies the Cevian nest property, then it is Pappian. We use the notations of the
previous proof. A Desarguesian projective plane can be coordinatized by a skewfield K,
and since the Fano property holds, the inequality 1 + 1 �= 0 is true. We will denote the
element 1+ 1 of K by 2. By our assumption it has a multiplicative inverse denoted by 1

2 .

We can choose a basis of K
3 such that A, B , and C are represented by (0, 1, 0), (0, 0, 1),

and (1, 0, 0), respectively, and the center of perspectivity of the triangles ABC and
A1 B1C1 is P[1, 1, 1]. Then, as an easy calculation shows,

A1 = [1, 0, 1] , B1 = [1, 1, 0] , C1 = [0, 1, 1] .
Let the center of perspectivity of the triangles A1 B1C1 and A2 B2C2 be Q[a, b, 1]. (We

may suppose that Q does not lie on
←→
AC .)

First we calculate a representative vector for the point A2. The representative vectors of

the points incident to
←−−→
B1C1 are of form α1(0, 1, 1) + β1(1, 1, 0). The points of

←−→
A2 Q can

be represented by vectors of form γ1(1, 0, 1)+ δ1(a, b, 1). So for a representative vector
of A1 we get

α1(0, 1, 1)+ β1(1, 1, 0) = γ1(1, 0, 1)+ δ1(a, b, 1) .

We can choose δ1 := 1. Then we have

(β1, α1 + β1, α1) = (γ1 + a, b, γ1 + 1) ,

which leads to the system of equations

β1 = γ1 + a
α1 + β1 = b

α1 = γ1 + 1





.

From this we obtain γ1 = 1
2 (b − a − 1), hence a representative vector for A2 is

1

2
(b − a − 1)(1, 0, 1)+ (a, b, 1) = 1

2
(a + b − 1, 2b, b − a + 1) ,
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therefore A2 is the point [a + b − 1, 2b, b− a + 1].
By a similar calculation,

B2 = [a − b + 1,−a + b + 1, 2] , C2 = [2a, a + b − 1, a − b + 1] .

Using the same technique, we find that the point
←−→
AA2 ∩←−→B B2 is

[a − b + 1,−a + b + 1, (a − b + 1)(a + b − 1)−1(−a + b + 1)] .

The representative vectors of the points that lie on
←−→
CC3 are of form

α2(1, 0, 0)+ β2(2a, a + b − 1, a − b + 1).

The point just has been found lies on this line if and only if there are scalars α2, β2 in K

such that

α2(1, 0, 0)+ β2(2a, a + b − 1, a − b + 1)

= (a − b + 1,−a + b + 1, (a − b + 1)(a + b − 1)−1(−a + b + 1)),

i.e., if the system of equations

α2 + 2β2a = a − b + 1
β2(a + b − 1) = (−a + b + 1)

β2(a − b + 1) = (a − b + 1)(a + b − 1)−1(−a + b + 1)






can be solved. The second equation gives β2 = (−a+ b+ 1)(a+ b− 1)−1, so the desired
α2, β2 exist if and only if the obtained β2 satisfies the third equation. From this it follows
that a Desarguesian projective plane satisfies the Cevian nest property if and only if for all
a, b ∈ K we have

(−a + b + 1)(a + b − 1)−1(a − b + 1) = (a − b + 1)(a + b − 1)−1(b − a + 1) .

Let x := (a + b − 1)−1. Then our previous condition takes the form

(−a + b + 1)x(a − b + 1) = (a − b + 1)x(b − a + 1) .

After multiplication and cancelling the opposite terms, we obtain

xa − xb − ax + bx = xb − xa + ax − bx ,

which is equivalent to
x(2a − 2b) = (2a − 2b)x .

Denoting 2a − 2b by y, we get
xy = yx .

Since for all x, y ∈ K there are a, b ∈ K such that (a + b − 1)−1 = x and 2a − 2b = y,
this means that K is a field, so the projective plane is Pappian. �
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3 The Newton property
A quadruple abcd of lines is called a four-line if no three of the lines are concurrent. The
six intersection points of the lines are called vertices. The lines

←−−−−−−−−−−→
(a ∩ b)(c ∩ d) ,

←−−−−−−−−−−→
(a ∩ c)(b ∩ d) ,

←−−−−−−−−−−→
(a ∩ d)(b ∩ c)

are the diagonal lines of the four-line. A complete quadrilateral is a four-line, together
with its six vertices and three diagonal lines.
In the Euclidean geometry the following theorem, due to Newton is well-known: the mid-
points of the diagonals of any quadrangle are collinear (for various proofs, we refer to
[10]). On the classical projective plane any two points A, B , their midpoint, and the ideal

point of
←→
AB form a harmonic tetrad. So the statement of Newton’s theorem may be for-

mulated in projective terms as follows.

(N) Let abcd be a complete quadrilateral and l be a line. If P , Q, and R are the intersec-
tions of l and the diagonals of abcd , then the harmonic conjugates of P , Q, and R
with respect to the corresponding vertices are collinear.

M

A B

D C

N

R
l

P
Q

Fig. 3 The Newton property

If (N) is true in a projective plane, we say that it satisfies the Newton property. It is well-
known (see e.g. [5]) that every Pappian projective plane satisfies the Newton property. The
classical proof strongly depends on the projective theory of conics, and is a special case of
the fact that the poles of a line with respect to the conics touching the lines of a complete
quadrilateral are collinear. Property (N) has a meaning in every Desarguesian projective
plane satisfying Fano’s axiom. One may ask whether it is true independently of the Pappos
property. Again, the answer is negative.

Theorem 3.1. A Desarguesian projective plane satisfying the Fano axiom has the Newton
property if and only if it is Pappian.

Proof. We use the notations of Figure 3. By our assumptions, the projective plane can be
coordinatized by a skewfield K in which 1+ 1 �= 0 (see below). As in the previous proof,
we denote the element 1+ 1 of K by 2. We can choose a basis of K

3 such that four of the
vertices of the considered quadrilateral are A[0, 0, 1], B[1, 1, 1], C[1, 0, 0] and D[0, 1, 0].
Then the remaining vertices are M[0, 1, 1] and N[1, 1, 0].
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The points lying on
←→
AC are of the form [a, 0, 1], so we may represent the intersection

of l and
←→
AC , i.e., the point P , by (a, 0, 1). Since (a, 0, 1) = (0, 0, 1) + a(1, 0, 0), the

harmonic conjugate P ′ of P with respect to A and C may be represented by the vector
−(0, 0, 1)+ a(1, 0, 0) = (a, 0,−1), so P ′ is the point

[a, 0,−1].
Similarly, the points lying on

←→
B D have representants of the form (1, 1, 1)+ b(0, 1, 0). Let

the point Q, the intersection of l and
←→
B D, be [1, b + 1, 1]. Then the harmonic conjugate

Q′ of Q with respect to B and D is represented by the vector −(1, 1, 1) + b(0, 1, 0) =
(−1, b − 1,−1), so Q′ is the point

[−1, b − 1,−1].
We calculate the intersection R of

←−→
M N and l. Its representative vectors have the form

α1(0, 1, 1)+ β1(1, 1, 0) = γ1(a, 0, 1)+ δ1(1, b + 1, 1).

We may suppose that δ1 = 1. Then we obtain the system of equations

β1 = γ1a + 1

α1 + β1 = b + 1

α1 = γ1 + 1





,

from which α1 = (b − 1)(a + 1)−1 + 1, β1 = (b − 1)(a + 1)−1a + 1.
R′, the harmonic conjugate of R with respect to M and N , can be represented by a vector of
the form µ2(0, 1, 1)+ δ2(1, 1, 0), where β1(α1)

−1µ2(δ2)
−1 = −1. Thus a representative

vector of R′ is

((b − 1)(a + 1)−1 + 1)(0, 1, 1)− ((b − 1)(a + 1)−1a + 1)(1, 1, 0).

So R′ is the point

[−(b − 1)(a + 1)−1a − 1, (b − 1)(a + 1)−1(1− a), (b − 1)(a + 1)−1 + 1].
The projective plane satisfies the Newton property if and only if the points P ′, Q′ and R′
are collinear. This is true if and only if there are scalars α, β in K such that

α(a, 0, 1)+ β(−1, b − 1,−1)

= (−(b − 1)(a + 1)−1a − 1, (b − 1)(a + 1)−1(1− a), (b − 1)(a + 1)−1 + 1)

hold. This yields the system of equations

αa − β = −(b − 1)(a + 1)−1a − 1

β(b − 1) = (b − 1)(a + 1)−1(1− a)

−α − β = (b − 1)(a + 1)−1 + 1






.

From the first and the third equation we obtain that β = (1 − a)(a + 1)−1. Substituting
this into the second equation, we find that the projective plane has the Newton property if
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and only if for all a, b ∈ K

(1− a)(a + 1)−1(b − 1) = (b − 1)(a + 1)−1(1− a).

Here

(1− a)(a + 1)−1 = (−a − 1+ 2)(a + 1)−1

= −(a + 1)(a + 1)−1 + 2(a + 1)−1

= −1+ 2(a + 1)−1

and

(a + 1)−1(1− a) = (a + 1)−1(−a − 1+ 2)

= (a + 1)−1(−(a + 1)+ 2)

= −1+ 2(a + 1)−1,

taking into account that for any k ∈ K we have

2k = (1+ 1)k = k + k = k(1+ 1) = k · 2.

Denoting−1+ 2(a+ 1)−1 by x , and b− 1 by y, it follows that the Newton property holds
if and only if

xy = yx .

Since for all x, y ∈ K there are a, b ∈ K such that x = −1+ 2(a + 1)−1 and y = b − 1,
from this we conclude that K is a field, so the projective plane is Pappian. �
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